R.V. Oceanus steams out of Woods Hole harbor on a research voyage.
IF 1989 was a good year for WHOI, it was a great one for me. My first year as Director has been fun and full of learning – settling with Cynthia into Meteor House and life in Falmouth and Woods Hole Village, meeting with the scientists and staff and trying to understand their work and needs, and becoming acquainted with the sponsors, Trustees, Corporation members, and Associates, who are so critically important to our research. I even had a chance to go to sea in three oceans, more than I’d done in my last decade in the Navy: with Bob Ballard and the JASON Project in the Mediterranean, for a short cruise in the Atlantic on Oceanus, and in the Pacific on Kaiko, a Japanese SWATH ship. And coming aboard during Alvin’s 25th anniversary gave me a great sense of our history and helped prep me for 1990, WHOI’s 60th year.

In the process of becoming acquainted, we’ve made a few changes to strengthen WHOI’s posture of leadership in oceanography. A full scale effort is underway to identify and review the most important issues in ocean science and what our role should and could be with respect to them. On the more immediate front, WHOI now has several new committees to improve information flow and broaden effective participation in Institutional governance. We’ve created Engineering and Information Systems career ladders for technical and graded staff that will parallel the traditional research track. Our needs for both land-based and seagoing facilities are under extensive review so that we will be able to update our Master Building Plan and effectively direct our course towards optimal research at sea. We got top grades from a Visiting Committee review of our Joint Program with MIT, and, after a nationwide search have selected John Farrington Associate Director of Education and Dean of Graduate Studies so our educational activities may be broadened.

Finally, we have established, under Charley Hollister, a Directorate of External Affairs (comprised of Development, Communications, and Industrial and International Affairs), which will extend our outreach and strengthen our base of support.

We have also worked hard to keep our administration lean and flexible and to reinforce the community spirit and scientific competitiveness of the WHOI staff. My respect for the efficiency of our procedures and the quality of our people has only grown as I have become more familiar with them over the past year. We must continue to capitalize on the strengths of our men and women, and to minimize bureaucracy.

At the same time, implicit in the changes we are making is a recognition that the traditional system of support and funding for our work is changing and that WHOI must evolve. One dominant trend in the United States is the resurgence of social consciousness as the nation grapples with its educational and economic problems and a degrading environment. Another is the struggle to respond to the dramatic changes in international political and economic structures as the failure of communism sets in. And while such global events may at times seem far removed from our quiet village, the nature of our science, our leadership role in it, and our dependence upon the federal government mandate attentiveness and action.

It is likely that concern for global change and protection of the environment will remain high throughout the ’90s. Oceanography, an observational science with great relevance to the health of the world and an intrinsic appeal to youth, will be an important component of national research and education plans. However, federal funding for oceanography is apparently shifting toward mission-oriented and regulatory agencies like the
National Oceanic and Atmospheric Administration and the Environmental Protection Agency, with a less dominant role for our traditional sponsors, the National Science Foundation and the Office of Naval Research.

Thus, as our field becomes even more important to the health of the world, it will be difficult to maintain our traditional approach to science. The pressure on NSF is already stressing the peer review process of selecting the best science (although WHOI continues to outcompete all others in its field), and we must quickly evolve supportive relationships with agencies that have had little experience in working with academia. The concern is that just when the expertise of the U.S. ocean science community is needed the most, the federal structure that has helped make us the best in the world will ignore our strengths.

WHOI is working hard locally, nationally, and internationally in scientific forums to sustain the strength and qual of our research and education. As a private institution with a recognized wo leadership position, we have tremendous flexibility. The challenge, as a “soft money” institution, will be to maintain independence and the ability to define a conduct the very best science. I’m excited about the possibilities inherent in this challenge and enthusiastic about WHOI potential for the coming decades.

Craig E. Dorris
Director
This year closed out a decade of success for the Woods Hole Oceanographic Institution in spite of mixed performances in support from the federal sector for Ocean Sciences. Competition for federal funding sources, such as the Office of Naval Research (ONR) and the National Science Foundation (NSF), dramatically increased as the decade came to a close. As a result, our Scientific and Technical Staffs have had to sharpen their focus and spend more time trying to market and sell their science. Scientists at the Institution today write more than twice as many proposals as they did in 1980. As an Institution, we can no longer rely only on the National Science Foundation and the Office of Naval Research for the majority of our research support. Our challenge for the new decade is to broaden our funding base into other federal, as well as private, arenas.

The scientific excellence of our staff has allowed us to weather the increasing competitive storm. We are extremely fortunate that we have such high quality, world-class scientists and engineers at this Institution. During the past decade, for example, the NSF Ocean Sciences Division budget rose by 78 percent and the ONR budget by 57 percent. Our overall research budget during this time period increased by 107 percent with our NSF and ONR (and other Navy) support increasing by 95 percent and 154 percent, respectively. We currently rank in the top 20 of all U.S. institutions competing for NSF funds in all disciplines. Clearly, this is a reflection of the excellence of our Staff and a vote of confidence for our thorough and competitive appointment and promotion procedures.

In a sense, 1989 was a watershed year for the environmental sciences. It was pivotal in convincing Congress and the White House to commit significant funds to some of the major global environmental programs that have been in the planning stages for the past five years. Through the 1980s, the NSF and ONR continued to provide the major resources for the academic ocean sciences community including approximately three-quarters of WHOI’s research support. However, significant increases are in the offing for the National Oceanic and Atmospheric Administration (NOAA), National Aeronautics and Space Administration (NASA), and Environmental Protection Agency (EPA) budgets presented to Congress by the President. If Congress agrees with the President, the increase in the 1991 budget for the environmental sciences will be the highest since the early 1970s when the NSF Ocean Sciences Division budget approximately doubled as the International Decade of Ocean Exploration Program began. Many of our scientists participated in that program and have been instrumental in planning and formulating some of the major research initiatives for the 1990s.

A renewed and concerned interest in man’s impact on his environment began to emerge in the late 1980s. Among the concerns are the effects of global climate change, the wise use and protection of the oceans, and the effects of new policies dealing with economic and military security. This Institution has played a major role in the planning of several initiatives dealing with these issues. A number of the World Ocean Circulation Experiment (WOCE) components are located at WHOI, including the WOCE hydrographic office, the WOCE water sampling bottle design and construction project, and the National Tandem Accelerator Mass Spectrometer facility. The WOCE program was designed to better understand the general circulation of the ocean and the processes by which it can be altered due to climate changes.
The Joint Global Ocean Flux Study (JGOFS), which intends to identify the physical, chemical, and biological processes controlling the biogeochemical cycles in the ocean, has its U.S. planning office at WHOI. Many of our scientists are participating in both the WOCE and JGOFS programs and in the planning for the GLOBEC Dynamics (GLOBEC) program, whose goal is to integrate theoretical and practical ecological studies of marine and terrestrial systems. Likewise, our scientists are involved in planning for the Ridge Inter-Disciplinary Global Experiment (RIDGE) program, which proposes to study the Earth's mid-ocean ridges as a single dynamic system transferring energy from the Earth’s interior to the lithosphere, hydrosphere, and atmosphere.

Institution scientists are also participating in a number of other major new initiatives to help us better understand how the Earth works. In the ONR Subduction Experiment, processes that inject surface layer ocean water into the flow regime of the interior ocean (the thermohaline and the abyss) are being defined. The ONR-sponsored Surface Wave Dynamics Experiment (SWADE) program is looking at growth and equilibria of wind-generated surface waves. The role of the polar oceans in the world’s biogeochemical cycles are being studied, and our joint initiative with the Marine Biological Laboratory, to apply molecular biological techniques to answer biological oceanography questions, is progressing well.

In addition, 1989 was a year for many technical achievements. A major ocean bottom seismometer facility was awarded to WHOI by the ONR. These instruments will help us obtain new data to measure the acoustic and seismic noise fields of the deep ocean, which, in turn, will lead to new information about microearthquake on the ocean floor. New software techniques and more powerful computers allow us to synthesize and integrate optical and acoustic data in order to obtain a more detailed, real-time, three-dimensional, fly-over pattern of the ocean floor from remote vehicles. This past year’s breakthrough in our modeling capability of the acoustic channel has greatly expanded the opportunity to telemeter data acoustically through the ocean’s interior. These new developments will allow us to look at the ocean in very different ways than previously thought possible.

In summary, 1989 was an important transition year for the Institution. As discussed above, major advances were made in our approach to science and engineering. Our new Director, Craig Dorman, initiated changes in the way we manage our science and technology. He has started to put a system in place by which we can best respond to the opportunities and challenges of the 1990s. This, combined with the recognition by the federal and private sectors that to understand what man is doing to his environment requires a major change in the way we address funding research in this country, is creating an environment at Woods Hole of excitement and anticipatory not seen since the early days of the environmental movement.

Robert B. Gagosian
Associate Director for Research
We are on the verge of basin-scale coverage and real-time data return.

Arctic work continues with ice tomography on the small scale and telemetry buoys for year-round observations on the large scale. Ocean bottom seismic arrays, down-borehole seismometers, and tomographic techniques are permitting deep examinations of crust and mantle.

Nine appointments were made to the department technical staff in 1989, and one to the scientific staff. The addition of Bill Plant as a Senior Scientist in late 1988 strengthened the department's capabilities in air-sea interactions and microwave remote sensing of the ocean.

Bill's work contributes to the understanding and development of spaceborne microwave sensors such as scatterometers, wave spectrometers, and synthetic aperture radars, which enable global monitoring of near-surface ocean conditions.

