The Ocean Conveyor
Today’s climate system is influenced by the ocean’s conveyor-like global circulation. Cold, salty waters sink to drive the conveyor, and warm surface currents complete the loop. (Illustration by Jayne Doucette, Woods Hole Oceanographic Institution)
A fundamental element of today’s climate system is a conveyor-like ocean circulation pattern that distributes vast quantities of heat and moisture around our planet. This global circulation is propelled by the sinking of cold, salty—and therefore dense—ocean waters.
In today’s ocean, warm, salty surface water from the Caribbean, the Gulf of Mexico, and the equatorial Atlantic flows northward in the Gulf Stream. As the warm water reaches high North Atlantic latitudes, it gives up heat and moisture to the atmosphere, leaving cold, salty, dense water that sinks to the ocean floor. This water flows at depths, southward and beneath the Gulf Stream, to the Southern Ocean, then through the Indian and Pacific Oceans. Eventually, the water mixes with warmer water and returns to the Atlantic to complete the circulation.
The principal engine of this global circulation, often called the Ocean Conveyor, is the difference in salt content between the Atlantic and Pacific Oceans. Before the Isthmus of Panama existed, Pacific surface waters flowed into the Atlantic. Their waters mixed, roughly balancing the two oceans’ salinity.
About 5 million years ago, the North American, South American, and Caribbean Plates began to converge. The gradual shoaling of the Central American Seaway began to restrict the exchange of water between the Pacific and Atlantic, and their salinities diverged.
Evaporation in the tropical Atlantic and Caribbean left ocean waters there saltier and put fresh water vapor into the atmosphere. The Trade Winds carried the water vapor from east to west across the low-lying Isthmus of Panama and deposited fresh water in the Pacific through rainfall. As a result, the Pacific became relatively fresher, while salinity slowly and steadily increased in the Atlantic.
As a result of the Seaway closure, the Gulf Stream intensified. It transported more warm, salty water masses to high northern latitudes, where Arctic winds cooled them until they became dense enough to sink to the ocean floor. The Ocean Conveyor was rolling, drawing even more Gulf Stream waters northward.
News & Insights
The future of the ocean’s conveyor belt
WHOI scientist Young-Oh Kwon discusses the state of the AMOC—the crucial North Atlantic current that regulates our planet’s climate.
News Releases
Two New Studies Substantially Advance Understanding of Currents that Help Regulate Climate
Study Finds No Direct Link Between North Atlantic Ocean Currents, Sea Level Along New England Coast
The long memory of the Pacific Ocean
Atlantic Ocean Circulation at Weakest Point in 1,600 years
[ ALL ]
WHOI in the News
Gulf Stream is weakest its been in 1,600 years, study says
[ ALL ]
From Oceanus Magazine
A Hitchhiker’s Guide to the Ocean
Like someone monitoring the traffic flow on a road system, MIT-WHOI Joint Program graduate student Sam Levang is examining the flow of the ocean’s global circulation, which has big impacts…
Detours on the Oceanic Highway
WHOI graduate student Isabela Le Bras is exploring newly discovered complexities of the Deep Western Boundary Current, a major artery in the global ocean circulation system that transports cold water…
A Newfound Cog in the Ocean Conveyor
A decade into the 21st century, scientists have confirmed the existence of a new and apparently crucial ocean current on the face of the Earth. International teams led by Woods…
Mysteries at High Latitudes
We were watching waves, Kjetil Våge and I, from the open transom on the research vessel Knorr. It was mid-October 2008 in the Irminger Sea, where nautical standards are different.…
Into the Wild Irminger Sea
In the Denmark Strait, Oct. 7, 2008 Maybe it’s lubberly to talk about those waves in the language of aesthetics, as if they were natural attractions like alpine peaks, but…