Skip to content

Oceanus Online Archive


Search by Keyword

Refine by:

Date

Topic

Featured Researcher

Article Type

Special Series

Author

 マグロの話

 マグロの話

» English version 福島原発から来た放射性物質が海洋生態系でどのように移動するかを知るには、微小プランクトンの生態を把握することである。しかし、福島原発事故を象徴するようになった巨大生物がいる。太平洋クロマグロである。 太平洋クロマグロは、世界の食卓で珍重される魚のひとつである。最高級すし食材としての魅力を持つクロマグロは、回遊魚でもある。日本とフィリピンの沖合で産卵し、幼魚のうちに4か月かけて太平洋9,600kmを横断し、米国カリフォルニア州沖合の餌の豊富な海域で育つ。数年後、成長して成熟すると、今度は自身が産卵するため太平洋を引き返していく。 海洋生物の放射性物質の取込みとマグロの回遊パターン調査の専門家であるストーニーブルック大学のニコラス・フィッシャー教授とスタンフォード大学ホプキンス海洋研究所の大学院博士課程の学生ダニエル・マディガンは、2011年夏にカリフォルニア沖で水揚げされる若いクロマグロが、福島沖の汚染海域で孵化後の日々を過ごした可能性が高いことを知っていた。それらのクロマグロは、遠く離れた2つの大陸の間で放射性物質を運んだのだろうか。 それを確かめるため、フィッシャーとマディガンは、カリフォルニア州サンディエゴ沖で2011年8月にスポーツフィッシング愛好者が釣り上げたマグロから組織試料を採取し、フィッシャーの研究室で分析した。「分析したクロマグロのすべて(15匹中15匹)で、セシウム134とセシウム137の両方が見つかったのです」。これは福島第一原発事故からの汚染を示すまぎれもない証拠である、とフィッシャーは、東京の「海洋放射能汚染に関する国際シンポジウム」で報告した。 しかし、彼らが測定した放射能レベルは非常に低かった。サンディエゴ沖で釣れたクロマグロは、両方の放射性物質からの総セシウム濃度が1kg当り10ベクレルと、カリウム40の自然放射線濃度をわずか3%上回っただけで、日米政府が定める安全な消費レベルよりははるかに低かった。 回遊するマグロが、取り込んだ全セシウムを太平洋横断中に1日2%失っていたと推定し、さらに、太平洋横断中に冷戦時代の原爆実験の名残であるセシウム137を取り込んでいたと推定して、さかのぼって計算を行い、フィッシャーらは 、マグロは日本近海を出発したころには、体内濃度が測定値より15倍高い1kgあたり約150ベクレルであった可能性が高い、とした。 彼らは、カリフォルニア沖の定住魚であり太平洋を回遊しないキハダマグロからも試料を採取し、クロマグロで測定されたセシウムが海流または大気によって運ばれてきたものだという可能性を否定した。キハダマグロにみられたのはバックグラウンドレベルのセシウム137だけで、半減期の短いセシウム134は見つからなかったからである。 