Albert J. Williams 3rd
Department Chairman
Biology

The broad aim of biological oceanographers is to study the temporal and spatial distributions of populations of marine organisms and their interactions with each other and their environment. The work is predominantly ecological in its attempts to provide the basic information required to understand how the ocean works biologically. Among the specific research interests of Institution biologists are microbiology, biochemistry, molecular biology, planktonology, ichthyology, benthic biology, physiology, biogeochemistry, bioacoustics, mathematical ecology, and animal behavior.

A major recent initiative introduces molecular biological tools and techniques into the mainstream of biological oceanography and allows many longstanding but current problems to be addressed in an entirely new way. Recent efforts using these techniques include studies of jellyfish bioluminescence, cancer in Boston Harbor flatfish, and toxic dinoflagellate blooms ("red and brown tides") in coastal waters. In collaboration with the Marine Biological Laboratory, a molecular biology core facility was established at WHOI in 1989. Some of the work envisioned for this facility includes analysis of marine species by identification of intragenic species-specific DNA sequences, systematics of marine cyanobacteria, and nitrogen-fixing bacteria, dinoflagellate physiology, ecology, toxin biosynthesis, development of species-specific tags for marine protozoa, speciation in benthic communities, and transformations in fish caused by pollutants.

A second new thrust is in the mathematical modeling of biological systems with potential areas of research that include physiological processes; recruitment, population dynamics, and life histories; nonlinear dynamics in marine systems; and food web structure and dynamics.

Another departmental thrust is in the area of bioacoustics. Recent developments in digital signal processing offer new tools that promise advances in the study of the distribution of organisms ranging in size from microscopic plankton to whales.

Among the awards to department members in 1989, Hal Caswell received a Guggenheim Fellowship for his models of ecological communities in patchy environments, and John Stegeman was elected a Fellow of the American Association for the Advancement of Science and to membership in the American Society for Biochemistry and Molecular Biology.

Peter H. Wiebe
Department Chairman

Chemistry

The efforts of individual investigators continue to form the backbone of research in the Chemistry Department with forefront research ranging from the glacial history of the Antarctic ice sheet and the formation of surface films in the upper micron of the ocean to the cycling of carbon through various ocean reservoirs and the history of ocean circulation recorded in the growth bands of coral. Significant work is underway on carbon cycles, an area of intellectual ferment and strong societal interest, as we try to understand global changes, energy issues, and waste disposal. Our staff measures all of the carbon isotopes in surface, mid-level, and deep waters, in sinking particles, in sediments, and in newly measurable forms such as dissolved organic carbon. We are substantially involved in pioneering efforts in such areas as marine photochemistry and the origin and effects of surface microlayers. Organic geochemistry on the molecular to global scale remains a strength with studies ranging from the cycling of pigments and composi-
tion of surface films to the origin and
migration of petroleum

A major chemistry research effort is
based in the waters around Bermuda,
where WHOI investigators are conducting
some half-dozen programs. The measure-
ments made constitute one of the most
comprehensive data sets available for the
some 70 percent of the world ocean that
falls into a category similar to the waters
around Bermuda. The emphasis in this
work is on time series studies to define
the seasonal and interannual variations
in the rates of oceanic processes and to
define the links between atmosphere,
surface, and deep ocean.

In 1989, several department members
participated in the North Atlantic Bloom
Experiment, the first seagoing component
of the Joint Global Ocean Flux Study
(JGOFs), a decade-long, international
program to examine how ocean life inter-
acts with seawater chemistry on a global
scale. WHOI participation includes
hosting the planning office for U.S. par-
ticipation in JGOFs.

Derek Spencer was welcomed back to
the department in 1989 following more
than 10 years as Associate Director for
Research. He is working with other
department members on his longstanding
interest, the integration of models of the
upper ocean with the distribution of
chemical tracers.

Mark Kurz received the Rosenstiel
Award this year for his contributions to
marine geochemistry, particularly helium
isotopic systematics and the evolution of
the earth, mantle processes, and the
cosmogenic connection. Peter Brewer was
selected a Fellow of the American Geo-
physical Union for the "development of
insight and observational leadership in a
wide range of chemical oceanography,
especially the global carbon flux problem
and the cycling of nutrients," and an ONR
Young Investigator Award, which pro-
vides three years of research support,
went to Jim Moffett in 1989.

Frederick L. Sayles
Department Chairman

Geology & Geophysics

THE desire to determine the forces
that have shaped the planet Earth
drive research in marine geology and ge-
physics. One thrust of work in this
department is to provide a relative time
frame for Earth-shaping events through
biostratigraphic and geophysical studies
and an absolute time chronology through
isotopic measurements. Work on the
seafloor spreading cycle ranges from mor-
phological descriptions of ocean basins to
studies of processes at work in the mantle
and along mid-ocean ridges and the de-
velopment of ocean basins by rifting, drift-
ing, subduction, and continental collision.
The wide range of research in the depart-
ment also includes studies of sedimen-
tation from the shallow coastal
zone to the deepest
ocean, global refriger-
ation events and
subsequent melting,
and changes of
sea level with time.

Two important
1989 research ac-
complishments in
the department
deal with the
production of North
Atlantic Deep
Water and with
geological processes
along the mid-ocean
ridge. Research
shows that the flux of North Atlantic
Deep Water from
the Greenland-
Norwegian Sea to the
North Atlantic
was reduced four times in the period
from 15,000 to 10,000 years ago. These re-
ductions are associated with a major dis-
charge of glacial meltwater whose south-
ward advection increased the stability of
the water column and affected the climate
of the North Atlantic region. The
mid-ocean ridge study involved extremely
detailed mapping of tectonic and mag-
matic processes at work on the Mid-
Atlantic Ridge between the Kane and
Antarctic fracture zones using an unprece-
dented combination of high resolution

Gary Hayward, Joel
Porcino, and Doreen
Woodford break a
freshwater seal to
check on
equipment while
photographing a
mid-ocean rift.

\[Image: Gary Haywa-
dd, Joel Porcino, and
Doreen Woodford breaking a freshwa-
ter seal to check on equipment while
photographing a mid-ocean rift.\]
swath bathymetry, magnetics, and gravity field information.

We look forward to new capabilities when the Accelerator Mass Spectrometer (AMS), a national facility sponsored by the National Science Foundation and based in this department, becomes operational in the near future. Construction of an addition to the McLean Labora-

tory to house the AMS began in 1989. The facility will be able to measure radiocarbon content, and hence the age, of samples a thousand time smaller than with conventional radiocarbon methods. It will reduce the time required to compile the detailed chronology needed for such paleoceanographic studies as the North Atlantic Deep Water reductions, and it will play an important role in the use of carbon-14 as a tracer in the World Ocean Circulation Experiment (WOCE).

Six new assistant scientists were appointed in 1989, and our expertise on mantle processes was substantially expanded with addition to the staff of two senior scientists, Stanley Hart and Nobumichi Shimizu, who will add new dimensions to our future investigations on intraplate and plate boundary magmatic processing. Hart is a member of the National Academy of Sciences, and William Berggren was elected to that prestigious body in 1989. Another honor came to the Geology & Geophysics Department this year when Susumu Honjo was awarded the Institution’s newly established Columbus O’Donnell Iselin Chair for Excellence in Oceanography.

David A. Ross
Department Chairman

Physical Oceanography

The Department of Physical Oceanography is global in scope, comprehensive in the scales of the physical processes currently studied, and holds a leadership position in national and international physical oceanography research. Department members investigate the dynamics and thermodynamics of ocean circulation. They work globally from the Arctic to the Antarctic and from the Strait of Gibraltar to the Philippine shelf on the full range of oceanic processes from mixing on centimeter scales to heat balance on the global scale. Their tools include observations at sea, analysis of experimental data, and theoretical and numerical modeling.

The traditional core of the department has been study of general ocean circulation, particularly the dynamics of subtropical gyres, including western boundary currents such as the Gulf Stream. Recent advances in thermocline modeling have extended these studies into investigations of equatorial and subpolar gyre circulation.

Over the last 10 years, department scientists have taken international lead-

ership in the research areas of air-sea interaction, mesoscale oceanography, coastal circulation, and mixing. Air-sea interaction, at the heart of long-term global climate change problems, has both local aspects, such as how short-term atmospheric variability generates ocean currents, and large-scale aspects, such as determining the ocean’s role in maintaining the Earth’s heat budget. Mesoscale
oceanography consists of the study of fronts and eddies. These fluctuations involve time scales of weeks and space scales of about 100 kilometers and are the most energetic component of ocean currents. Coastal circulation focuses on understanding the dynamic processes controlling currents over the continental shelf and through straits connecting semi-enclosed seas with the open ocean. Understanding these processes is the key to predicting the fate of pollutants and the effective turnover time for a basin, issues of societal importance. Mixing on the smallest scales ultimately determines the sinks for mechanical energy, buoyancy, and internal energy in the ocean. Instruments under development in the department should allow these mixing processes to be measured simultaneously for the first time.

Significant accomplishments during 1989 include the following list:

- Senior Scientist Henry Stommel received the National Medal of Science from President Bush in November. He was one of 17 scientists, and the only oceanographer, in the physical and mathematical sciences to receive the medal.
- The International Hydrographic Program office for WOCE (World Ocean Circulation Experiment) was established at WHOI in 1989 under the direction of Senior Scientist Terrence Joyce to process and analyze all hydrographic measurements for the largest scientific program ever attempted by physical oceanographers.

