Woods Hole Oceanographic Institution

Steven R. Jayne

»Sc.D. Thesis
»Recirculation gyres in a beta-plane jet
»Forcing and sampling of ocean models
»Thermohaline circulation - sea ice feedback
»Recirculation forced by an unstable jet
»Tidal dissipation over rough topography
»Dynamics of ocean heat transport variability
»Deep ocean currents from GRACE
»Estimates of tidally-driven mixing
»Millennial climate variability
»Oceanic eddy heat transport
»Ocean heat content from GRACE
»Tidally-driven mixing in an ocean model
»Ocean bathymetry and Earth's climate
»Bathymetry from space
»Subtropical mode water during KESS
»North Atlantic Ocean circulation from GRACE
»Subtropical mode water in the Kuroshio Extension
»Tidal mixing during the Last Glacial Maximum
»Kuroshio northern recirculation gyre
»Bottom pressure in KESS and GRACE
»Ocean model metrics
»Abyssal mixing in CCSM
»Kuroshio Extension jet and transport
»The Morphology of Steve

S. R. Jayne and L. C. St. Laurent , Parameterizing tidal dissipation over rough topography , Geophysical Research Letters, 2001

The traditional model of tidal dissipation is based on a frictional bottom boundary layer, in which the work done by bottom drag is proportional to a drag coefficient and the velocity cubed. However, away from shallow, coastal regions the tidal velocities are small, and the work done by the bottom boundary layer can account for only weak levels of dissipation. In the deep ocean, the energy flux carried by internal waves generated over rough topography dominates the energy transfer away from barotropic flow. A parameterization for the internal wave drag over rough topography is included as a dissipative mechanism in a model for the barotropic tides. Model results suggest that the inclusion of this dissipation mechanism improves hydrodynamical models of the ocean tide. It also substantially increases the amount of modeled tidal dissipation in the deep ocean, bringing dissipation levels there into agreement with recent estimates from TOPEX/Poseidon altimetry data.

FILE » Jayne_2001.pdf

© Woods Hole Oceanographic Institution
All rights reserved