フィッシャーとマディガンが2012年5月下旬に発表したこの結果は、すさまじい反響を呼んだ。フィッシャーは無数のインタビューに応じ、テレビ番組にも出て測定結果を説明した。 人々の根拠のない放射能への不安に対処するため、フィッシャーとフランス人科学者グループは、これらのクロマグロを食べた人が取り込む放射線量(0.008マイクロシーベルト)を算定し、バナナを食べてその自然なカリウムから取り込む放射線量(0.1マイクロシーベルト)、歯科用X線撮影から受ける線量(5マイクロシーベルト)、大陸横断飛行で受ける線量(40マイクロシーベルト)と比較した。「クロマグロについては、放射能より含有水銀の方がむしろ心配です」と彼は言う。 2012年と2013年にクロマグロの放射能を分析するにあたり、フィッシャーは、それらのクロマグロが2011年時点の幼魚とは異なり、汚染水域で1年間は過ごした後であろうこと、そしてそのセシウム濃度がはるかに高まっている可能性があることを認めた。一方で、餌場となった水域のセシウム濃度が比較的低かったために低下した可能性もあるという。マディガン、フィッシャー、そしてゾフィア・バウマン博士による最近の報告によると、2012年にサンディエゴ沖で水揚げされたクロマグロには、2011年のマグロから検出された値の半分未満しか放射性セシウムが含まれておらず、マグロ組織に含まれる放射性セシウム濃度が実際に低下していたことが示された。 しかし、フィッシャーによると、クロマグロだけでなく、サメ、海鳥、アカウミガメなど他の大型回遊生物や渡り鳥の固有の回遊・渡りパターンを追跡する上で、福島原発由来の放射性核種が利用できると考えられる点にある。回遊・渡りパターンのタイミングと経路に対して理解が深まれば、漁場を管理し、絶滅危惧種の保護戦略をより効果的に策定する上で役立つはずである。   2011年の日本 https://www.whoi.edu/know-your-ocean/ocean-topics/pollution/fukushima-radiation/ 放射能と海 https://www.whoi.edu/press-room/news-release/ourradioactiveocean/ 福島第一原発の事故 放射能が海に及ぼす影響を探る http://www.whoi.edu/website/fukushima-symposium/overview フクシマと海」コロキウム、2013年5月9日 https://www.whoi.edu/who-we-are/visit-whoi/events-happenings/morsscolloquium/past-colloquia/morss-fukushima/ 福島から太平洋に放出された放射能 2011年6月3~17日の調査航海 https://archives.whoi.edu/expeditions/fukushima_radiation_in_pacific/page.do@pid=68736.html?pid=67796 日本の地震から得た教訓 その原因と結果から、科学者は何を学んだか?…