- Bob Beardsley was elected a fellow of the American Association for the Advancement of Science.
- The longest hydrographic section ever made was directed by Associate Scientist John Toole and Senior Scientist Harry Bryden from February to May aboard R/V Moana Wave operated by the University of Hawaii. The work extended 16,000 kilometers across the Pacific Ocean from the Philippines to Costa Rica and included 220 full-depth hydrographic stations. Its objective is to measure the meridional ocean heat transport across 10°N.

Robert C. Beardsley
Department Chairman
Coastal Research Center

THE primary emphasis of the Coastal Research Center (CRC) is clarification and understanding of both natural and human-induced variability in coastal processes. The Center provides both an intellectual forum and research support in the form of funding, small boats, and research facilities such as experimental flumes. CRC is also active at the science-policy interface so that the results of the scientific effort can be efficiently and effectively used in resource management decisions. In 1989, CRC studies continued in five primary programmatic areas.

1) Impact of Global Climate Change on the Coastal Zone: Building on previous research in river deltas, this program focuses on how present-day coastal environments might be altered by natural and human-induced climate change. Regional sensitivities to global change are being examined in such areas as the Caribbean, the northern Indian Ocean, and the Pacific archipelagos where impacts from relative sea-level rise may include changes in estuarine circulation, altered sedimentation patterns, increased salinity intrusion into aquifers, and modifications of the storm climate.

2) Assimilative Capacity-Ecotoxicology: A CRC research effort at the NOAA Waquoit Bay Estuarine Research Reserve supports studies of nutrient flux to coastal embayments via groundwater and studies of factors that influence shellfish recruitment. In addition, CRC has helped coordinate the academic response to environmental problems in Massachusetts Bay and Boston Harbor and is participating in studies of coastal circulation and the transport of toxics.

3) Coastal Instrumentation: CRC provided partial funding for a tide gauge and its long term deployment in the Philip-ippines for a study of coastal seiches and the role of internal waves in their creation. In addition, CRC purchased a current meter to support physical oceanographic research on tidal, wind-driven, and density-driven water movements that affect contaminant flux in Massachusetts and Cape Cod bays. This work includes scientists from WHOI, the U.S. Geological Survey, and the Universities of New Hampshire and Massachusetts, Boston.

4) Rapid Response: As a response to Hurricane Hugo, a new research initiative in the Caribbean is designed to describe more precisely the impacts of hurricanes on the coastal environment and to investigate climatic issues that affect the strength and tracks of hurricanes. From this, we hope to improve our understanding of the relationship between major storms and the structure of coastal tropical ecosystems in order to provide technical guidance for appropriate coastal zone management in the Caribbean.

5) Education: CRC provides support for student research projects, creating seed funds for promising research initiatives. CRC also provides support for postdoctoral fellows that help recruit the most promising young scientists to continue the tradition of coastal research at Woods Hole.

David G. Aubrey
Center Director

Center for Marine Exploration

THE Center for Marine Exploration (CME) fosters new technologies, including unmanned systems, for the deep ocean and provides a focal point for marine scientists and others exploring the deep sea. CME has four primary goals:

• to provide scientists with advanced engineering and cost-effective techniques for deep ocean exploration and experiments,
• to provide marine archaeologists and other social scientists opportunities to utilize this technology for cultural and historic purposes,
• to increase public awareness of the marine environment, and
• to stimulate career interest in engineering and the physical sciences.

CME provides a meeting ground where skilled technicians and experts in such areas as materials science, electronics engineering, image processing, acous-
otics, optics, mechanical engineering, computer sciences, robotics, and telecommunications come together with marine scientists to develop technology for unmanned exploration of the deep ocean. The objective is to provide a scientific and cultural window to the deep ocean and to further basic knowledge and man's ability to use the marine environment wisely.

The center played a key role in the early organization of the JASON Project and continues this work along with the new JASON Foundation for Education. Please see the discussion of the first year's activities and exciting future plans on pages xx and xx. In 1990 the JASON Project will focus on Hamilton and Scourge, two ships sunk during the War of 1812, and in 1991 the Galapagos Islands will be featured.

CME is working with the Center for Marine Policy to form an international study group to discuss ethics and policy pertaining to the discovery, exploration, and exploitation of undersea cultural resources, namely shipwrecks. WHOI is a leader in the development of new undersea survey technologies that will allow efficient access to nearly 95 percent of the ocean floor. Many of these technologies have been tested on highly-publicized expeditions such as those to the Titanic and Bismarck sites and to the wreck of the Roman merchant ship Isis. The high ethical standards set by WHOI in these instances have drawn worldwide acclaim.

In December 1989, CME and the Deep Submergence Laboratory (DSL) conducted a joint oceanographic expedition with Submarine Development Group One (SUBDEVGROUP ONE) of the U.S. Navy. The program, called the Tactical Terrains Experiment (TACTEX), was designed to utilize a suite of real-time imaging tools from a single oceanographic platform (DSVSS Laney Chowest) in order to map the seafloor at a variety of scales and resolutions. These tools included:

- Sea Beam (SUBDEVGROUP ONE: hull-mounted multibeam bathymetry),
- the DSL-120 (WHOI: deep-towed, split-beam, side-looking sonar),
- the DSL-200 (WHOI: ROV-mounted, split-beam, side-looking sonar, the Medea-Jason system), and
- the manned Deep Submergence Vehicle Turtle (SUBDEVGROUP ONE).

The survey area was the San Clemente Escarpment, a seismically active offshore strand of the San Andreas fault system. TACTEX '89 demonstrated the concept of tactical oceanography, the ability to acquire and manipulate multiscale, multi-sensory data in near real time.

Robert D. Ballard
Center Director

Marine Policy Center

The WHOI Marine Policy Center (MPC) is one of a small number of research centers in the world dedicating scholarship to public policy issues involving the world's oceans and coastal areas. Issues being examined include progress in science and technology, access to and control of resources, conservation and environmental protection, and international relations. MPC research concentrates on four theme areas:

1) Global Climate Change: MPC research contributed to initial estimates of the potential impacts of global sea-level rise from greenhouse warming on low-lying developing countries like Bangladesh and Egypt. As calls have intensified for massive and immediate policy responses to feared global warming, MPC researchers have carefully elucidated the substantial uncertainties remaining and the value of added scientific information in devising an effective response.

2) Ocean Use and Protection: Balancing greater use of the oceans with environmental protection is an increasingly complex challenge. Ongoing MPC work, combining the efforts of scientists, economists, lawyers, and resource managers, has identified marine biological diversity as an important natural resource and has also identified opportunities for its conservation. At a local level, careful coastal planning and management are the objectives of an innovative, citizen-sponsored MPC project at Edgartown Harbor on Martha's Vineyard. At the international level, MPC researchers are embarking with counterparts at the Institute for World Economy and International Relations of the Soviet Academy of Sciences, on a two-year cooperative project entitled "Environmental Security and the World Ocean – Analytic Approaches and Shared Solutions."

3) Marine Technology: Our ability to understand and use the oceans effectively depends on progress in marine electronic instrumentation, a "high technology" field
in which U.S. leadership is subject to growing international challenge. Research at MPC is providing a clear understanding of international market dynamics in this field and of the sources and pathways of invention and innovation.

4) Arctic Studies: Arctic regions and the polar oceans are of vital importance in international strategic relations, of growing importance for natural resources, and of great scientific interest. During 1989, the Marine Policy Center compiled a volume of authoritative articles on Soviet maritime Arctic policy, including several contributions by Soviet scholars, to provide the first comprehensive survey of factors shaping Soviet marine policy in the vast Arctic domain. This work, as well as research on ocean use and protection, was facilitated by the assignment of a senior U.S. Coast Guard officer to MPC as a Research Fellow.

Throughout the year, MPC research staff and fellows have worked on many levels to inform marine policy decisions with careful analysis and independent scholarship. Again this year, the Center hosted a Congressional Fellow, selected from applicants who serve House and Senate staffs with ocean interests, for a brief research term. MPC researchers forged a link between academic research and policy applications through Congressional testimony, Senate briefings, and participation in national and international advisory bodies.

James M. Broadus III
Center Director

Sea Grant Program

The WHOI Sea Grant Program supports research, education, and advisory projects to promote wise use and understanding of ocean and coastal resources. It is part of the National Sea Grant College Program of the National Oceanic and Atmospheric Administration (NOAA), a network of 30 individual programs located in each of the coastal and Great Lakes states to foster cooperation among government, academia, and industry. WHOI Sea Grant channels the expertise of Institution scientists toward meeting the research and information needs of users of the marine environment.

WHOI Sea Grant supports 12 to 15 research projects and a number of smaller "new initiative" efforts aimed at taking the first steps into promising new areas, sometimes involving sponsorship of workshops and conferences. Program thrusts generally address local and regional needs. Emphases include fisheries degradation, water quality, coastal processes and erosion, and marine resources development.

Sea Grant's 1989 projects included studies of:
- the impact of Hurricane Hugo on the Caribbean,
- the physiology and ecology of toxic red and brown tides,
- the water quality of coastal ponds in Falmouth using local volunteers,
- the effects of suspended sediments on coastal currents,
- cyclical behavior in marine minerals research and development, and
- international marine science cooperation.

"Oceans Alive," a marine science lecture series for the general public, was initiated this year. Topics addressed by WHOI staff members and other lecturers on seven Thursday evenings in Redfield auditorium included coastal erosion and sea-level rise, communication in whales and dolphins, ocean hot springs, recreational fishing around Cape Cod, and coastal water quality.

