Woods Hole Oceanographic Institution

Tim Verslycke

»Copepod diapause
»Lobster Shell Disease
»Crustacean molting receptor
»Lobster Shell Disease
»Mysids as test models for endocrine disruption testing
»Chlorotriazines in the Scheldt estuary
»Energy allocation in grasshopper
»Estrogens in Scheldt estuary
»Marsupial development in mysids to evaluate endocrine disruption
»B[a]P effects on steroid metabolism in mysid
»Ciona CYP3 genes
»Methoprene, nonylphenol, and estrone effects on mysid vitellogenesis
»Methoprene effects on mysid molting
»Mysid growth
»Mysid vitellin ELISA
»Mysid vitellin
»An analytical method to detect estrogens in water
»High levels of endocrine disruptors in wild mysid populations
»Energy allocation in wild mysid populations
»Cellular energy allocation validation with scope for growth
»Dolphin delivery prediction
»PhD thesis
»Endocrine disruptor effects on steroid and energy metabolism in mysid
»Mysid review
»TBT effects on steroid metabolism in mysid
»Metal mixture toxicity to mysid
»TBT effects on energy metabolism in mysid
»dichlorobenzene effects in zebrafish
»Ethinylestradiol effects on amphipod sexual development
»Metabolic studies with mysids
»Abiotic stress and energy metabolism in mysid
»Induced vitellogenesis in rainbow trout
»Steroid metabolism in mysid
»Endocrine disruption in freshwater snails
»Invasive mysid in Belgium

K. De Wasch, S. Poelmans, Tim Verslycke, C. Janssen, N. Van Hoof, H. F. De Brabander, Alternative to vertebrate animal experiments in the study of metabolism of illegal growth promotors and veterinary drugs, Analytica Chimica Acta 473(1-2): 59-69, 2002

The continuous production of new illegal veterinary drugs and related products requires residue laboratories to initiate research into developing fast and accurate extraction and detection methods for the identification (and/or quantification) of the major analyte or metabolites of these compounds. In practice, animal experiments are carried out in which vertebrate animals (bovine, porcine, etc.) are treated orally or intramuscularly with the illegal compound. Different matrices (urine, faeces, blood) are collected over 2 or 3 weeks until the animal is sacrificed. Edible matrices (meat, liver, kidney, etc.) are collected. Because of the complexity of the animal experiment and the method development, a lot of valuable time and money is consumed. Recent studies have shown that some of these vertebrate experiments can be replaced by invertebrates metabolism studies. Vertebrate-type steroids such as testosterone have been used as substrates to study enzyme systems (cytP450) for the oxidative metabolism in invertebrates. Results from these studies provide information on the degree of similarity to the enzyme systems in vertebrates. These findings are of great importance to the research of illegally used substances but also to the downscaling of vertebrate animal experiments and their considerable cost factors. The invertebrate Neomysis integer (Crustacea, Mysidacea) has been used as an alternative model for the partial replacement of vertebrate animals in metabolism studies with illegal growth promotors and veterinary drugs. The principle of this assay and some examples are described. doi:10.1016/S0003-2670(02)00933-9 

© Woods Hole Oceanographic Institution
All rights reserved