Read More
海洋生物への影響

海洋生物への影響

» English version 福島の原発事故によって、前代未聞の量の放射能が短期間で海域に流出した。セシウムその他の放射性物質体が断続的に流出することで、海洋生物の食物連鎖はどのように影響を受けたのだろうか。2012年11月の「海洋放射能汚染に関する国際シンポジウム」で、それについての基礎的な資料を提供したのがスコット・ファウラー教授である。彼は、海洋放射線生態学の先駆者として国際原子力機関海洋環境研究所(IAEA-MEL)で30年以上勤務してきた。 食物連鎖は、海洋植物プランクトンから始まる。これは微小な植物であり、その光合成量は陸上の植物全体の光合成量と同程度にもなる。海洋植物プランクトンは周囲の海水から放射性汚染物質を取り込む。そして、植物プランクトンが、より大きな動物プランクトンに摂食され、さらに小型魚類、そしてより大きな生物へと食物連鎖のピラミッドをのぼっていく。それにともない、汚染物質の一部は最終的に海底に堆積するそれら生き物の糞その他からなる「デトリタス粒子」に含まれることになる。デトリタス粒子は堆積物に蓄積し、それに含まれる放射性核種(放射性物質)の一部は、微生物および化学過程を通じて上層の水中へと再び移動する場合もある。 海洋生物にどのくらいの放射能が取り込まれるかには、さまざまな要因がある。もちろん、生物が放射能にさらされる時間の長さは重要である。さらに、生物の大きさと種、関与する放射性核種、水温と塩分、水中の酸素量、生物の成長段階など、多数の要因も重要である。 また、「自然バックグラウンド放射線がもともと海のいたるところにあるのを忘れないことです」と彼は言う。例えば、ポロニウム210とカリウム40は海中で自然発生する放射性核種である。カリウム40は海中に最も豊富に存在する放射性核種であるが、ポロニウム210の方がカリウム40よりも海洋生物内に蓄積しやすい。 「魚類その他の海洋生物が受ける放射線量の大半は、ポロニウムによるものです」。 ファウラーは放射性同位体が海水から海洋生物に吸収されるという第1の経路に関し、1980年代初期の実験において、プルトニウム量には生物の分類群によって非常に大きな差があることを実証した。植物プランクトンは、微小動物プランクトンの約10倍プルトニウムを蓄積し、微小動物プランクトンは、二枚貝の100倍プルトニウムを取り込んでいた。タコとカニのプルトニウム取り込み量は二枚貝の約半分だったが、海底近くに生息する魚類よりも約100倍大きかった また、環境に存在する放射性核種ごとに、各生物で異なる取り込み量が示された、と彼は言う。 放射性同位体が堆積物から海洋生物へ移動する第2の経路は、複雑なものである。ファウラーによると、アメリシウムの取り込み量を測定した実験では、汚染堆積物にさらされた蠕虫は二枚貝より有意に多くの放射性同位体を取り込んだ。ただし、蠕虫も二枚貝も、炭素鉱物を多く含む大西洋の堆積物より、シリカ鉱物を多量に含む太平洋の堆積物からはるかに多くの放射性核種を取り込んだ。 第3の経路である食物は、場合によっては、最も重要な取り込み因子になる。摂取された放射性同位体は消化器を通じて体内に同化されるが、これは体外環境から吸収された場合より、はるかに効率の良い経路である。ファウラーによれば、特に海底近くに生息するヒトデやウニなどの海洋無脊椎動物は、摂取した広範囲な放射性同位体を効率的に吸収する。だが、幸いなことに取り込んだ放射能は排泄され、次第に失われていく。 プランクトンからマグロへ ファウラーの長年の研究仲間であるニコラス・フィッシャー教授は、福島で最も大きく影響をおよぼした同位体に焦点を絞った。フィッシャーはストーニーブルック大学放射性の海洋生物地球化学者で、海洋生物における金属と放射性同位体の行き先を35年間にわたって研究している。その研究対象には放射性廃棄物に伴う放射性核種も含まれている。彼と研究室メンバーは、2011年6月、ウッズホール海洋研究所のシニアサイエンティストである海洋地球化学者ケン・ベッセラー博士が中心となって日本の沖合で行った調査航海に加わった。 試料として採取したプランクトンと魚を分析したところ、一貫してセシウム134とセシウム137が見つかった。福島第一原発事故でセシウムとともに多量に流出した放射性核種であるヨウ素131は、当然のことながら見つからなかった。「ヨウ素131は半減期がわずか8日であるため、事故から2か月後には検出できなくなっていました」とフィッシャーは説明する。 セシウムはまた別の問題である。1960年代の冷戦時代、大気圏内で行われた核実験に端を発するセシウム137は、海とそこに生きるものたちに今なお痕跡を残している。