David A. Ross
Sea Grant Coordinator
Reports on Research

Ann McNee translates gases on the Accelerated Mass Spectrometer (AMS) target preparation line. Her primary interest is the start-up for a national facility to be based at W-Oil and sponsored by the National Science Foundation. Construction on the Neutron Laboratory is due to begin in 1989. This will be the first high precision carbon-14 dating facility in the world, research community and one of only three in the world available for radiocarbon dating.
Two decades ago the health of the world's oceans was called into question by a series of oil spills and by public figures including Thor Heyerdahl and Jacques Cousteau. Recent events, such as the appearance of medical waste on beaches and massive oil spills at several sites around North America, have rekindled public concern about how human activities affect the health of the oceans. For many marine scientists this has been a continuing concern — biologists and chemists have persisted in efforts to separate fact from fancy regarding effects of contaminants on animals and plants in the oceans.

Seawater is a complex mixture of chemicals. Today, this mixture includes both synthetic chemicals and increased abundance of natural products contributed by human activities. Chemicals such as dioxins, polychlorinated biphenyls (PCBs), and polynuclear aromatic hydrocarbons (PAHs) are now ubiquitous in the global ocean. Many of these compounds are known to be biologically active, and some are reputed to be among the most toxic of chemicals.

Some, too, have been associated with disease, including cancer, and with other adverse effects, including reproductive impairment, in mammals. Is there evidence that these chemicals might be contributing to biological change in marine systems? If so, are the changes adverse?

Similar questions concerning chemical-biological interactions are central to investigations in toxicology, pharmacology, and chemical carcinogenesis, in animals as well as humans. Research is devoted to linking precise chemical structures with specific biological changes. Knowing exactly how a given chemical causes a specific change, in other words knowing the mechanism of action, is vital to understanding and evaluating health effects and could lead to prognosis and possibly prevention. Detailed study of chemical-biological interactions requires combining analytical chemistry, biochemistry, physiology, molecular biology, and pathology, and may draw on several fields including endocrinology and immunology. While there is concern for changes in populations, it is at the level of individual animals that chemically-induced changes are being detected.

For nearly 15 years, my colleagues and I have been researching mechanisms of chemical effects on marine animals, particularly fish. This research has focused on biochemical processes central to the toxicity of many compounds, a process by which organisms are able to effect a change in the structure of a foreign chemical. Such structural change, or metabolic transformation, can alter the properties of chemicals, often aiding in the elimination of the chemicals from the body. The products of chemical change, however, can be more toxic or more hazardous than the original structure. For example, many of the chemicals that cause cancer in animals do so only after being converted in the body to products that bind to DNA and result in mutations that can lead to cancer.

Our studies on chemical transformations in marine species have centered on the enzymes that actually cause the structural changes in chemical pollutants, including carcinogens. Studies in our laboratory have shown that marine fish have one particular enzyme that converts polynuclear aromatic hydrocarbons to products that cause mutations. This enzyme is one of several called cytochrome P450. Our studies show that in a complex process of gene regulation, the amount of this enzyme in marine fish is increased (induced) by those same aromatic hydrocarbons. Cytochrome P450 is also induced by the highly toxic dioxins and polychlorinated biphenyls. This
induction is proving to be a “biomarker,” an early, explicit biochemical effect of contaminants. We are developing sensitive measurement techniques — use of antibodies, enzyme activity, DNA probes — to detect this induction and other similar molecular changes in the biota.

There is cause for serious concern about the health of some coastal waters. In an increasing number of urban harbors, pathologists find cancer in bottom-dwelling fish, often in the liver and often at high prevalence. Work in our laboratory and with collaborators at MIT has revealed important mutations in the DNA from tumors in flounder from Boston Harbor, mutations we believe are caused by chemicals occurring there. In these fish, and those in many other areas, we have also seen greatly elevated levels of the biotransformation enzyme cytochrome P450.

Is evidence for chemically-induced biological change restricted to coastal regions, where human population is concentrated, or does it extend further in the oceans? To address this question we undertook a study of animals in a region removed from any point-sources of chemicals, benthic fish from the deep ocean. We first surveyed a number of deep-sea species, to identify those which could be retrieved from depth (3,000 meters) with little or no apparent change in the biochemistry of cytochrome P450. The rattail fish (Coryphaenoides armatus), a widely distributed deep-sea species, was the best candidate. Samples of this fish were obtained on cruises at two widely separated sites in the North Atlantic, one off the eastern United States and one off Newfoundland. Liver tissue from these fish was frozen in liquid nitrogen and returned to Woods Hole where it was prepared and analyzed for the presence of cytochrome P450. Using enzyme assay and antibodies to P450, we found high levels of P450 in the liver tissue of the southern fish but very low levels in that of the northern group. Chemical analysis revealed a similar difference in the concentration of polychlorinated biphenyls in the livers of these fish.

This was the first use of antibodies to detect this type of biochemical change linked to pollutants in the environment and the first direct evidence that contaminants may be causing biological change in the deep ocean. Subsequent studies in a number of coastal regions of North America and Europe have each shown a close relationship between the content of the induced enzyme and the content of contaminant, whether PCBs or PAHs. Such findings strengthen our interpretation of the results obtained on deep-sea fish. In a more recent collection of rattails near a deep-water (2,500 meters) dumpsite off the eastern seaboard, we again detected high levels of the chemically-inducible P450 enzyme. In addition, we have seen widespread induction of P450 not only in liver tissue, but in hearts, kidneys, brains, and embryos of fish, and we have evidence for similar effects in some whales.

The origin of high contaminant levels in many coastal systems is known. The origin of higher concentrations of contaminants in the deep ocean is not known. Likewise, the precise environmental chemicals that cause the induction are not known. Our studies are revealing that this response is strongly dependent on the structure of the chemicals and that it is precisely those compounds thought to be most hazardous that cause this change. Further studies to define the structural features of induction-causing chemicals are needed to interpret more accurately
the causes and the full biological importance of this biochemical change. Now that we know the role of the induced enzyme and the toxicity of chemicals that cause the induction, we may find additional effects. Then we will tackle the complexities of linking these biochemical changes to chemical effects on populations or ecosystems.

Research on many aspects of chemical-biological interactions in marine species will continue to provide means for assessing chemical effects on the oceans. The present methods for detecting biochemical effects might be used to monitor global trends in exposure of oceanic biota to toxic chemicals, in much the same way that monitoring atmospheric carbon dioxide at selected sites is used to chart trends in global carbon dioxide content. The roles of oceanic biota in global processes, the importance of marine species as food resources, and the potential for new uses of the sea, coupled with growing population, argue that we must fully understand the nature and consequences of human influence on the oceans. Facts concerning chemical effects and the health of the oceans are hard won and can be achieved only through basic research.

THE world ocean plays an important role in maintaining global climate, in the movement and regulation of geochemicals, and in supporting the global foodweb. Understanding the ocean's present state and predicting its future response to a changing environment requires the study of the physics, chemistry, and biology of the ocean. In many ways, the three are intimately linked – the biota are carried by fluid motion and they experience (and control) a chemical environment. Moreover, important feedback mechanisms exist. For example, the ocean plays a role in the regulation of radiatively important gases such as carbon dioxide and dimethyl sulfide, which affect the earth's climate. Two marine processes important to the global environment are ocean ventilation (by gas exchange, convection, and sinking of water) and primary production (the biological fixing of carbon from dissolved inorganic constituents). Both are difficult to observe and quantify since they occur over large space scales and can be both patchy and sporadic. However, geochemists have at hand powerful tools to study these processes. Tracers, substances occurring in the marine environment in sufficiently minute (but detectable) quantities that they do not affect ocean processes, have much to offer:

1. They provide visibility, serving in some cases as a dye to highlight freshly ventilated water or subsurface ocean currents.
2. They measure rates of processes, acting like a clock or dating tool (analogous to radiocarbon dating of artifacts).
3. They can be averaged (or "integrated") over space and time scales to provide representative measures of spatially varying or episodic processes.

Two examples of the application of tracers to oceanography are studies we have conducted on the physics of ocean ventilation and on biological production in oligotrophic waters.
Ocean Ventilation

The ventilation of the ocean takes place in a number of ways. Abyssal ventilation, for example, is driven by global scale meridional thermohaline convection (the sinking of cold, dense water in the polar regions and its flow toward the equator). We can “see,” or identify, the deep water because it is tagged with anthropogenic tracers, substances resulting from human activities. These “transient tracers” are particularly valuable in that we gain important rate information as we observe their distributions evolving with time. Tritium, the heaviest and the radioactive isotope of hydrogen, was produced by atmospheric nuclear weapons testing in the 1950s and 1960s and travels as part of the water molecule. It appears as a dye, tagging surface water and highlighting its penetration into the abyssal oceans. An additional bonus comes from the fact that tritium decays to the stable, inert, very rare isotope helium-3. We can use the two tracers, tritium and helium-3, in combination to calculate a “tritium-helium age,” which supplies us with the time elapsed since the water was last in contact with the surface of the ocean. This technique permits us to date water on time scales ranging from months to decades, precisely the time scales that characterize the processes we need to study.

Using this dating technique, we can examine the subduction of surface water into the main thermocline in the subtropics. The main thermocline, a region of rapidly decreasing temperature with depth, usually occupies the range from 100 meters to 800 meters in the subtropical ocean and is thought to represent a partial barrier to ventilation of the deeper waters. The degree to which the thermocline actually is ventilated, and the manner in which this ventilation takes place, is a critical part of our understanding of ocean ventilation and circulation. Observations of the penetration of man-made tracers into the thermocline indicate that ventilation of the thermocline occurs on time scales of decades or less, time scales ideally suited to tritium-helium dating.

