For 54 years Woods Hole Oceanographic Institution (WHOI) has operated the U.S. Navy-owned Deep Submergence Vehicle Alvin for the national oceanographic community. Commissioned in 1964, Alvin has made almost 5000 dives (as of November 2018), playing a major role in making important discoveries about the biological, chemical, and geological processes that shape our planet. Alvin carries two scientists and a pilot as deep as 4,500 meters (about three miles) and each dive lasts six to ten hours. The sub’s most famous exploits include locating a lost hydrogen bomb in the Mediterranean Sea in 1966, exploring the first known hydrothermal vent sites in the 1970s, and surveying the wreck of RMS Titanic in 1986.

How did Alvin get its name?
The submersible is named for Allyn Vine, a WHOI engineer and geophysicist who was the prime mover and creative inspiration for the vehicle.

Recent Upgrade
The deep-ocean and seafloor beyond 4,500 meters water depth is this planet’s last frontier. A critical asset in exploration of this region is a more capable human occupied vehicle (HOV) with state-of-the-art visibility, increased depth, neutral buoyancy capabilities, increased payload, extended time at routine working depths, and other important science and operational design features.

With funding from the National Science Foundation and the Office of Naval Research, WHOI has begun converting Alvin to a 6,500 meter capable submersible. The first step was completion of a major upgrade to the vehicle and many of its systems in 2013. A new titanium personnel sphere with improved ergonomics has been integrated into Alvin’s modified frame, and other improvements have been made to provide:

- Increased fields of view (with 5 viewports instead of 3, and complete overlap with the pilot’s field of view)
- State-of-the-art illumination and imaging systems
- Enhanced data collection, logging, and interface capability
- Increased payload for Alvin’s basket for carrying samples and equipment.
- Faster ascent and descent rates enabling greater science sampling times

Final systems conversion for 6,500 meters is underway with operations to the new deeper depths beginning in Spring of 2021.

Stage 2 Upgrade
Efforts to improve available energy for dive operations are continuing and have lead to improvements to bottom times using the existing batteries. The program is evaluating new higher energy battery technologies and plans to progressively integrate new batteries once the conversion to 6500 meter operations is completed. This effort will offer significant operational improvements, and will enable long dive times especially to depths beyond 4500 meters. Additional science capabilities achieved in Stage 2 will include:

- Increased depth capability
- Additional improvements in imaging systems (i.e. 4K imaging and recording capability)
- Increased working time
- Increased thruster horsepower and better maneuverability
- Enhanced mid-water research capability
- Enhancing sampling capability by installing an additional Schilling Titan-4 manipulator

Advantages of Alvin
There is no substitute for direct observation. Scientists working in Alvin consistently describe the perspective gained by examining the seafloor in 3-D through Alvin’s multiple viewports, as unsurpassed by other remote sampling methods. Enabling the use of human eyes and brains, immersed in the ocean environments, is an essential component of the observer’s ability to fully understand unique deep-sea ecosystems. ‘I never expected it to look like that’ is a constant dive refrain.
Specifications

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>7 m (23.1 ft)</td>
</tr>
<tr>
<td>Breadth</td>
<td>2.6 m (8.4 ft)</td>
</tr>
<tr>
<td>Height</td>
<td>3.68 m (12.1 ft)</td>
</tr>
<tr>
<td>Operating Depth</td>
<td>6,500 m</td>
</tr>
<tr>
<td>Normal Dive Duration</td>
<td>8-12 hours</td>
</tr>
<tr>
<td>Gross Weight</td>
<td>20 metric tons (45,000 lbs)</td>
</tr>
<tr>
<td>Science Basket Payload</td>
<td>181.4 kg (400 lbs)</td>
</tr>
<tr>
<td>Personnel Sphere Volume</td>
<td>4.8 cubic meters</td>
</tr>
<tr>
<td>Maximum Vehicle Speed</td>
<td>1.5 knots forward, 0.5 knot lateral, 1.0 knot vertical (1 knot equals 0.5 meters/second)</td>
</tr>
<tr>
<td>Descent/Ascent Rate</td>
<td>30 m/min (98.4 ft/min)</td>
</tr>
<tr>
<td>Propulsion</td>
<td>Six brushless DC electric thrusters, each providing 113 Newtons (250 pounds) of thrust</td>
</tr>
</tbody>
</table>

Observation
Five viewports: 3 forward (17” diameter), 2 side (12” dia.)

Electrical Power
Two banks of lead-acid batteries, each 120 V, 140 AH, 33kW-Hr total energy

Communication
Redundant acoustic telephones (voice or code)
Marine band (VHF) radio
Sound - powered phone

Lighting
Twelve lighting channels
Multiple positionable LED lamps
Situational and emergency lighting
Down-looking survey lighting
Scaling lasers for optical size reference

Imaging
Two pan and tilt 4K UHD zoom cameras
Two pan and tilt HD zoom cameras
Four fixed focal length HD situational cameras
Two 7” 4K LCD flat panel displays for in-hull viewing
Two 4K ProRes video recorders
Two HD Proxy H.264 video recorders
Two iPad tablets for camera control
Hand-held still and video cameras
Hand-held audio recorder

Propulsion
Seven thrusters
Forward, reverse, lateral capability
Auto heading, altitude, and depth

Vehicle Sensors
Fiber-optic gyrocompass, Octans or PHINS
Redundant depth sensors
CTD
Temperature sensors
Magnetometer
Kongsberg 1171 330/675 kHz scanning sonar

Navigation
Dedicated in-hull navigation with touchscreen display
Bottom tracking Doppler velocity log

Manipulators/Sampling
Two Schilling Titan 4 manipulators with 7 degrees of freedom
Sample storage: 16 ft2 sample basket with payload of 181 kg (400 lbs)
Elevator free-ascent vehicle, mission configurable, payload 90 kg (200 lbs)
Scientific sampling devices: water samplers, tube corers, bio boxes

Scientific Instrumentation Support
Power: 12, 24, and 120 VDC switched circuits available
Hydraulics: 6 available hydraulic circuits
Digital sensor interface
Integrated data system
In-sphere laptop computers
Event logging via SeaLog