それに比べてセシウム134ははるかに短命であるが、それでも数年は存在し続ける。 セシウムは、海水に豊富に含まれる非放射性セシウム、そして自然発生するカリウムとナトリウムなど、いくつかの可溶性同位体と競合して、生物および粒子に吸収される。海水と比べ、淡水ではカリウムおよびナトリウム同位体がはるかに少ないため、セシウムの取り込み量は海洋生物より淡水生物の方がいちじるしい。 セシウムの化学特性はカリウムと似ており、どちらも最終的には魚類その他の海洋生物で同じ組織、特に筋肉組織に含まれる。 また、魚類はかなり効率的にセシウムを排泄し、1日あたり数%を失う。そのため、魚類は新たな汚染源にさらされなければ、体内のセシウム濃度は時間とともに急速に低下する。 高次捕食生物において特に懸念されるのは、食物連鎖のピラミッドを上にのぼるにつれて放射性核種の濃度が高まることである。これを生態学者は「生物学的濃縮」と呼ぶ。この場合もやはり幸いなことに、「海洋の食物連鎖におけるセシウムの生物学的濃縮はさほどではなく、水銀、農薬のDDT、ポリ塩化ビフェニル(PCB)など多くの有機化合物よりははるかに低いです」とフィッシャーは述べる。 2011年の航海で、フィッシャーとそのチームは採取した全試料についてセシウムを測定した。その試料は主に動物プランクトンで、一部は魚類である。予測にたがわず、試料採取した生物のセシウム濃度は、沿岸に近づくほど高まった。また、放射性の銀110mもすべての動物プランクトン試料で検出された。ただし、すべてのケースでセシウムおよび銀同位体の量は同じ試料中の自然発生カリウム40よりいちじるしく低かった。 「私たちが採取・分析した魚類の放射能では、人が摂取しても問題を生じることはありません」が、同じ海域で水揚げされる他のすべての海洋生物にも同じことが言えるとは限らない、と彼は付け加えた。 通常より高濃度が持続している フィッシャー、ベッセラー、その他多くの科学者が頭を悩ませている問題がある。それは、低量ではあるが有意な濃度の放射能がいまも海中に存在し続けていることである。東京海洋大学の海洋化学学者、神田穣太教授は、福島近海を広範囲にわたって調査し、水深200mより浅い沿岸水域とその海底の堆積物に今なお存在するセシウムの量を算定した。神田の計算では、残留量は全排出量の3%未満で、残りはかなり以前に外洋へ流されている。 それでも、セシウム放射性同位体はこの海域で1m2あたり数十~数百ベクレルと測定されており、これは福島災害以前の濃度よりいちじるしく高い。さらに、より重要な点として、沿海の堆積物および数種の魚類で測定された濃度は周辺海域の濃度より高い。 この高い放射能には、3つの源があると神田は見る。1つは河川からの流出、つまり雨で近くの河川に流された放射性降下物が海に流出したもの、である。2つめは、原子炉建屋の地下から今も少量の汚染水が漏れ続けているのではないか、と神田は示唆する。しかしながら、いまだ魚類の組織で測定され続ける放射性セシウム濃度についての唯一妥当な説明は、魚が食物を通じて継続的に放射性セシウムを摂取していること、である。その疑いは3つめの海底の堆積物に向けられている、と神田は言う。 神田は、「沿海堆積物に合計95テラベクレル(1012ベクレル)のセシウムが存在すると推定し、それがどのようにしてそこにたどり着いたかが問題です」と言う。セシウムは水面でプランクトンに摂取され、糞粒として海底へ沈んでいっている可能性がある。実際、浅水域のプランクトンが高濃度のセシウムを呈することはある。また、河川から流されてきた有機物の小片とともに海底に到達している可能性もある。一方で、汚染水に接触した粘土粒子にセシウムが吸着した可能性もあるが、そのような放射性セシウムは粘土粒子に強く結合するため、海洋生物には取り込まれにくい。 堆積物は複雑なものである。一粒の砂のように見えても、間近で見ると、たいていは鉱物、有機物、および間隙水(粒子間の小さなすき間を満たしている水)の混合物である。これら凝集体への汚染物質取り込みについては、よくわかっていない。ファウラー同様、神田も、「堆積物の組成と特性は場合によって大幅に異なっています」と言う。 このなくならない放射能の謎を解くには、福島沿岸域の海底を徹底して分析する必要がある。「地域の住民は心配しています。いつになったら漁業を再開できるのか知りたがっています。私たち科学者は、それに答えなければなりません」。 この謎を解く鍵は、いつまでセシウムが居座り続け、どのような経路で食物連鎖に取り込まれるかにある。セシウム137の半減期が30年であることを考えると、これからの数十年間、海底堆積物が食物連鎖の汚染源となり続けるおそれがある。