The figure opposite shows the aging of waters on a few “isopycnal surfaces” in the North Atlantic Ocean. Isopycnal surfaces are layers of constant density (recall that the ocean is stratified, with denser water overlain by less dense water) along which water preferentially moves and mixes. These layers outcrop or reach the ocean surface in northerly latitudes. They slope down into the main thermocline in the subtropics, reaching depths ranging from 100 to 800 meters in the “bowl” of the subtropical gyre. In this figure, the curves indicate the tritium-helium age of the water in years, and they show the aging of waters after they leave the ocean surface and are

Apparent Oxygen Utilization (A.O.U.)
on four isopycnals (micromoles per kilogram)
from TTO-NAS/TAS and NATS (1981)

![Diagram](image)
swept into the thermocline circulation. In addition to gaining a graphic visualization of the ventilation process with tritium-helium dating, we also obtain a quantitative determination of the rates of subduction of waters into the thermocline (upper figure on page 19). Surface water can be forced downward into the main thermocline by two processes. The first is convergence of surface waters by wind stress (referred to as “Ekman pumping”), and the second is underthrusting of deeply convected water caused by the southward decrease in the depth of winter convection. Comparison of the total rate of subduction, obtained by tritium-helium dating, with estimates of the Ekman pumping rate clearly shows where each process dominates.

The tritium-helium dating technique is providing us with a picture of ocean ventilation never seen before and unattainable in any other way. It is but one tool that geochemists have available to study important physical processes in the ocean.

Primary Production

The pictures of water aging on isopycnal levels that we saw in the first figure have a remarkable counterpart in dissolved oxygen distributions. As the water ages, there appears a growing deficit in oxygen (called AOU, short for Apparent Oxygen Utilization) due to the consumption of oxygen by bacteria (lower figure, page 19). Carbon, photosynthetically fixed by plankton in the upper ocean, is oxidized as it sinks toward the ocean floor. The rate at which carbon is fixed at the ocean surface is known as primary production. The carbon that leaves the upper ocean and sinks downward is referred to as “new production” by biological oceanographers and is important to understanding the role of the oceans in geochemical and climate models. For example, new production represents an effective “carbon pump,” which can transport man-made carbon dioxide directly to the deep ocean. By combining the tritium-helium dating tool with observed oxygen deficits, we can compute oxygen utilization rates (OURs). More importantly, the vertically integrated OUR, i.e., the total water column oxygen demand, is a measure of new primary production (figure below left.) The kind of new production rates obtained by this approach represent large-scale, long-term average estimates that can only be acquired this way. The levels of new production we see are surprisingly large, exceeding estimates from more conventional biological techniques by as much as a factor of 10. This implies that the oceans are much more productive than previously thought, and also that the biogeochemical cycling of substances in the upper ocean is a much more dynamic and responsive part of the global ecosystem.

By itself, this unusual observation would seem suspicious, since it was so completely unexpected. However, other evidence, largely based on independent tracer techniques, now give the same results. For example, the seasonal cycling of photosynthetically produced oxygen in the upper ocean gives an estimate of new production virtually identical to the OUR estimates. In addition, observations of the seasonal cycling of noble gases in the upper ocean yield a wealth of information about gas exchange, bubble injection, and other processes. We have also used the time history of very slight excess amounts
of helium-3 in the surface layer of the ocean to deduce the upward flux of nutrients necessary to fuel this biological production. Again, this estimate yields the same results: the open ocean is much more productive than previously thought. The picture emerging, as the evidence comes in, is of a vigorous and dynamic upper ocean. This has important ramifications in how we model and predict the ocean’s response to human activities and our changing climate.

The piecing together of such information represents a challenging aspect of tracer oceanography, for it involves a complex interplay between often demanding experimental techniques, computer modeling, and a dash of intuitive insight and imagination. This is an exciting time in oceanography – our understanding is evolving rapidly, and there are surprises around each corner.

THE revolution in microelectronics that has changed all of our lives over the past decade has had a major impact on the science of oceanography. Indeed, the size and power requirements of sophisticated electronics have been far more limiting for those of us who investigate the depths of the oceans than for most: miniaturization allows us to put computers of increasing sophistication in pressure cases and send them to any depth in the ocean. As an additional benefit, the “solid” in solid state electronics has meant that many components are “pressure tolerant,” so that a variety of circuits can be used in the deep ocean without the need for heavy and expensive pressure cases. The electronics must be protected from seawater, but this is easily accomplished with oil-filled cases at ambient pressure that require little in the way of strength.

With these technological advances, powerful onboard computers can now control the operations and experiments that employ deep-sea research vehicles.

Remotely operated vehicles (ROVs), such as Argo-Jason developed at WHOI, are changing the way we explore the depths of the ocean and greatly enhancing our survey capability. A very different type of vehicle born of microelectronics is beginning to bring laboratory style experiments to the seafloor. Called Benthic Landers, these instruments are not mobile, as are the ROVs, but rather are designed to carry out involved manipulations, experiments, and analyses unattended on the ocean floor for weeks at a time. During the past five years we have developed what is perhaps the most complex lander yet designed. A year ago we began regular deep-sea deployments.

One might reasonably ask what led us to invest such time and energy, as well as substantial resources, in a single development task. Five years is, after all, a significant part of a scientist’s career, and the deep seafloor is perhaps the most remote real estate on the planet. The compelling reasons all center on the fact that the deep sea, remote as it seems, is an integral and important part of the ocean-atmosphere system. If we are to decipher past climates, understand present day cycling of many compounds in the ocean, and predict future climatic conditions, we must gain a thorough knowledge of seafloor processes. The importance of this knowledge becomes increasingly apparent as we begin to understand the close links between events in the surface ocean and those on the seafloor. While once we thought of seafloor processes as essentially invariant in time, we now know...
better. Not long ago it was believed that the settling of material to the deep seafloor required as much as a year, but now we know that this process takes less than two months. Thus, events occurring at the surface, such as spring blooms that result in greatly enhanced biological productivity, are felt on the seafloor shortly thereafter. Developing an understanding of the response of seafloor processes to varying input has become a major goal of benthic research. It has led to our efforts to develop a benthic lander that would enable us to define the rates of benthic reaction and the extent to which material falling to the seafloor is modified by reaction and either returned to the ocean (recycled) or buried.

Our benthic lander has been designed with three goals in mind:
1) We seek to measure directly the reactions occurring on the seafloor and their rate. This is the most basic information needed to understand the transformations that settling materials undergo as they become part of the sedimentary record. In addition, these data are essential to assessing how quickly the seafloor can respond to changes in the rest of the system, such as the atmosphere.
2) We wish to know where reactions occur — specifically, whether material reacts as it lies on the surface of the sediment or after it is buried.
3) We want to know how much of the material arriving at the seafloor is returned to the oceans as a result of reaction and what controls the proportions that are recycled and buried. This information provides the key to reading the record of past oceans preserved in the sediments. It is in meeting these objectives that the analogy to a seafloor laboratory becomes apparent. To acquire the data we need, the instrument package manipulates samples, adds chemical tracers, carries out chemical analyses, tests the condition of equipment on the platform, makes decisions based upon results, and sends information to a surface ship. As in any modern laboratory, much of the work requires the use of computers.

Today, no self-respecting instrument goes forth into the world without a proper acronym, and our lander is no exception. It has been dubbed ROLAI.D. Technically, this stands for Robotically Operated Lander for the Analysis of Interfacial Diagenesis. The similarity in a well-known antacid is not coincidental — the five years of development have included more than a little anxiety and associated heartburn.

ROLAI.D is a type of instrument known as a “free-vehicle,” one that is not tethered to the ship. When ready for deployment, ROLAI.D is picked up off the deck and lowered into the water via the ship’s winch. When the top of the lander reaches the surface, the handling cable is released and the lander begins its descent to the seafloor completely disconnected from the ship. It checks its landing sensors during the descent and reports back on their status. On approach to the bottom, buoyancy is adjusted to make possible a very slow and controlled landing. This is essential in order to avoid disturbing the easily suspended material at the surface of the sediment. Sensors tell the computer that ROLAI.D has landed and a second buoyancy adjustment is made to increase the weight of the lander by 250 pounds. This weight provides stability as it carries out its various experiments. Once on the seafloor, ROLAI.D initiates its preset sequence of experiments that include inserting chambers into the sediment and sealing them in order to isolate portions of the bottom from the surrounding seawater. The ship leaves the site after receiving data confirming the initia-
tion of the programmed sequence.
ROLAID continues its experiments, analyses, and sampling for several weeks. At the end of the programmed experiment, we return to the site and send a command that initiates final experiments as well as a “close-down” sequence to retract ROLAID’s sensors and equipment in order to protect them during recovery.
The last event in the sequence is to drop 275 kilograms of ballast, releasing the instrument from the seafloor and starting it on the 5.5 kilometer ascent to the surface.
The concept of “micro” as it applies to ROLAID is largely limited to the electronics. The equipment needed to complete the program described above makes the instrument as a whole anything but micro. With its various flags for visibility and antennae for communication with ships and satellites, ROLAID stands over five meters tall and weighs in at more than 2,000 kilograms in air. However, it weighs essentially nothing (i.e., is neutrally buoyant) as it approaches the bottom of the ocean. The photo opposite shows the lander being launched from the fantail of the Bermuda Biological Station research vessel *Weatherbird*. The round tan syntactic foam structure at the top of the lander provides buoyancy to bring the lander to the surface at the end of a deployment. The pads upon which it stands are the ballast released to initiate ascent to the surface. They double as foot pads while ROLAID is sitting on the sediment surface. The orange case at lower left is one of three batteries that provide power for operations on the seafloor. In the photo above, the lander settles to the bottom under the watchful eyes of divers in shallow water tests.

