Woods Hole Oceanographic Institution

»Sc.D. Thesis
»Recirculation gyres in a beta-plane jet
»Forcing and sampling of ocean models
»Thermohaline circulation - sea ice feedback
»Recirculation forced by an unstable jet
»Tidal dissipation over rough topography
»Dynamics of ocean heat transport variability
»Deep ocean currents from GRACE
»Estimates of tidally-driven mixing
»Millennial climate variability
»Oceanic eddy heat transport
»Ocean heat content from GRACE
»Tidally-driven mixing in an ocean model
»Ocean bathymetry and Earth's climate
»Bathymetry from space
»Subtropical mode water during KESS
»North Atlantic Ocean circulation from GRACE
»Subtropical mode water in the Kuroshio Extension
»Tidal mixing during the Last Glacial Maximum
»Kuroshio northern recirculation gyre
»Bottom pressure in KESS and GRACE
»Ocean model metrics
»Abyssal mixing in CCSM
»Kuroshio Extension jet and transport
»The Morphology of Steve

S. R. Jayne, N. G. Hogg and P. Malanotte-Rizzoli , Recirculation gyres forced by a beta plane jet , Journal of Physical Oceanography, 1996

A numerical model, with quasigeostrophic and barotropic dynamics, is used to study the forcing of mean flows by an unstable jet. The initially zonal jet has specified shape and transport at the western inflow boundary and is sufficiently intense and narrow that the potential vorticity gradient changes sign, giving rise to barotropic instabilities. The resulting eddies act to smooth the potential vorticity anomalies transported into the domain and produce homogenized regions in which recirculations develop to the north and south of the jet. The intensity of these recirculations, as a function of nondimensional beta, is investigated and a simple kinematic interpretation offered.

FILE » Jayne_1996.pdf

© Woods Hole Oceanographic Institution
All rights reserved