Read More
放射能の基礎知識

放射能の基礎知識

» English version 平均的な一般人にとって、「放射能」という言葉には強烈で恐ろしい響きがある。しかし実をいうと、放射性物質は、天然のものも人工のものも私たちの身のまわりにあふれている。そして、特に海洋学者にとっては研究のために重要な道具でもある。海洋学者クローディア・ベナテスネルソン教授は、2012年11月東京で開かれた「海洋放射能汚染に関する国際シンポジウム」の初日発表で、放射能の基礎について概説した。 MIT/WHOI共同プログラムで1999年に博士号を取得し、現在サウスカロライナ大学で海洋科学プログラムのディレクターを務める彼女は、発表の冒頭においてこう説明した。「放射能とは、元素の原子核変化から生じる放射線の自然放射です。私たち放射化学者は、数多くの放射性元素を日頃から利用しています。それらはエネルギー的に不安定な元素であり、不安定さを解消する際に、放射線という形で周囲の環境に余分なエネルギーを放出しています」。 「放射線」には大まかに2つのタイプがある。1)「非電離放射線」は、可視光とマイクロ波を含む。また荷電イオンを生じて原子構造を変化させるほどのエネルギーを持たないため、人の健康に大きな脅威をもたらさない。一方で、2)「電離放射線」は、生体組織の原子構造を変化させる、すなわち細胞を殺し、がんを発生させるおそれがある。そのため、医療用X線や太陽の紫外線には直接さらされないように対策が講じられる。 すべての放射性同位体または放射性核種は、中性子、陽子、電子、または光子などの電離粒子を発して、過剰なエネルギーを失う。その過程で、これらいわゆる親核種は崩壊して、異なる数の陽子と中性子を含んだ娘核種になる。親核種と陽子数が等しい娘核種は、親核種の同位体である。親核種と陽子数が異なる娘核種は親核種と異なる元素であり、化学的性質も異なる。 各変化には固有の半減期がある。放射性同位体の半減期とは、所与の試料に含まれる原子の半分が崩壊するのにかかる時間である。この娘核種は、安定した非放射性元素となる場合もあり、また放射性崩壊系列の別の放射性核種へと崩壊していく場合もある。 たとえば、自然発生するもっとも一般的な放射性核種の1つであるウラン238は、陽子が92個、中性子が146個あり、トリウム234 (陽子90個、中性子144個) に崩壊したのち、プロトアクチニウム234 (陽子91個、中性子143個) に崩壊し、ウラン234 (陽子92個、中性子142個)に崩壊し、トリウム230(陽子90個、中性子140個)に崩壊していく。これら各放射性核種の半減期は、それぞれ44.68億年、24日、1.2分である。そして、これら各元素の反応は化学的に異なる。 「半減期は放射性核種ごとに異なるため、数日から数千年まで様々な時間スケールで起こる多くの海洋過程が進行する時間(速さ)を計る時計として利用できます」と彼女は言う。いわゆる「放射性トレーサー」は、海水の混合速度、地下水が陸から海に流入する速度、そして例えば炭素等の元素が大気中、海中、海底、大陸を循環する速度を解明するうえで役立つ。なお、放射性トレーサーには、海域に何十億年も存在するものもあれば、空間から入射する宇宙線と大気中の気体の相互作用で形成されるものもあり、さらに人間の活動により地球環境にもたらされるものもある。 自然に存在するいくつかの一般的な放射性同位体であるウラン、トリウム、およびカリウムは、常時海中に存在する。ベナテスネルソンによれば、海中に存在するこれらの天然放射性核種は、人工放射性核種の数千倍も大量である。 ウッズホール海洋研究所の海洋化学者ケン・ベッセラー博士は、これを「私たちは放射性物質が含まれた海に生きています」と表現する。それでも人と海洋生物に問題は起こらない。というのも、これらの放射性物質は広大な海に存在しているが、わずかな濃度だからである。ベッセラーはこう付け加える。「危険なのは線量です」。 デイビッド・パチオーリ

