Skip to content

The Ocean (Re)Imagined

How expanding our view of the ocean can unlock new possibilities for life

Whale detection camera Ocean Tech

Whale aware!

New tech and industry partnerships help ships steer clear

from Tuna

Music for the Ocean

Immersive classical performances to spark global concern for the ocean

ship

Breakthroughs below the surface

How ocean science is reshaping our world

Ocean Life

Body snatchers are on the hunt for mud crabs

WHOI biologist Carolyn Tepolt discusses the biological arms race between a parasite and its host

Ocean Tech

A polar stethoscope

Could the sounds of Antarctica’s ice be a new bellwether for ecosystem health in the South Pole?

blue mud lab Ocean & Human Lives

Secrets from the blue mud

Microbes survive—and thrive—in caustic fluids venting from the seafloor

gwyneth packard

Deep-sea musings

Roboticist Gwyneth Packard on the need for ocean exploration today

Oceanus-Covers-2023-sm

and get Oceanus delivered to your door twice a year as well as supporting WHOI's mission to further ocean science.

Our Ocean. Our Planet. Our Future.

Green crab
Ocean Life

Top 5 ocean hitchhikers

As humans traveled and traded across the globe, they became unwitting taxis to marine colonizers

Ostrander
Climate & Weather

Fires, floods, and forgotten places

Finding home with author Madeline Ostrander

ship Ocean Tech

Following the Polar Code


Crew of R/V Neil Armstrong renew their commitment to Arctic science with advanced polar training


truck Sustainable Ocean

Harnessing the ocean to power transportation

WHOI scientists are part of a team working to turn seaweed into biofuel

morning catch Sustainable Ocean

Casting a wider net

The future of a time-honored fishing tradition in Vietnam, through the eyes of award-winning photographer Thien Nguyen Noc

gold mines

Gold mining’s toxic legacy

Mercury pollution in Colombia’s Amazon threatens the Indigenous way of life

WHOI senior scientist Dennis McGillicuddy holds a jarred Sargassum sample

How do you solve a problem like Sargassum?

An important yet prolific seaweed with massive blooms worries scientists

shells

Ancient seas, future insights

WHOI scientists study the paleo record to understand how the ocean will look in a warmer climate

the landfall Climate & Weather

Rising tides, resilient spirits

As surrounding seas surge, a coastal village prepares for what lies ahead

WHOI biologist Laela Sayigh attaches a suction-cup hydrophone to a dolphin in Sarasota Bay Ocean & Human Lives

Whistle! Chirp! Squeak! What does it mean?

Avatar Alliance Foundation donation helps WHOI researcher decode dolphin communication

We can’t do this alone

For marine chemist Adam Subhas, ocean-climate solutions don’t happen without community

Dickie Edwards in Jaws Ocean Life

Behind the blast

The marine superintendent who blew up Jaws

ID card Ocean Tech

How WHOI helped win World War II

Key innovations that cemented ocean science’s role in national defense

Oceanus-Covers

Looking for something specific?
We can help you with that. Check out our extensive conglomeration of ocean information.

Ghana
Ocean & Human Lives

Life at the margins

Scientists investigate the connections between Ghana’s land, air, sea and blue economy through the Ocean Margins Initiative

Elizabeth Spiers
How the Ocean Works

Grits, storms, and cosmic patience

As storms stall liftoff, Europa Clipper Mission Team member Elizabeth Spiers patiently awaits the biggest mission of her life

kelp farming Ocean Tech

Seeding the future

New WHOI tech lends a hand to kelp farmers

mROV concept rendering Ocean Tech

New underwater vehicles in development at WHOI

New vehicles will be modeled after WHOI’s iconic remotely operated vehicle, Jason

Ocean Tech

Learning to see through cloudy waters

How MIT-WHOI student Amy Phung is helping robots accomplish dangerous tasks in murky waters

angler fish Ocean Life

A rare black seadevil anglerfish sees the light

A viral video shows a denizen of the ocean’s twilight zone making an unusual trip to the surface

Sabrina Imbler Ocean & Human Lives

From surface to self

A writer’s journey through science and story

Janine Wong current art How the Ocean Works

Unseen Ocean

Artist Janine Wong and scientist Jing He capture the art of currents in “Submesoscale Soup”

