Early tower designs used a tripod shape, like on these FASINEX buoys from the early 1990s. They left little room for instruments and made it hard to get into the buoy well, where the batteries and data processors are stored. (Photo courtesy Robert Weller, WHOI)
Over the years, tower tops were enlarged to make room for instruments. But the fiberglass grillwork was eventually abandoned because it disturbed airflow over the sensors. (Photo courtesy Robert Weller, WHOI)
Two early 1990s buoy designs during instrument burn-in at the WHOI lab. Toroid, or donut-shaped, buoys (right) were replaced by larger aluminum discus buoys (left). By 1995, solar panels were no longer in use. Augmenting battery power with solar energy seemed like a promising idea, but protecting the sensitive panels against waves and salt proved difficult. Instead, engineers reduced the system's power requirement by more than 90%. (Photo courtesy Robert Weller, WHOI)
Aluminum buoys are prone to leaks after long periods at sea. Most newer buoys, like this one off Bermuda, are made of solid Surlyn foam that is much more durable and buoyant.
The tower top has been further enlarged from earlier designs, and the square tower provides more headroom for engineers reaching into the buoy well. (Photo courtesy Bob Weller, WHOI)
The NTAS buoy moored in 2001 in the tropical Atlantic east of Venezuela. The long titanium sensor housings contained an independent battery supply for each sensor. Current ASIMET systems keep all batteries in the buoy well, allowing for shorter sensor housings.
The wind vane at left keeps the instruments mounted on the "front" of the buoy pointed into the wind. The black rectangle on the vane is a satellite transmitter. The white oval is a radar reflector to warn away ships. (Photo courtesy Robert Weller, WHOI)
A buoy ready for recovery at the STRATUS site off Chile in the Pacific Ocean. The aluminum buoy is riding low in the water after a year at sea - one good reason why Surlyn foam buoys, which don't leak, are now routinely used.
The skies are nearly always overcast in this region, making it difficult to study the ocean surface with satellites. ASIMET buoys provide continuous data that would be nearly impossible to acquire otherwise. (Photo courtesy Robert Weller, WHOI)
The CLIMODE buoy ready to start work in the Gulf Stream in late 2005. At deployment, this was the state of the art ASIMET buoy: Surlyn foam hull, rectangular tower, enlarged tower top with open interior, short, battery-less titanium sensor housings. Even this modern buoy has indications of future improvements. The egg-beater-shaped sensor just right of the yellow line is a sonic anemometer. More accurate than the propeller-shaped anemometers, this sensor may be standard on ASIMET systems by 2008. (Photo courtesy Robert Weller, WHOI)
Image and Visual Licensing
WHOI copyright digital assets (stills and video) contained on this website can be licensed for non-commercial use upon request and approval.
Please contact WHOI Digital Assets at images@whoi.edu or (508) 289-2647.
We use cookies to analyze site usage and improve user experience. By continuing on this site, you consent to their use. Read our Privacy Policy for more info and to amend settings. OK
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
Simon Thorrold, Ocean Ecologist
Simon Thorrold is an ocean ecologist at Woods Hole Oceanographic Institution. He uses techniques that span isotope geochemistry, next generation DNA sequencing, and satellite tagging to study the ecology of a wide variety of ocean species. He recently discovered that blue sharks use warm water ocean tunnels, or eddies, to dive to the ocean twilight zone, where they forage in nutrient-rich waters hundreds of meters down. Born in New Zealand, Simon received his B.S. from the University of Auckland, and Ph.D. from James Cook University, North Queensland, Australia. With much of his work in the South Pacific and Caribbean, Simon has been on many cruises, logging 1,000 hours of scuba diving and 800 hours in tropical environs. He has been a scientist at Woods Hole Oceanographic Institution since 2001.
Gregory Skomal, Shark Biologist
Dr. Gregory Skomal is an accomplished marine biologist, underwater explorer, photographer, and author. He has been a fisheries scientist with the Massachusetts Division of Marine Fisheries since 1987 and currently heads up the Massachusetts Shark Research Program. He is also adjunct faculty at the University of Massachusetts School for Marine Science and Technology and an adjunct scientist at the Woods Hole Oceanographic Institution (WHOI). He holds a master’s degree from the University of Rhode Island and a Ph.D. from Boston University. For more than 30 years, Greg has been actively involved in the study of life history, ecology, and physiology of sharks. His shark research has spanned the globe from the frigid waters of the Arctic Circle to coral reefs in the tropical Central Pacific. Much of his current research centers on the use of acoustic telemetry and satellite-based tagging technology to study the ecology and behavior of sharks. Greg has been an avid SCUBA diver and underwater photographer since 1978. He has written dozens of scientific research papers and has appeared in a number of film and television documentaries, including programs for National Geographic, Discovery Channel, BBC, and numerous television networks. His most recent book, The Shark Handbook, is a must buy for all shark enthusiasts. He is a Boston Sea Rover and a member of The Explorers Club; his home and laboratory are on the south coast of Massachusetts.