While only in use for a year, ROLAID has already begun to provide new insight into the link between events occurring at the surface of the ocean and processes on the seafloor. Our measurements of reactions on the seafloor clearly show that benthic processes respond extremely rapidly to changing conditions at the surface. The “rain” of particles to the seafloor has been measured continuously at Bermuda for more than a decade by WHOI Senior Scientist Werner Deuser. He has clearly demonstrated the existence of a peak in particle flux that follows, and is due to, the spring bloom at the surface of the ocean. The results from ROLAID show that this pulse has a counterpart in the reaction rates in and on the seafloor. Between one and two months after the peak in particle rain, we see a corresponding jump in benthic “remineralization”
(reactions that break down solid materials and recycle them to the ocean in dissolved form). We observe this as a flux of dissolved substances into the chambers ROLAI D implants in the seafloor. This relationship is illustrated in the figure where some of our results are compared with Deuser’s. While we do not see any increase in the deployment immediately following the particle flux spike, fluxes have fully responded two months later. The enhanced benthic activity persists for at least three months. Further, the size of the benthic fluxes is comparable to the particle fluxes. The time lag and the amplitude of the response can be modeled to provide quantitative information on the nature of the reactions occurring, the rates of reaction, the location of reaction relative to the sediment-water interface, and the character of the material undergoing reaction. These data form the basis for understanding how the seafloor responds to events in the surface ocean as well as how fast it occurs. This information, in turn, is essential in predicting the feedback loops of the ocean-atmosphere system and hence the consequences of perturbations in any part of that system.

As every reader of the science section of the newspaper knows by now, the greenhouse effect refers to the process by which water vapor, carbon dioxide, and other trace gases trap reflected solar radiation and warm the atmosphere. Since the Industrial Revolution, and especially over the past 30 years, the levels of greenhouse gases have been increasing in the atmosphere due to such human activities as the consumption of fossil fuels. This change in atmospheric composition threatens to enhance the greenhouse effect and cause the Earth to warm at an unprecedented rate, a threat that promises to be the premier environmental issue of the 1990s.

Fears about global warming rest in part on the instrumental temperature record that begins around 1850. On a global basis, this record shows an irregular warming amounting to somewhat less than 0.5°C (1°F). Although the magnitude of this warming and its detailed temporal and spatial behavior are inconsistent in important ways with what is expected under an enhancement of the greenhouse effect, some have claimed that its mere existence constitutes detection of greenhouse warming.

Scientists know that global climate exhibits natural variability at many time scales. Global temperature has varied by 10°C (18°F) or more over the past two million years. Since the end of the last major ice age 11,000 years ago, the Earth has been subject to alternating periods of warming and cooling. In understanding global climate generally, and in interpreting the instrumental temperature record specifically, it is therefore very important to extend the climate record back beyond 1850.

Instrumental temperature measurements are not available before 1850 except for a few locations. There are, however, many types of indirect information about temperature. Of these, measurements based on growth rings of trees are probably the best known. Other indirect information comes from harvest records, ships’ log records of sea ice extent, and even anecdotal information from personal diaries. Information of this type is very different from direct measurements (which are themselves not without prob-
lems). Serious questions about reliability and geographic representativeness arise, as well as about methodological issues concerning the translation of indirect measurements into estimates of temperature. Nevertheless, provided that it is interpreted cautiously, information of this type can be very useful in understanding the historic behavior of climate.

One of the oldest European climate records concerns the occurrence of major freezes of Lake Konstanz. Bordered by Austria, Germany, and Switzerland, Lake Konstanz is the third largest lake in Europe with a surface area of 539 square kilometers (210 square miles). It is customary to distinguish between various minor parts of the lake and the larger upper lake. While minor parts of Lake Konstanz freeze rather frequently, it is extremely rare for the upper lake to freeze. A major freeze of Lake Konstanz is said to occur if the upper lake, which ranges in width from 7 to 14 kilometers (4 to 8 miles) is frozen to the extent that it can be crossed on foot. A record of such freezes has been kept from 875 A.D.

In statistical terminology, data of this type— that is, the times at which certain events occur— are said to have arisen from a “point process.” A point process is characterized by an intensity function, which gives the mean number of events (in this case, freezes) per unit time interval. In this case, the unit time interval was taken to be one century. Using a flexible method called kernel estimation, it is possible to determine the way in which the intensity function of the Lake Konstanz record has varied over time. The estimate shows a low rate of freezing around 1000 A.D. followed by a rapid increase until around 1500 A.D. The rate has been falling since 1500 A.D., although there was a brief increase during the first half of the 19th century. This overall pattern is in general agreement with what is currently believed about European climate over this period. The low rate of freezing near the beginning of the record corresponds to a period called the Medieval Optimum. The peak around 1500 corresponds to the height of the Little Ice Age. The smaller peak around 1800 corresponds to the terminal pulse of the Little Ice Age. While the existence of this overall pattern can be confirmed from many indirect climate records, its cause remains a mystery.

As far as greenhouse warming is concerned, these results carry an important message: natural climate change is the rule, not the exception. When greenhouse warming occurs, it will be superimposed on a climate that will be changing for other reasons. This complicates the detection question considerably and means, for example, that the existence of a warming trend does not by itself constitute greenhouse warming. The details of the estimate show that the period of the instrumental record coincides with a warming period, at least near Lake Konstanz. This suggests that those who claim detection based on the warming of the past century may be too hasty.
ABSTRACT one-half of the earth's surface where monsoons are an important feature of climate. Since this population is largely agricultural, changes in the intensity of the monsoon, and the resulting heavy rainfall or drought, have a clear and important impact on their lives. Written records of monsoon variability over the last century for southern Asia show that while interannual variability is the norm, successive, decade-long intervals of drought or high rainfall have also been common. Our work with sediment traps in the Arabian Sea has recently confirmed the hypothesis that the history of the monsoon is graphically recorded in changes in the fossil assemblage found in deep sea cores from the region. By reconstructing the history of the monsoon as it is recorded in deep-sea sediments, we will begin to understand what factors cause variations in monsoon intensity and timing.

Monsoons occur in tropical regions where differential heating of the land and adjacent ocean causes seasonal changes in the pattern of atmospheric circulation (see figure below). During summer, continents heat up much faster and to a greater extent than the surrounding ocean. This unequal heating causes the air to rise above the continents and moisture-laden surface winds to flow from the ocean to the warm continent, where the heavy monsoon rains fall. In winter, the reverse flow is produced because the continents cool more quickly and to a greater extent than the nearby ocean. This pattern of seasonally reversing winds occurs throughout tropical Africa and southern Asia.

During summer in southern Asia, when the Tibetan Plateau heats up, the resulting atmospheric cell produces winds that parallel the Oman coast, producing Ekman transport (divergence of surface water by wind stress) and strong upwelling in the western Arabian Sea. During winter, when the land surface is cooler than the sea surface, the cell reverses, and no upwelling occurs. This seasonal contrast in ocean circulation, one of the most extreme observed in the oceans, produces a sharp seasonal change in surface water productivity (figures at bottom of opposite page), in the types of organisms inhabiting the region, in the ocean chemistry of the subsurface waters, and, consequently, in the rain of particles through the water column to the seafloor.

Since May 1986, skeletal remains of surface-dwelling organisms have been collected in sediment traps deployed in the Arabian Sea by WHOI's Particle Flux Experiment research group in collaboration with the University of Hamburg and the National Institute of Oceanography in Goa, India. We use these samples to measure the response of a group of single-celled animals, called planktonic foraminifera, to the seasonal variations in productivity by counting the number of their shells caught in our traps in various seasons. Our goal is to develop quantitative geological measures of monsoonal variability in order to: 1) document the natural variability of monsoon circulation during different climate regimes, and 2) predict changes in monsoon circulation.
that may occur in response to future changes in climate.

In the sediments under the upwelling cell, the predominance of a single species of planktonic foraminifer, *Globigerina bulloides*, has led previous researchers to use its variations in sediment cores to reconstruct the history of the south Asian monsoon for the last 100,000 years. Our measurements of the foraminifera in the sediment trap samples show that both abundance and species composition change in response to seasonal changes in upwelling (figure below). The foraminiferal productivity record for 1986 and 1987 indicates that the production rate of the species *Globigerina bulloides* parallels the changes in monsoon upwelling, with the highest *Globigerina bulloides* productivity occurring during monsoon season.

These changes in foraminifera production are dramatic, the largest seasonal changes in productivity observed in any sediment trap samples to date. They confirm the hypothesis that the history of the monsoon is recorded in the changes in foraminifera assemblage observed in deep-sea cores from the region. Work published in 1981 by Warren Prell of Brown University and the author showed that the geographic distribution of *Globigerina bulloides* in core-top sediments parallels the geographic pattern of upwelling during the southwest monsoon, with highest concentrations of this species found under the area of most intense upwelling. Later, Prell and John Kutzbach of the University of Wisconsin found that higher and lower concentrations of *Globigerina bulloides* in sediment cores vary in concert with past variations in solar intensity over the Tibetan Plateau. Changes in the geometry of the earth's orbit affect the distribution of sunlight on the surface of the earth on time scales of thousands of years. By altering the distribution of heat, which affects the temperature contrast between the continent and nearby ocean, orbital variations provide the mechanism to control monsoon intensity and timing on very long time scales.

