Connect with WHOI:

Refine by Date

Refine by:

Topic

Special Series

Maurice A. Tivey


Maurice Tivey followed his grandfather and father to sea, as they both served in the British Royal Navy. His marine science career began with geological studies at Dalhousie University in Nova Scotia and rock magnetism work at the University of Washington. He came to WHOI in 1988 as a Postdoctoral Scholar. Maurice has been involved in 32 research voyages and made 27 dives in deep-sea submersibles including Alvin, the French sub Nautile, and Japan’s Shinkai 6500. His research interests encompass all of magnetism but especially focus on high-resolution magnetic measurements of the seafloor, and what they can tell us about how the ocean crust is formed and how the field has changed through time. When at home, he plays soccer with friends and coaches in the local youth league. He has recently bought a telescope to peer into the heavens, as an excuse to get more gadgets as an alternative to continually looking underwater.

Maurice A. Tivey

Paving the Seafloor—Brick by Brick

Paving the Seafloor—Brick by Brick

Most of Earth’s crust is manufactured at the bottom of the sea. Deep beneath the waves and beyond our view, magma erupts along a 40,000-mile volcanic mountain chain that bisects the ocean floors and encircles the globe. The lava flowing from these mid-ocean ridges solidifies into new ocean crust that spreads out and paves the surface of our planet.

Read More

The Magnetic Thickness of a Recent Submarine Lava Flow

The Magnetic Thickness of a Recent Submarine Lava Flow

Submarine lava flows and their associated narrow feeder conduits known as dikes constitute the basic building blocks of the upper part of the ocean crust. We are only beginning to understand how lava erupts and forms on the seafloor by flooding topographic lows, flowing through channels or tubes, centralizing into volcanoes, or some combination of all of these.

Read More