Skip to content
For WHOI personnel: COVID-19 Guidelines and FAQs

News Releases


Whale Research Takes Flight

A research team has successfully demonstrated a new non-invasive tool to obtain hard-to-get health measurements of large endangered whales in the wild: Using a small remote-controlled hexacopter, scientists for the first time collected both breath samples from the whales’ spouts combined with aerial photos of their body condition.

Read More

John W. Farrington Named 2015 American Geophysical Union Fellow

John Farrington 2015

John W. Farrington of the Woods Hole Oceanographic Institution (WHOI) has been elected a fellow of the American Geophysical Union (AGU).Farrington, Dean emeritus and an emeritus member in the Marine Chemistry and Geochemistry Department, is among 60 new fellows who will be honored for “exceptional scientific contributions and attained acknowledged eminence in the fields of Earth and space sciences.” 

Read More

Carbon Dioxide Pools Discovered in Aegean Sea

The waters off Greece’s Santorini are the site of newly discovered opalescent pools forming at 250 meters depth. The interconnected series of meandering, iridescent white pools contain high concentrations of carbon dioxide (CO2) and may hold answers to questions related to deepsea carbon storage as well as provide a means of monitoring the volcano for future eruptions.

Read More

Air Travel and Climate: A Potential New Feedback?

Global air travel contributes around 3.5 percent of the greenhouse gas emissions behind/driving anthropogenic climate change, according to the International Panel on Climate Change (IPCC).  But what impact does a warming planet have on air travel and how might that, in turn, affect the rate of warming itself?

A new study by researchers at the Woods Hole Oceanographic Institution and University of Wisconsin Madison found a connection between climate and airline flight times, suggesting a feedback loop could exist between the carbon emissions of airplanes and our changing climate.  The study was published in this week’s Nature Climate Change.

Read More

WHOI Announces 2015 Ocean Science Journalism Fellows

Seven writers and multimedia science journalists from the U.S. have been selected to participate in the competitive Woods Hole Oceanographic Institution (WHOI) Ocean Science Journalism Fellowship program. The program takes place September 13-18, 2015, in Woods Hole, Mass., on Cape Cod.

Read More

Where Iron and Water Mix

A new study by researchers from University of Washington (UW), Woods Hole Oceanographic Institution (WHOI), and the University of Southern California, demonstrates that chemical-laden plumes erupted from vents at one section of Mid Ocean Ridge in the SE Pacific can be traced all the way across the Pacific for more than 4000 kilometers.  Further, the study shows how the iron transported by this process is ultimately brought to the surface oceans of Antarctica where it is serves as a key life-sustaining micro-nutrient supporting up to 30 percent of all the organic carbon uptake in that ocean. 

Read More

Deep-Sea Images Give New View of Arctic Ocean Methane Seeps

Working with colleagues from the Centre for Arctic Gas Hydrate, Environment and Climate (CAGE) in Norway, Dan Fornari from Woods Hole Oceanographic Institution’s (WHOI) Geology & Geophysics Department collected nearly 30,000 high definition images at known methane release sites in the Arctic Ocean north of Norway.  The detailed images will provide new insights into the most remote areas of natural methane releases in the world.

Read More

WHOI Earns 4-Star Rating from Charity Navigator

Woods Hole Oceanographic Institution’s sound fiscal management practices and commitment to accountabilityand transparency haveearned it a 4-star rating from Charity Navigator, America’s largest independent charity evaluator. This is the 13th time that WHOI has earned this top distinction in the last 14 years.  

 

Read More

WHOI Names Mark Abbott President and Director

The Board of Trustees of the Woods Hole Oceanographic Institution (WHOI) announces that Dr. Mark Abbott has accepted the position of president and director of the institution. Abbott becomes the tenth director in WHOI’s 85-year history. Abbott will assume the office October 1, 2015, succeeding Susan Avery, who served from 2008 to 2015.

Read More

Camera’s Eye Sees Large Numbers of Young Scallops Off Delaware Bay

NOAA researchers and colleagues from the Woods Hole Oceanographic Institution (WHOI) have reported what appears to be a banner year for young sea scallops off the Delmarva Peninsula in mid-Atlantic waters of the U.S. NOAA’s HabCamV4, a towed imaging and sensor platform, has photographed miles of sea bottom packed with as many as 350 sea scallops in less than 1 square meter (less than three square feet). Other colorful images captured by the HabCam showed swimming scallops, sea stars and crabs—both scallop predators—and many species of fish, squid and sponges.

Read More

Accelerated Warming of the Continental Shelf Off Northeast Coast

A new study by physical oceanographers at Woods Hole Oceanographic Institution (WHOI), published in the Journal of Geophysical Research, shows that water temperatures in this continental shelf region have been trending upward, with unprecedented warming occurring over the last 13 years. The study also suggests a connection between sea level anomalies and water temperature along the continental shelf.

Read More

Making Organic Molecules in Hydrothermal Vents in the Absence of Life

In 2009, scientists from Woods Hole Oceanographic Institution embarked on a NASA-funded mission to the Mid-Cayman Rise in the Caribbean, in search of a type of deep-sea hot-spring or hydrothermal vent that they believed held clues to the search for life on other planets. They were looking for a site with a venting process that produces a lot of hydrogen because of the potential it holds for the chemical, or abiotic, creation of organic molecules like methane – possible precursors to the prebiotic compounds from which life on Earth emerged.   