The mechanisms affecting monsoon intensity on shorter time scales are less

Above: Bill Curry, who spent most of 1989 shuttling to Washington to serve as an associate program manager at the National Science Foundation, works at his laptop computer.

Left: The record of *Globigerina bulloides* production during 1986 and 1987 is plotted here. During the summer months, when upwelling is greatest in the western Arabian Sea, the productivity of this species increases by three orders of magnitude, the highest productivity of a foraminiferal species observed in the oceans. The arrows document the onset of monsoonal upwelling as recorded in 1986-87 infrared images from the Nimbus 8 and 9 satellites. Both the onset of the monsoon and the increase in productivity for this species occurred about two to three weeks later during 1987. The strong relationship of this species' abundance to the summer monsoon suggests that its preserved shells in the sediments may be used to quantify past changes in the intensity of the monsoon.

Left: Satellite images of chlorophyll concentration in the upper ocean document the extreme seasonality of productivity resulting from monsoonal circulation. During the summer monsoon (left), the productivity is greatest (indicated by yellow to red) in the coastal zone along the Somali coast in the cooler, nutrient-rich, upwelled water.
clear, but we know that the intensity and timing of the monsoon can vary considerably even year to year. The graph overleaf shows that the onset of the monsoon differed in 1986 and 1987. The large increase in production of *Globigerina bulloides* occurred about two to three weeks later in 1987, consistent with preliminary observations from satellite images, which suggests that the upwelling was delayed during this season. While we do not yet know the reason for changes in the monsoon on these time scales, it is clear that a better understanding of these short-term variations could have a significant impact on the lives of people living in areas affected by the monsoon.

Poaching Sound for Seismology

G. Michael Purdy, Senior Scientist, & W. Steven Holbrook, Assistant Scientist, Geology & Geophysics Department

The earth's crust is a thin skin covering the mantle and core of our planet. The movements of this crust generate earthquakes, its collisions build mountains, its subsidence permits the accumulation and maturation of hydrocarbons, and, fueled by heat losses from the earth's interior, it is the site for separation and deposition of all our mineral wealth. The understanding of crustal processes is thus of fundamental concern to society.

The single largest structural discontinuity in the earth's crust occurs at the margins of the continents. A far greater feature even than the global mid-ocean ridge system or the continent's grandest mountain ranges, beneath the shallow seas off our coasts, the earth's hard rock crust thins precipitously by a factor of five from typical continental thicknesses of around 30 kilometers to the ocean's thin 6-kilometer crust. This massive thinning is due to the processes of continental rifting and break-up that are the precursors to seafloor spreading and the birth of a new ocean (see upper figure opposite).

Our knowledge of how a continent breaks apart is minimal and to understand this better we must learn about the structures and processes occurring at depths 10 to 40 kilometers below our continental shelves. Seismology is one of the few tools available for such studies, but until recently the experimental techniques available to the marine seismologist have been inadequate to the task.

During the past 10 to 20 years, the methods for the collection and processing of marine multichannel seismic reflection data have been revolutionized. These developments have been motivated by the oil industry, which, even in these currently depressed times, is spending worldwide several hundred million dollars annually for the collection of marine seismic reflection data. These techniques are, however, specifically directed towards the search for hydrocarbons and thus are designed to image structures within the
sedimentary strata where such deposits are formed and accumulate. Sedimentary structures formed by depositional processes and then modified by subsidence, faulting, diapirism, or intrusion are an ideal target for the near normal incidence seismic reflection method because they are frequently characterized by laterally extensive acoustic impedance contrasts associated with the boundaries between different strata. These boundaries reflect sound back to the sea surface to be recorded by the research vessel where a direct image of the subsea floor structure can be constructed (see figure below right). Although this method is immensely successful at mapping sedimentary structures as deep as 5 to 10 kilometers below the seafloor, only rarely does it image structures within the hard volcanic basement rocks which hold the clues to continental breakup and formation of the huge discontinuities that bound the world's oceans. The generation of igneous rocks is not a depositional process, so rarely do we find laterally continuous acoustic impedance contrasts within the hard-rock basement that will generate coherent and mappable normal incidence reflections. The seismologist must then use different approaches if the structures within the hard-rock basement are to be probed and understood.

Fortunately for us, although sharp reflecting boundaries rarely exist within igneous rocks, they are almost always characterized by 1) vertical and lateral changes in sound velocity that refract the seismic waves and are relatable to changing mineralogy, crack structure, or temperature, and 2) broad formalional boundaries that do not reflect much energy at near normal incidence, but do return energy at wide angles, particularly near the critical (or "grazing") angle of incidence. If techniques could be developed to map these refracted and wide-angle reflected waves, then we can image the interior of the hard-rock crust and map the boundary between the crust and the upper mantle (the "Moho").

The two primary components of any seismic experiment are 1) a system for generating sound, and 2) listening devices to receive and record the energy returned from the earth's interior. In the case of simple reflection profiling, a single ship tows an array of airguns to produce sound and a long string of hydrophones to record the reflections. It is clear, however, that if our goal is to record refracted and wide-angle reflected energy, then the source and receiver must be separated by substantial distances. In practice, required separations reach 100 to 200 kilometers (see figure above) and the returned seismic energy must be recorded by remote seafloor units such as ocean bottom hydrophones (OBHs) that record pressure waves propagating through the water column. Unfortunately, such experiments are very expensive. To generate enough seismic energy to propagate more than a hundred kilometers through the crust, a substantial source must be used. Explosives are a relatively economic solution, but they are not practical for experiments on or near the continental shelf for environmental reasons. Large arrays of airguns (with firing volumes of 10,000
cubic inches) are available and do produce enough energy, but they are also expensive to operate, requiring a substantial dedicated vessel just to carry the many compressors to produce the required volume of high pressure air. Such vessels are, however, in everyday use by the oil industry for the collection of simple reflection data. And it is this fact that prompts the title of this article.

We have had an active and successful OBH program at WHOI for 15 years, so we already have the recording capability for long-range, wide-angle reflection/refraction experiments. What we need is an economic means of providing a source. If we can “poach” the sound generated for oil industry exploration by deploying our instruments along their track lines, we can listen to the refracted energy at long ranges that otherwise would be wasted. (Given the high costs associated with the production of this sound, it seems irresponsible not to fully utilize it in every possible way.) Such experiments do not interfere with normal operations of reflection profiling vessels.

We have already successfully carried out one such “piggy-back” experiment across the U.S. East Coast continental margin off the Carolinas in 1988. A second operation, funded by the National Science Foundation, is scheduled for June 1990 to provide a second structural profile across the ocean-continent transition off Chesapeake Bay. Both these experiments have “piggy-back” on reflection profiling for other academic groups; in 1988 for the University of Texas at Austin and in 1990 for the EDGE project headquartered at the Houston Area Research Center. We are further developing our OBH instrumentation to permit more flexible and rapid response opportunities to collect new data, and we are working with oil industry colleagues toward “piggy-backing” on certain well-chosen oil company reflection profiles.

By not recording the long-range wide-angle reflection and refraction energy generated by the huge airgun arrays that are in routine use today, we believe that tens of millions of dollars worth of superb broad-band seismic energy is being “wasted” every year. In taking some small steps towards correcting this situation, we will produce images of the deep structures beneath the continental edges that are the key to distinguishing the mechanisms of continental rifting.
For more than 50 years, we have listened to ambient noises in the oceans generated by weather, animals, earthquakes, and shipping. Only in the last 10 to 15 years, however, have we been able to place sensors below the seafloor where the measurements will not be contaminated by fluid flow over the instruments or by poor coupling to true earth motion. The first borehole seismic measurements were made from the drill ships Glomar Challenger and JOIDES Resolution, but true ambient noise was rarely obtained because the drill ship was usually on station over the hole. Over the past three years, we have been developing a system to deploy a vertical array of seismic sensors into the seafloor without the drill ship and to record the signals autonomously using a seafloor package. This project was called the Low Frequency Acoustic Seismic Experiment (LFASe).

The objective of LFASe was to understand the physics of excitation (how noise is generated) and propagation (travel paths) of low frequency noise (2 to 50 hertz) immediately above, at, and below the seafloor.

The LFASe project was a multi-institutional effort with investigators from Johns Hopkins University, Applied Physics Laboratory (JHU/APL); the Naval Oceanographic and Atmospheric Research Laboratory (NOARL); the Massachusetts Institute of Technology (MIT); Science Applications International Corporation (SAIC); Scripps Institution of Oceanography Marine Physics Laboratory (SIO/MPL) and Institute of Geophysics and Planetary Physics (SIO/IGPP); and WHOI. JHU/APL managed the project, and project chief scientists were associated with SAIC and NOARL. The borehole re-entry operation was the responsibility of SIO/MPL. WHOI was responsible for the borehole array and its seafloor recording package. Senior Research Specialist Henri Bertaux led the group responsible for the mechanical aspects of the bottom-recording package including pressure housings and a backup release mechanism for the data recording unit. Research Specialist Don Koelsch and Research Associate Robert Goldborough designed, constructed, tested, and operated the electrical aspects of the system. Additional equipment deployed during the experiment included ocean bottom seismometers (from NOARL and SIO/IGPP) and a vertical hydrophone array (from NOARL).

