spacer
Woods Hole Oceanographic Institution

Alejandra C. Ortiz

spacer
Publications
»The wake structure behind a porous obstruction and its implications for deposition near a finite patch of emergent vegetation
»http://onlinelibrary.wiley.com/doi/10.1111/j.1462-2920.2008.01580.x/pdf


spacer
Zhengbing Chen
Alejandra Ortiz
Lijun Zong
Heidi Nepf, The wake structure behind a porous obstruction and its implications for deposition near a finite patch of emergent vegetation, Water Resources Research, 2012

This experimental study describes the mean and turbulent flow structure in the wake of a circular array of cylinders, which is a model for a patch of emergent vegetation. The patch diameter, D, and patch density, a (frontal area per volume), are varied. The flow structure is linked to a nondimensional flow blockage parameter, CDaD, which is the ratio of the patch diameter and a drag length scale (CDa)−1CD is the cylinder drag coefficient. The velocity exiting the patch, Ue, is reduced relative to the upstream velocity, U, and Ue/Udecreases as flow blockage (CDaD) increases. A predictive model is developed for Ue/U. The wake behind the patch contains two peaks in turbulence intensity. The first peak occurs directly behind the patch and is related to turbulence production within the patch at the scale of individual cylinders. The second peak in turbulence intensity occurs at distance Lw downstream from the patch and is related to the wake-scale vortices of the von Karman vortex street. The presence of the flow Ue in the wake delays the formation of the von Karman vortex street until distance L1 (<Lw) behind the patch. Both L1 and Lwincrease as Ue increases and thus as the flow blockage (CDaD) decreases. L1 sets the distance behind the patch within which fine-particle deposition can occur. Beyond Lw, turbulence associated with the wake-scale vortices inhibits deposition.

© Woods Hole Oceanographic Institution
All rights reserved