spacer
Woods Hole Oceanographic Institution

Marco Coolen

spacer
Publications
»Bioavailability of soil organic matter and microbial community dynamics upon permafrost thaw
»7000 years of virus-host molecular dynamics in the Black Sea
»Preservation potential of ancient DNA in Pleistocene marine sediments: Implications for paleoenvironmental reconstructions
»Source-specific variability in post-depositional DNA preservation with potential implications for DNA-based paleecological records
»Exploring preserved ancient dinoflagellalte and haptophyte DNA signatures to infer ecological and environmental conditions during sapropel S1 formation in the eastern Mediterranean
»Ancient DNA in lake sediment records
»Vertical distribution of metabolically active eukaryotes in the water column and sediments of the Black Sea
»DNA and lipid molecular stratigraphic records of haptophyte succession in the Black Sea during the Holocene
»Diversity of Archaea and potential for crenarchaeotal nitrification of group 1.1a in the rivers Rhine and TĂȘt
»Holocene sources of fossil BHPs
»An unusual 17[α],21[β](H)-bacteriohopanetetrol in Holocene sediments from Ace Lake (Antarctica)
»Holocene sources of organic matter in Antarctic fjord
»Variations in spatial and temporal distribution of Archaea in the North Sea
»Archaeal nitrifiers in the Black Sea
»Pleistocene Mediterranean sapropel DNA
»Rapid sulfurisation of highly branched isoprenoid (HBI) alkenes in sulfidic Holocene sediments
»Aerobic and anaerobic methanotrophs in the Black Sea water column
»Fossil DNA in Cretaceous Black Shales: Myth or Reality?
»Sulfur and methane cycling during the Holocene in Ace Lake (Antarctica)
»Ancient algal DNA in the Black Sea
»Archaeal nitrification in the ocean
»Characterization of microbial communities found in the human vagina by analysis of terminal restriction fragment length polymorphisms of 16S rRNA genes
»Biomarker and 16S rDNA evidence for anaerobic oxidation of methane and related carbonate precipitation in deep-sea mud volcanoes of the Sorokin Trough, Black Sea
»Temperature-dependent variation in the distribution of tetraether membrane lipids of marine Crenarchaeota: Implications for TEX86 paleothermometry
»Paleoecology of algae in Ace Lake
»Evolution of the methane cycle in Ace Lake (Antarctica) during the Holocene: Response of methanogens and methanotrophs to environmental change
»Ongoing modification of Mediterranean Pleistocene sapropels mediated by prokaryotes.
»Microbial communities in the chemocline of a hypersaline deep-sea basin (Urania basin, Mediterranean Sea)
»Functional exoenzymes as indicators of metabolically active bacteria in 124,000-year-old sapropel layers of the Eastern Mediterranean Sea
»Specific detection of different phylogenetic groups of chemocline bacteria based on PCR and denaturing gradient gel electrophoresis of 16S rRNA gene fragments
»Analysis of subfossil molecular remains of purple sulfur bacteria in a lake sediment
»Effects of nitrate availability and the presence of Glyceria maxima the composition and activity of the dissimilatory nitrate-reducing bacterial community
»Microbial activities and populations in upper sediment and sapropel layers


spacer
Coolen, M. J. L. and G. Shtereva, Vertical distribution of metabolically active eukaryotes in the water column and sediments of the Black Sea, FEMS Microbiol. Ecol., 70, 525-539, 2009

Recent DNA-based phylogenetic studies have reported high eukaryotal diversities in a wide range of settings including samples obtained from anoxic environments. However, parallel RNA-based surveys are required in order to verify whether the species detected are in fact metabolically active in such extreme environments. The Black Sea is the World's largest anoxic basin but remains undersampled with respect to molecular eukaryotic diversity studies. Here, we report the distribution of active eukaryotes (18S rRNA-based survey) along a vertical nutrient and redox gradient in the water column and surface sediments of the Black Sea. A wide variety of eukaryotes were active in suboxic deep waters. Notably, certain species were active but escaped detection during a parallel 18S rDNA survey. The 18S rDNA survey from surface sediments yielded taxa of pelagic origin but none of these were identified from the water column at the time of sampling. Our data also indicate that gene transcripts do not always provide unequivocal proof that active microorganisms are indigenous to a specific position in an environmental gradient, because certain zoo- and phytoplankton species were still viable with detectable 18S rRNA in up to 300-year-old sulfidic sediments that underlie approximately 830 m of sulfidic waters. Full text of this article can be found here.

© Woods Hole Oceanographic Institution
All rights reserved