Read More
日本の三重災害

日本の三重災害

» English version 現在「日本の三重災害」として知られている地震、津波、原発事故の苦難の連鎖は、海底の大規模な破壊とともに始まった。 2011年3月11日午後2時46分、東北沖の海底、日本海溝の底でぶつかり合うユーラシアプレートと太平洋プレートにすべりが生じた。ここは世界で最も地震が多発する地帯であり、このようなすべりの発生は珍しいことではない。海底で上の地層が下の地層に対してずり上がる巨大衝上断層は長さ約800kmにもわたり、比較的小さな揺れなら毎年数百回も起こっている。 ただ、そのすべりは通常とは違っていた。のちに東北地方太平洋沖地震と呼ばれることになるこのマグニチュード9.0の揺れは、近代的な記録が残されるようになった1900年頃から起きた世界で5番目に大きな地震である。震源地から320 km も離れていない東京で6分間も揺れが続いた。ようやく揺れが収まったとき、本州は東へ8m移動していた。 地震による陸上の被害は甚大であった。それに加えて大津波が押し寄せたのだった。とてつもない海底からの突き上げにより一連の巨大な津波が生じ、その第一波は地震から30分以内に沿岸を襲った。 津波になすすべもなく 東京から約226km北で1971年から運転されていた東京電力福島第一原子力発電所では、この地震によってすでに停電していたものの、非常用バックアップシステムが適切に機能していた。そこを津波が襲った。発電所の防犯カメラによる映像が、まさにその一瞬をとらえている。原子炉の正面で、高さ約6mの防波堤に守られた浅い港湾内を漂う小船。その防波堤のすぐ後ろから巨大な波がうねり迫ってくる。 高さ約14mにも達した津波は、すべての安全措置を乗り越えた。原子力発電所施設は急速に浸水し、バックアップ用のディーゼル発電機は機能を停止した。この全電源喪失が壊滅的な悪循環を引き起こし、チェルノブイリ原発事故以来最悪の被害をもたらすことになる。 冷却システムを失った同原発で、6基の原子炉のうち3基が過熱し始めた。数日のうちにこれら3基では溶融した核燃料により生じた水素ガスが充満して大爆発が起こり、4号機の建屋にも被害が及んだ。この爆発による放射性降下物の予測変化に基づいて日本政府は避難指示区域を広げ、15万人以上が自宅から避難した。一方、完全なメルトダウンを阻止するための必死の努力のなかで、高圧放水砲、消防車、ヘリコプターから何千トンもの水が原子炉に注がれ、その汚染水の大半が、最終的に海へ流出した。 廃墟と化した一帯 津波の第一波到来から予断を許さない状況が続いた約10日後、差し迫った原子力危機は収束した。しかし、この三重災害がいまも及ぼし続ける影響は実質的に予測がつかない。津波だけで死者が約2万人。避難者は15万人を超える。経済的損失は、24兆〜47兆円と推定される。海岸に沿って散乱した約2,250万トンの瓦礫を撤去する作業だけで数年はかかる。 それより甚大な原子力災害の被害は、全貌が明らかになるまで数十年かかるかもしれない。放射性降下物により、原発周辺とその北西780km2の地域が帰還困難になったため、さらに15万人が帰る家を失った。水、土壌、農作物、植生の広域汚染により、コスト高な除染作業を強いられ、汚染地域からの食材流通は禁止された。とくに影響を受けた地域に住む子どもの健康に関する懸念が一気に広がり、現在も続いている。 放射能への緊急のまた継続的な被ばく情報が不確かであったことから、社会的な不安が高まり、地元の経済は沈滞し、日本における原子力発電の未来にも陰がさした。 災害の最中、そして災害後の情報伝達の不手際や、情報提供の差し控えなどによって、当局に対する不満と怒りが増した結果、日本政府と業界幹部だけでなく、日本の科学者に対する社会的信用もいちじるしく損なわれた。 海洋における放射能 「事態はもっと悪くなっていたかもしれません」。ウッズホール海洋学研究所の海洋化学者ケン・ベッセラー博士は言う。当時の気象条件と、原発が海岸沿いにあったことが幸いし、福島原発事故により放出された放射性物質の80%は、人口の密集した本州ではなく、海域に到達したものと推定された。