Skip to content

Oceanus Online Archive


Search by Keyword

Refine by:

Date

Topic

Featured Researcher

Article Type

Special Series

Author

Earth Can't Soak Up Excess Fossil Fuel Emissions Indefinitely

Earth Can’t Soak Up Excess Fossil Fuel Emissions Indefinitely

Earth?s land and oceans have been soaking up the excess carbon Earth?s land and oceans have been soaking up the excess carbon dioxide that humans have pumped into the atmosphere by burning fossil fuels. But there are limits.
A new-generation computer model indicates that the capacity of land and ocean to absorb and store the heat-trapping greenhouse gas will reach its peak by the end of the century?removing a brake that has been tempering the effects of global warming.

Read More
Red Tides and Dead Zones

Red Tides and Dead Zones

The most widespread, chronic environmental problem in the coastal ocean is caused by an excess of chemical nutrients. Over the past century, a wide range of human activities—the intensification of agriculture, waste disposal, coastal development, and fossil fuel use—has substantially increased the discharge of nitrogen, phosphorus, and other nutrients into the environment. These nutrients are moved around by streams, rivers, groundwater, sewage outfalls, and the atmosphere and eventually end up in the ocean.

Read More
Extreme Trapping

Extreme Trapping

One of oceanography’s major challenges is collection of data from extraordinarily difficult environments. For those who use sediments traps, two examples of difficult environments are the deepest oceans and the permanently ice-covered Arctic Basin.

Read More
The Rain of Ocean Particles and Earth's Carbon Cycle

The Rain of Ocean Particles and Earth’s Carbon Cycle

WHOI Phytoplankton photosynthesis has provided Earth’s inhabitants with oxygen since early life began. Without this process the atmosphere would consist of carbon dioxide (CO2) plus a small amount of nitrogen, the atmospheric pressure would be 60 times higher than the air we breathe, and the planet’s air temperatures would hover around 300°C. (Conditions similar to these are found on Earth’s close sibling Venus.

Read More
Catching the Rain: Sediment Trap Technology

Catching the Rain: Sediment Trap Technology

WHOI Senior Engineer Ken Doherty developed the first sediment trap in the late 1970s for what has come to be known as the WHOI PARFLUX (for “particle flux”) group. Working closely with the scientific community, Doherty has continued to improve sediment traps for two decades, and these WHOI-developed instruments are widely used both nationally and internationally in the particle flux research community.

Read More
Scroll To Top