Woods Hole Oceanographic Institution

Juan Pablo Canales

»55. Sonar imaging of the Rainbow area
G3, 2016

»54. Structure of the Juan de Fuca Plate
JGR, 2016

»53. Bending faults offshore Cascadia
JGR, 2016

»52. Tectonics of the Rainbow area
G3, 2015

»51. Melt distribution along the EPR
GJI, 2015

»50. EPR Multi-sill plumbing system
Nature Geoscience, 2014

»49. Galapagos Spreading Center: Tomography
AGU Monograph, 2014

»48. Axial Volcano
Geology, 2014

»47. Melt-Mush along the EPR
JGR, 2014

»46. EPR Moho in 3D
G-cubed, 2014

»45. Melt bodies off the EPR
EPSL, 2014

»44. EPR Magma segmentation
Nature Geoscience, 2013

»43. TAG 3D P-wave velocity
G-cubed, 2012

»42. Atlantis core complex
G-cubed, 2012

»41. R2K Advances in Seismic Imaging
Oceanography, 2012

»40. R2K Seismic Studies
Oceanography, 2012

»39. Melt bodies off the EPR
Nature Geoscience, 2012

»38. JdF Plate: Gravity structure
G-cubed, 2011

»37. JdF Plate: Layer 2B structure
G-cubed, 2011

»36. Kane waveform tomography
GRL, 2010

»35. Kane Oceanic Core Complex
G-cubed, 2009

»34. Geophysical signatures of oceanic core complexes
GJI, 2009

»33. Accretion of the lower crust
Nature, 2009

»32. Faulting of the Juan de Fuca plate
EPSL, 2009

»31. Axial topography os the Galapagos Spreading Center
G-cubed, 2008

»30. Juan de Fuca Ridge flanks
G-cubed, 2008

»29. Seismic structure of oceanic core complexes
G-cubed, 2008

»28. Juan de Fuca Ridge: structure and hotspots
G-cubed, 2008

»27. Structure of the TAG segment, Mid-Atlantic Ridge
G-cubed, 2007

»26. Detachment faulting at TAG, Mid-Atlantic Ridge
Geology, 2007

»25. Structure of the Endeavour segment, Juan de Fuca Ridge
JGR, 2007

»24. Magma beneath Lucky Strike Hydrothermal Field
Nature, 2006

»23. Magma chamber of the Cleft segment, Juan de Fuca Ridge
EPSL, 2006

»22. Topography and magmatism at the Juan de Fuca Ridge
Geology, 2006

»21. Structure of the southern Juan de Fuca Ridge
JGR, 2005

»20. Sub-crustal magma lenses
Nature, 2005
»19. Constructing the crust at the Galapagos Spreading Center
JGR, 2004

»18. Atlantis core complex
EPSL, 2004

»17. Morphology of the Galapagos Spreading Center
G-cubed, 2003

»16. Crustal structure of the East Pacific Rise
GJI, 2003

»15. Plume-ridge interaction along the Galapagos Spreading Center
G-cubed, 2002

»14. Compensation of the Galapagos swell
EPSL, 2002

»13. Structure of Tenerife, Canary Islands
JVGR, 2000

»12. Underplating in the Canary Islands
JVGR, 2000

»11. Structure of the Mid-Atlantic Ridge (MARK, 23?20'N)
JGR, 2000

»10. Structure of the Mid-Atlantic Ridge (35?N)
JGR, 2000

»9. Structure of Gran Canaria, Canary Islands
J. Geodyn., 1999

»8. Structure of overlapping spreading centers in the MELT area
GRL, 1998

»7. Crustal thickness in the MELT area
Science, 1998

»6. The MELT experiment
Science, 1998

»5. The Canary Islands swell
GJI, 1998

»4. Morphology of the Galapagos Spreading Center
JGR, 1997

»3. Faulting of slow-spreading oceanic crust
Geology, 1997

»2. Flexure beneath Tenerife, Canary Islands
EPSL, 1997

»1. Elastic thickness in the Canary Islands
GRL, 1994


Nedimovic, M., S.M. Carbotte, A. Harding, R.S. Detrick, J.P. Canales, J.B. Diebold, G.M. Kent, M. Tischer,and J. Babcock

, Frozen magma lenses below the oceanic crust, Nature, 436, 1149-1152, 2005


The Earth’s oceanic crust crystallizes from magmatic systems generated at mid-ocean ridges. Whereas a single magma body residing within the mid-crust is thought to be responsible for the generation of the upper oceanic crust, it remains unclear if the lower crust is formed from the same magma body, or if it mainly crystallizes from magma lenses located at the base of the crust. Thermal modelling, tomography, compliance and wide-angle seismic studies, supported by geological evidence, suggest the presence of gabbroic-melt accumulations within the Moho transition zone in the vicinity of fast- to intermediate-spreading centres. Until now, however, no reflection images have been obtained of such a structure within the Moho transition zone. Here we show images of groups of Moho transition zone reflection events that resulted from the analysis of ~1,500km of multichannel seismic data collected across the intermediate-spreadingrate Juan de Fuca ridge. From our observations we suggest that gabbro lenses and melt accumulations embedded within dunite or residual mantle peridotite are the most probable cause for the observed reflectivity, thus providing support for the hypothesis that the crust is generated from multiple magma bodies.


© Woods Hole Oceanographic Institution
All rights reserved