Robert Ballard, Ocean Explorer
Robert Ballard, Ocean Explorer
Robert D. Ballard is Founder and President of the Ocean Exploration Trust; Director of the Center for Ocean Exploration and Professor of Oceanography at the University of Rhode Island Graduate School of Oceanography. He is an Explorer-At-Large at the National Geographic Society, Commissioner for the U.S. Commission on Ocean Policy, and a Research Scholar at the Woods Hole Oceanographic Institution. He served in the U.S. Navy for more than 30 years and continues to work with the Office of Naval Research. A pioneer in the development of deep-sea submersibles and remotely operated vehicle systems, he has taken part in more than 155 deep-sea expeditions. In 1985, he discovered the RMS Titanic, and has succeeded in tracking down numerous other significant shipwrecks, including the German battleship Bismarck, the lost fleet of Guadalcanal, the U.S. aircraft carrier Yorktown, and John F. Kennedy’s boat, PT-109. He has also discovered hydrothermal vents and “black smokers” in the Galapagos Rift and East Pacific Rise in 1977 and 1979. The author of numerous books, scientific papers, and articles, he has been featured in several National Geographic television programs, including “Secrets of the Titanic” a five-part mini-series, “Alien Deep with Bob Ballard.” and, in 2019, “Expedition Amelia.” He was a special advisor to Steve Spielberg on the futuristic television show seaQuest DSV. His honors include 22 Honorary Doctorates, National Geographic’s highest award, the Hubbard Medal, and a National Endowment for the Humanities Medal. He was elected a Fellow of the American Academy of Arts and Sciences in 2014.
Timothy Shank, Deep-Sea Biologist
Tim Shank, Deep-Sea Biologist
Timothy Shank is a deep-sea biologist, Associate Scientist in the Biology Department, and former Director of the Ocean Exploration Institute at the Woods Hole Oceanographic Institution. He is known for his research on the ecology and evolution of fauna in deep-ocean hydrothermal, seamount, canyon and deep trench systems. He has conducted more than 60 scientific expeditions in the Arctic, Atlantic, Pacific, and Indian Oceans. Tim has completed more than 50 dives in the human operated submersible Alvin, and more than 100 dives with autonomous underwater and remotely-operated vehicles, including the first use of a hybrid ROV (Nereus) in the ocean’s deepest trenches. He is the author of the award-winning, best-selling book “Discovering the Deep.”
Sunita Williams, NASA Astronaut
NASA Astronaut Sunita L. Williams
Sunita L. Williams (Suni) was selected as an astronaut by NASA in 1998 and is a veteran of two space missions Expeditions 14/15 and 32/33. She is currently training for the first post-certification mission of Boeing’s Starliner spacecraft – the second crewed flight for that vehicle – and her third long duration mission aboard the International Space Station. Williams and her crewmates are working closely with Boeing to develop their new spacecraft systems, which will provide roundtrip crew transportation services to the International Space Station and, along with SpaceX’s CrewDragon, return the ability to launch humans into space from United States soil.
Kirstin Meyer-Kaiser, WHOI Biologist
Kirstin Meyer-Kaiser, WHOI Biologist
Kirstin Meyer-Kaiser is an Assistant Scientist in the Biology Department at Woods Hole Oceanographic Institution. Her research explores how the larvae of seafloor invertebrates such as anemones and sea stars disperse to isolated, island-like habitats, how larvae settle and colonize new sites, and how their communities change over time. Kirstin is currently Principal Investigator for an interdisciplinary project on shipwrecks in Stellwagen National Marine Sanctuary, including the steamship Portland, often termed “New England’s Titanic.” This project uses cutting-edge technology to construct 3D photogrammetric models of the Portland and other wrecks for archaeological and biological research and resource management. Kirstin also has ongoing projects in the Arctic and on coral reefs in Palau. Her work frequently takes her underwater using remotely operated vehicles and SCUBA and carries her to the far corners of the world.