Woods Hole Oceanographic Institution

Elizabeth B Kujawinski Behn

»Using stable isotope probing to characterize differences between free-living and sediment-associated microorganisms in the subsurface.
»DOM in Lake Superior
»Deepwater Horizon hydrocarbons in the marine environment
»Microbes and marine DOM, Ann. Rev. Mar. Sci. 2011
»Greenland ice sheet outlet glacier: Insights from a new isotope-mixing model
»Groundwater DOM, GCA 2011
»Dispersants & DWH, ES&T 2011
»FT-MS variability in DOM, Org Geochem 2010
»Predatory Flavobacteria, FEMS Microb Ecol 2010
»Greenland Ice Sheet DOM, GCA 2010
»Protozoa and bacteria in aquifers, FEMS Microb Ecol, 2009
»Source markers in DOM, GCA 2009
»Automated data analysis, Anal. Chem. 2006
»Marine DOM and ESI FT-ICR MS; Marine Chem 2004
»DOM extraction by C18; Org. Geochem. 2003
»Black carbon by ESI FT-ICR MS; ES&T 2004
»ESI FT-ICR MS review; Env. Forensics 2002
»Marine protozoan surfactants; Marine Chem. 2002
»ESI MS and NOM; Org. Geochem. 2002
»ESI FT-ICR MS & humic acids; Anal. Chem. 2002
»Protozoan DOM & PCBs; ES&T 2001
»Protozoa & Fe, Th, C; Aquat. Microb. Ecol. 2001
»PCB uptake by protozoa; AEM 2000

E. B. Kujawinski, R. Del Vecchio, N. V. Blough, G. C. Klein, and A. G. Marshall, Probing molecular-level transformations of dissolved organic matter: Insights from electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry., Marine Chemistry 92: 23-37, 2004

Molecular level characterization of natural organic matter (NOM) has been elusive due to the inherent complexity of natural organic mixtures and the fact that individual components are often polar and macromolecular. Electrospray ionization (ESI) is a "soft" ionization technique that ionizes polar compounds from aqueous solution prior to injection into a mass spectrometer. The highest resolution and mass accuracy of compounds within NOM have been achieved when ESI is combined with an ultrahigh resolution mass spectrometer such as the Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS). With this technique, individual molecules within a variety of natural organic mixtures can be detected and their elemental composition can be determined. At low mass-to-charge (m/z) ratio, the resolution is high enough to assign exact molecular formulas allowing specific components of these mixtures to be identified. In addition to molecular identification, we can now use ESI FT-ICR MS to examine molecular-level changes in different organic mixtures as a function of relevant geo-processes, such as microbial alterations and photochemistry. Here we present the results from the application of ESI FT-ICR MS to two geochemical questions: (1) the effect of photo-irradiation on the molecular composition of fulvic acids and (2) the role of protozoan grazers in the modification of DOM in aquatic systems.

© Woods Hole Oceanographic Institution
All rights reserved