Ocean Life

Five marine animals that call shipwrecks home

One man’s sunken ship is another fish’s home? Learn about five species that have evolved to thrive on sunken vessels

zoo
Ocean Life

Deep-sea amphipod name inspired by literary masterpiece

Name pays tribute to Cervantes’ Don Quixote and reinforces themes of sweetness and beauty

New Coastal Observatory Is Born Ocean Tech

New Coastal Observatory Is Born

The Martha’s Vineyard Observatory will have sensors mounted on two seafloor nodes, at depths of about 5 and 15 meters, respectively, connected to a shore station via a buried cable. Instruments mounted on the nodes will continually monitor mean sea and wave heights, current strengths, seawater turbulence, subsurface sediment movement, sunlight intensity, and the temperature, salinity, and carbon dioxide levels of the ocean?s waters.

Launching the Argo Armada How the Ocean Works

Launching the Argo Armada

The Argo program proposes to disperse 3,000 floats, like the one below, throughout the oceans to collect data on oceanic conditions that can be periodically transmitted to shore via satellite.

Putting H2O in the Ocean Ocean Tech

Putting H2O in the Ocean

A major obstacle impeding our ability to understand many of the earth’s fundamental, ongoing dynamics–quite frankly–has been a dearth of electrical outlets and phone jacks on the seafloor.

Where the Surf Meets the Turf How the Ocean Works

Where the Surf Meets the Turf

The gentle lapping of waves on the beach is a metaphor for enduring tranquility. However, the thin zone where the surf meets the turf is one of the most turbulent, complex, fast-moving, constantly changing places on Earth.

ALISS in Wonderland How the Ocean Works

ALISS in Wonderland

In 1985, Cindy Van Dover, then a graduate student in biology in the MIT/WHOI Joint Program, discovered a novel light-sensing organ on a unique species of shrimp that lives at high-temperature, black smoker chimneys on the Mid-Atlantic Ridge. If this photoreceptor were indeed some sort of primitive “eye,” the question instantly arose: At depths of some 3,600 meters, where sunlight cannot penetrate, what are these shrimp looking at? The search for a source of light in deep-sea hydrothermal environments began.

How to Build a Black Smoker Chimney How the Ocean Works

How to Build a Black Smoker Chimney

Diving along the mid-ocean ridge at 21°N on the East Pacific Rise, scientists within the deep submersible Alvin peered through their tiny portholes two decades ago to see an astonishing sight: Clouds of billowing black “smoke” rising rapidly from the tops of tall rocky “chimneys.”

Hitting the Hotspots How the Ocean Works

Hitting the Hotspots

The great volcanic mid-ocean ridge system stretches continuously around the globe for 60,000 kilometers, nearly all of it hidden beneath the world’s oceans.

Life on the Seafloor and Elsewhere in the Solar System How the Ocean Works

Life on the Seafloor and Elsewhere in the Solar System

The RIDGE program (Ridge Inter-Disciplinary Globe Experiments) was sharply focused on the global spreading center system, but the program’s goals were broadly defined. RIDGE was designed to explore the causes, consequences, and linkages associated with the physical, chemical, and biological processes that transfer mass and energy from the interior to the surface of the planet along the mid-ocean ridges.

Deep-Sea Diaspora Ocean Life

Deep-Sea Diaspora

When spectacular biological communities were first discovered at hydrothermal vents in 1977, biologists puzzled over two main questions: How did these oases of large and abundant animals persist in the deep sea, where food is typically scarce? And how did these unusual species, which occur only at vents, manage to colonize new vents and avoid extinction when old vents shut down?

The Cauldron Beneath the Seafloor How the Ocean Works

The Cauldron Beneath the Seafloor

Just over 20 years ago, scientists exploring the mid-ocean ridge system first made the spectacular discovery of black smokers—hydrothermal chimneys made of metal sulfide minerals that vigorously discharge hot, dark, particulate-laden fluids into the ocean.

"Nothing Could Diminish the Excitement Of Seeing the Animals for the First Time" Ocean Tech

“Nothing Could Diminish the Excitement Of Seeing the Animals for the First Time”

The scientists who made the surprising discovery of teeming life around hydrothermal vents of the Galápagos Rift in 1977 were geologists and geochemists. They had not expected to find spectacular colonies of previously unknown, large animals on the deep seafloor.

The Big MELT How the Ocean Works

The Big MELT

More than 95 percent of the earth’s volcanic magma is generated beneath the seafloor at mid-ocean ridges.

Scroll To Top