Woods Hole Oceanographic Institution

Sarah B. Das

»Antarctic meltwater flux, GRL, 2013
»Tropical Pacific influence on W. Antarctic marine aerosols, J. Climate, 2013
»Thwaites Glacier, Antarctica accumulation, GRL, 2013
»ACCMIP multi-model global nitrogen and sulfur deposition dataset, ACP, 2013
»Influence of ice sheet geometry and supraglacial lakes on seasonal ice flow, TC, 2013
»Greenland Iron Export, Nature Geosc, 2013
»Greenland Organic Carbon Export, GCA, 2013
»Amundsen Coast Sea Ice and Polynya Variability, JGR, 2013
»Ice Core 10Be Records, EPSL, 2012
»Antarctic Ice Sheet Surface Melting, JGR, 2012
»Greenland discharge isotope mixing model, J. Glac., 2011
»Future Science Opportunities in Antarctica and the Southern Ocean, NRC Report, 2011
»Greenland Ice Sheet DOM, GCA, 2010
»Ice Sheet Hydrofracture and Water-transport Model, GRL, 2009
»Greenland Supraglacial Lake Drainage, Science, 2008
»Greenland Seasonal Speedup, Science, 2008
»West Antarctica Holocene Climate, JGR, 2008
»Greenland Accumulation, J. Climate, 2006
»Melt Layer Formation, J. Glac, 2005
»Whillans Ice Stream Deceleration, GRL, 2005
»Siple Dome Temperature Variability, Annals Glac., 2002
»Patagonian Icefield SAR, JGR, 1996

Das, S.B. and R. B. Alley, Rise in frequency of surface melting at Siple Dome through the Holocene: Evidence for increasing marine influence on the climate of West Antarctica , J. Geophys. Res., 113, D02112, doi:10.1029/2007JD008790

A new melt layer history from Siple Dome, West Antarctica indicates notable late-Holocene summertime warming. Visual stratigraphic analyses of the 1004-m ice-core identified 62 years with melt layers. Melting events began around 11.7 ka, followed by a period of no melting from 8.8-6.6 ka. Melt layer frequency increased from 6.6 ka to the present, with the 1000-year-average melt layer frequency reaching a maximum of 2% at 0.8 ka. We use our millenial-scale archive of melt events as a unique seasonal paleothermometer to elucidate changes in West Antarctic Holocene summer climate. Our calibration suggests the change in melt frequency from 0% to 2% may represent a summer temperature increase of ≥2?C from the middle to late Holocene. This temperature change cannot be explained entirely by local change in ice elevation or summer insolation, and is in contrast to East Antarctic climate records, which show peak warmth in the early Holocene followed by stable or decreasing temperature. We interpret the rise in melt frequency as evidence of an increasing marine influence on the Ross Sea sector of West Antarctica. Although the surface elevation of Siple Dome has not changed greatly, the continued lateral retreat of the West Antarctic ice sheet from its Last Glacial Maximum configuration (across the outer continental shelf), and the delayed draw-down in ice thickness from the adjacent coastal Marie Byrd Land region, in conjunction with periods of increased cyclogenesis, perhaps related to variations in ENSO, would allow a moderated maritime climate to more easily reach West Antarctica.

FILE » DasAlley2008

© Woods Hole Oceanographic Institution
All rights reserved