For more than a decade, the scientific community has postulated that in such an environment, methane and other organic compounds could be spontaneously produced by chemical reactions between hydrogen from the vent fluid and carbon dioxide (CO2).  The theory made perfect sense, but showing that it happened in nature was challenging.

Now we know why:  an analysis of the vent fluid chemistry proves that for some organic compounds, it doesn’t happen that way.

New research by geochemists at Woods Hole Oceanographic Institution, published June 8 in the Proceedings of the National Academy of Sciences, is the first to show that methane formation does not occur during the relatively quick fluid circulation process, despite extraordinarily high hydrogen contents in the waters.  While the methane in the Von Damm vent system they studied was produced through chemical reactions (abiotically), it was produced on geologic time scales deep beneath the seafloor and independent of the venting process. Their research further reveals that another organic abiotic compound is formed during the vent circulation process at adjacent lower temperature, higher pH vents, but reaction rates are too slow to completely reduce the carbon all the way to methane.

Read More

Diverse Corals Persist, But Bioerosion Escalates in Palau’s Low-pH Waters

As the ocean absorbs atmospheric carbon dioxide (CO2) released by the burning of fossil fuels, its chemistry is changing. The CO2 reacts with water molecules, lowering ocean pH in a process known as ocean acidification. This process also removes carbonate ions, an essential ingredient needed by corals and other organisms to build their skeletons and shells.

Read More

Dr. John Holdren to Give 2015 Joint Program Commencement Address

Dr. John Holdren, President Obama’s science advisor, will present the commencement address at this year’s graduation ceremonies of the MIT/Woods Hole Oceanographic Institution Joint Program in Oceanography/Applied Ocean Science and Engineering. Sixteen PhDs and 1 Masters degree will be conferred at this year’s commencement, which will be held on Sat., June 6, 2015, on the WHOI Quissett Campus. 

Read More

Sudden Draining of Glacial Lakes Explained

In 2008 scientists from Woods Hole Oceanographic Institution (WHOI) and the University of Washington documented for the first time how the icy bottoms of lakes atop the Greenland Ice Sheet can crack open suddenly—draining the lakes completely within hours and sending torrents of water to the base of the ice sheet thousands of feet below. Now they have found a surprising mechanism that triggers the cracks.

Scientists had theorized that the sheer weight of the water in these supraglacial lakes applied pressure that eventually cracked the ice, but they could not explain why some lake bottoms cracked while others did not.

Read More

Revealing the Ocean’s Hidden Fertilizer

A new study by a research team from the Woods Hole Oceanographic Institution (WHOI) and Columbia University reveals for the first time a marine phosphorus cycle that is much more complex than previously thought. The work also highlights the important but previously hidden role that some microbial communities play in using and breaking down forms of this essential element.

Read More

Study Reveals How Rivers Regulate Global Carbon Cycle

Humans concerned about climate change are working to find ways of capturing excess carbon dioxide (CO2) from the atmosphere and sequestering it in the Earth. But Nature has its own methods for the removal and long-term storage of carbon, including the world’s river systems, which transport decaying organic material and eroded rock from land to the ocean.

While river transport of carbon to the ocean is not on a scale that will bail humans out of our CO2 problem, we don’t actually know how much carbon the world’s rivers routinely flush into the ocean – an important piece of the global carbon cycle.

But in a study published May 14 in the journal Nature, scientists from Woods Hole Oceanographic Institution (WHOI) calculated the first direct estimate of how much and in what form organic carbon is exported to the ocean by rivers. The estimate will help modelers predict how the carbon export from global rivers may shift as Earth’s climate changes.

Read More

Gulf of Maine Red Tide Bloom Expected to Be Similar to Past Three Years

New England’s spring and summer red tides will be similar in extent to those of the past three years, according to the 2015 Gulf of Maine red tide seasonal forecast. The forecast is the eighth seasonal Gulf of Maine red tide forecast funded by NOAA and issued by scientists from the Woods Hole Oceanographic Institution and North Carolina State University.

The forecast is part of a larger NOAA effort to deliver ecological forecasts that support human health and well-being, coastal economies, and coastal and marine stewardship.

Red tide, a type of harmful algal bloom (HAB) caused by the alga Alexandrium fundyense, produces a toxin that can lead to paralytic shellfish poisoning, which can result in serious or even fatal illness in humans who eat contaminated shellfish. In 2005, an unusually large red tide event caused $23 million in lost shellfish sales in Massachusetts and Maine.

Read More

Securing the Supply of Sea Scallops for Today and Tomorrow

Good management has brought the $559 million United States sea scallop fishery back from the brink of collapse over the past 20 years.  However, its current fishery management plan does not account for longer-term environmental change like ocean warming and acidification that may affect the fishery in the future. A group of researchers from Woods Hole Oceanographic Institution (WHOI), NOAA’s National Marine Fisheries Service, and Ocean Conservancy hope to change that. 

Read More

Ocean Bacteria Get ‘Pumped Up’

In a new study published April 27 in the Proceedings of the National Academy of Sciences, scientists at Woods Hole Oceanographic Institution (WHOI) and their colleague from Rutgers University discovered a surprising new short-circuit to the biological pump. They found that sinking particles of stressed and dying phytoplankton release chemicals that have a jolting, steroid-like effect on marine bacteria feeding on the particles. The chemicals juice up the bacteria’s metabolism causing them to more rapidly convert organic carbon in the particles back into CO2 before they can sink to the deep ocean.

 

Read More