その結果、原発付近の住民数千人が何らかのレベルで被ばくした一方で、その他の地域に住む数千万人単位の日本人は被ばくを免れた。 その反面、膨大な量の放射性物質が大気降下物として、また高濃度の放射性物質を含む冷却水の直接排出として北太平洋西部に流出し、かつてない難問を海洋科学者に突きつけることとなった。いったい海は何を吸収したのか。微生物から、魚類、人に至るまで、各レベルの海洋生物に対する当面の影響は何か。放射性物質はどこまで広がり、どこへたまるのか。日本からも世界中からも大勢の研究者が動員され、これらの問題に取り組んでいる。 ベッセラーは、ウッズホール海洋学研究所でこの災害の経過を注意深く見守っていた。彼は、MIT/WHOI(マサチューセッツ工科大学/ウッズホール海洋研究所)共同プログラムの大学院生として、冷戦時代の核兵器実験で大西洋に残留していた微量プルトニウムを測定して以来、その経歴のほとんどを海中の放射性同位体研究に費やしている人物である。 博士号取得間近の1986年4月、彼はチェルノブイリ原発事故が起こったことを耳にするなり、すぐさまトルコに足を運び黒海で放射性同位体の試料採取を開始した。それからの数十年、ベッセラーの主な関心は、自然の地球化学現象により海域に存在する放射性物質と、それらの放射性同位体を使って海洋学者が海流を追跡し、海域で起こる過程を理解するための研究手法の開発と改善とに注がれてきた。 海域での試料採取 福島原発の事故経過に伴い、彼は、同原発を運用する東京電力株式会社から発表されたデータを追った。汚染の規模が明らかになるまでしばらくかかった。ついに4月6日、同原発近くの排水口で測定されたセシウム137のレベルが、1m2あたり約6,000万ベクレルという衝撃的な高濃度でピークに達した。 「心配になり始めたのはそのときでした。すでにその時点のレベルで今までにない規模の海洋への放射性物質の流出だと言えます」。 彼はさっそく精力的に当該海域への調査航海の準備を開始し、数週間で、船舶と乗組員、国際科学者チーム、そしてジョージ・アンド・ベティ・ムーア財団からの助成金3億5千万円をかき集めた。調査船カイミカイ・オ・カナロア号をハワイ大学から傭船し、日本領海での試料採取に必要な日本政府の最終許可を待っている段階で、6月6日、2週間の調査航海へと横浜港を発った。日本の船舶が近海で測定を行う一方で、ベッセラーとそのチームは沖合での調査に焦点を合わせた。放射性物質の広域移流と最終的な行き先について、全体像を把握するためである。 5月から6月初旬にかけて、初期に流出したセシウムの大半が沿岸域から外洋域へ拡散するに伴い、沿岸水中のセシウム137濃度は急激に低下した。セシウム137は海水に溶けるため海水と同じように拡散する、と彼は説明する。「流出源を止めれば、セシウム137濃度はすぐに低下します」。 海産物のリスクは? その後、カイミカイ・オ・カナロア号で試料採取を行ったところ、房総半島沖を北東方向へ流れる強力な黒潮によって、放射性物質の大半が北太平洋の外洋域へ運ばれていたことが確認された。ベッセラーとそのチームは、幅広い海域をカバーして、海水試料、プランクトン、小型魚類を海面および各深度で採取した。得られた結果はいくつかの点で安心材料となった。沖合海域におけるセシウムのレベルは通常より高かったものの、人や動物が被ばくした場合に危険と見なされる基準値よりは低かった。ただし、それらのレベルは、魚類の体内に蓄積されて最終的に海産物として消費される場合には、懸念を生む高さでもあった。…

Read More
The Synergy Project

The Synergy Project

Back in my high school, and maybe yours too, kids naturally separated into cliques—jocks, punks, preppies, hippies, and at the extremes of the mythical left- and right-hemisphere brain spectrum, nerds…

Read More
Scroll To Top