The borehole seismic system consisted of four major components (see figure overleaf). At the bottom of the string is the borehole re-entry guide. It contains a slow scan television and hydrophone for locating the re-entry cone. It also contains two borehole calipers, a pressure transducer, and a thermister for measuring borehole diameter, tool depth, and borehole temperature, respectively, when the probe is in the hole.

Above the probe are four seismic sensors separated by 30-meter cable segments. Each sensor measures three components of ground velocity at frequencies between 2 and 50 hertz. On the top sensor there is also a borehole hydrophone for measuring pressure fluctuations in the hole. Each sensor is equipped with a spring-loaded clamping arm to fix the sonde (sound sensor) rigidly to the borehole wall. The seismic array is a
modified version of a commercially available array built by Compagnie Générale de Géophysique.

Above the seismic array is the docking system, which lands in the re-entry cone on the seafloor. This system contains the electronics for digitizing the seismic data and telemetering it over coax cable to the ship. It also has a self-recording capability for more than 40 hours of data. This data can be acquired over a number of windows spanning up to one month on the seafloor. If necessary, the data package alone can be released from the docking system to float to the surface.

The thruster hovers above the docking system on about 250 meters of "soft tether." During re-entry, the thruster can be used to position the re-entry probe over the borehole. Once the docking system is in the cone, the thruster hovers nearby to decouple heave and horizontal motion of the surface ship from the docking system by the "slack tether." While the tether is attached to the docking system, data from the array can be acquired on board ship. The tether can also be released from the docking system to allow autonomous recording on the seafloor without the contaminating noises of the surface vessel.

This system was successfully deployed from R/V Melville operated by the Scripps Institution of Oceanography at Deep Sea Drilling Program Site 534 off the coast of Florida in August and September 1989. Data from the array was acquired on board ship for about two and a half days and on the seafloor system for an additional two weeks. During the shipboard recording phase, a second ship, USNS Lynch, fired airgun and explosive charges in radial lines and circles around the borehole array.

This is the first time that ambient noise was recorded as a function of depth in the seafloor. One exciting result is that
the ambient noise level decreases 10 decibels (a factor of 3 in amplitude) between 10 meters and 100 meters downhole (figure at left). This suggests that the propagation mechanism for ambient noise is interface waves trapped at the seafloor. As the detector gets farther away from the seafloor, the ambient sound levels decrease.

Signal propagation across the array is consistent with theory (figure at right). For example, for a distant shot, the first arriving energy has travelled through the crust and mantle beneath the seafloor, which have a much higher velocity than the water column. This energy arrives at the array nearly vertically and the dominant particle motion should be on the vertical component rather than the horizontal components. This is observed in the data shown at right.

Preliminary conclusions are that borehole seismometers are excellent detectors of sound in the seafloor for two reasons: 1) they are located in a region where ambient noise is low, and 2) they are coupled well to true earth motion.

WHEN sound travels from an underwater source to an underwater receiver, it can take a variety of physically allowed paths, called “ray multipaths.” Sound pulses traveling along these paths take different amounts of time to reach the receivers, and they sample different parts of the water column, bottom, and surface (see figure below). The ocean features through which the sound passes affect the rays. “Fingerprints” left by ocean features along the paths consist of both a change in the time it takes the sound to travel from source to receiver and a change in the intensity of the sound. Using the former information, the so-called “travel time perturbation,” Walter Munk of the Scripps Institution of Oceanography and Carl Wunsch of MIT formulated a method of three-dimensional mapping called “ocean acoustic tomography.” Simply put, ocean acoustic tomography is the oceanographic analog of the CAT scan in medicine – indeed, the mathematical bases of the two techniques are very similar. However, while medical tomography uses the absorption of radiation by tissue to map its density, ocean tomography capitalizes on the fact that sound is weakly absorbed by water to make maps of ocean sound speed, temperature, and currents.

As originally conceived by Munk and Wunsch, tomography was meant to be a tool for mapping large scale ocean features such as fronts and eddies. Signals from smaller-scale oceanographic features like internal waves were filtered out as

Surface Wave Tomography

James F. Lynch, Associate Scientist, Applied Ocean Physics & Engineering Department

The trajectories of acoustic rays connecting source and receiver are shown in Monterey Bay, with launch angles between 0 and 5 degrees to the horizontal. The rays have considerable interaction with the surface and bottom as they travel up to the test hole 90 kilometers from the sound source.
noise, and surface interacting raypaths, which would show effects of the surface wave field, were ignored altogether. During the 1980s, however, Stanley Flatte and his coworkers at the University of California, Santa Cruz, showed that tomography could, in fact, be used to obtain significant information about the internal wave field, and the WHOI tomography group successfully measured surface wave frequency spectra from a tomographic test transmission made off Spitsbergen, Norway.

In the past year or so, the WHOI tomography group has participated in two experiments designed both to ground truth (verify) and extend the theoretical developments of internal wave and surface wave tomography. In one experiment, we collaborated with James Miller and Ching-sang Chiu of the Naval Postgraduate School in a coastal transmission off Monterey Bay, California. The second experiment, which, among other things, will verify amplitude-based surface wave tomography, was a large, collaborative effort in the Greenland Sea involving WHOI, Scripps, the Applied Physics Laboratory at the University of Washington, and the University of Michigan. Both experiments produced exceptionally rich data sets, which should help to establish surface wave tomography as a well-understood, field-proven technique.

The basic principle of travel-time based surface wave tomography is rather simple. As the sea surface rises with a wave crest, a ray has farther to go to reflect off the surface and so requires an increase in travel time. A wave trough depresses the sea surface and causes a corresponding decrease in travel time. Thus, as waves cross the points where a sound ray hits the surface, the travel time for each ray wanders slightly to-and-fro. Relatively simple mathematics then relates the frequency spectrum of this travel time wander to the frequency spectrum of the surface waves. Surface wave tomography may also be used to detect the direction of the wave spectrum. Specifically, a single ray measures only the wave frequency spectrum, but a combination of many multipaths gives wave directional data, as well.

The Monterey Bay experiment (figure at left) covered a five-day period in December 1988. Rather fortunately, a storm producing waves of more than four meters passed through the area during the middle of the experiment, insuring good data! The figure above shows peaks corresponding to ray arrival times measured repeatedly over one hour during the experiment. The spectrum of the fluctuations of the first (left-most) peak, which corresponds to eight surface interactions as a ray “shoals” near the receiver, produces the frequency spectrum shown in the figure at right above. The figure at far right shows this wave spectrum measured by a standard
pitch-roll buoy, the “ground truth” against which we are checking our acoustic results. The agreement is clearly quite good. Moreover, our acoustic technique measures an additional, smaller peak at about 0.025 hertz, which corresponds to 40-second-period waves. This peak is actually due to wave groups, the embodiment of the surfer’s rule of thumb that “every seventh wave is a big one.” Going to even lower frequencies, our acoustic measurements in Monterey Bay have also detected packets of internal waves with 10-to-20 minute periods. The explanation of their origin and characteristics will be somewhat harder than for the surface waves, as: 1) our internal wave ground truthing measurements are less extensive, and 2) internal waves have many possible generation mechanisms, all of which could contribute to the observed signals. However, the fact that strong, structured internal wave signals were seen at all in this complicated coastal environment gives us confidence in the potential value of coastal internal wave tomography.

In more conventional tomography experiments, signals are transmitted not every two seconds (to sample surface waves) or even every 10 minutes (to sample internal waves), but rather every three or four hours (to sample larger ocean features). Thus, we cannot obtain the frequency spectra of either of these types of waves, but get, rather, a brief look every few hours. The look every few hours can give a glimmer of information about the average internal wave field energy, which changes over time scales of a day, but tells us little about the surface wave field, which can change dramatically over a few hours. To glean information on the surface wave field from only one look at the multipath structure, such as in the figure on page 33, we employ a different tactic, namely, a comparison of the relative sizes of the different multipaths, that is, we use the sound intensity information. When sound reflects from a rough surface, its intensity is decreased by a simple function of the average wave height, the acoustic frequency used in the experiment, the surface interaction angles of the rays at the reflection points, and the number of surface interactions. Given that each ray has different surface interaction angles and numbers of bounces at a given frequency and average wave height, the rays will arrive at the receiver with different intensities. (This method requires that other known factors, such as geometric ray spreading and medium attenuation be removed from the data.) Thus, one short transmission will give us an average wave height estimate. Using a number of noncollinear receivers (receivers not placed in a straight line) enables us to plot maps of a surface wave height field. A preliminary synthetic study on tomographically mapping a hurricane wave height field in the Gulf of Mexico
yielded encouraging results from this technique – now we need to check the technique on real world, independently verified wave data.

We expect the analysis of the Greenland Sea tomography experiment, conducted between September 1988 and September 1989, to help provide this check. One of its objectives was measurement of Greenland Sea gyre circulation forcing by surface wind stress. Tomography and other techniques are being employed to measure the ocean circulation for comparison with models employing wind stress maps supplied by the British Meteorological Office for every three-hour period during the entire year of the experiment. This wind stress data will be incorporated into a surface wave model by WHOI Assistant Scientist Hans Graber to generate “ground truth” maps of the wave field. (The intermittent ice cover in this region prevents use of a wave buoy for ground truth, and satellite altimetry, a better alternative, is not currently available. Thus, modeling, together with occasional cross-check measurements by ships and aircraft, offers the best estimate of the waves from conventional measurements.) The next step will be to generate equivalent wave maps tomographically and compare the results.

We believe there is a bright future for surface wave tomography. The travel-time based variant can potentially measure spatially and temporally varying frequency-directional spectra over large areas with adequate temporal sampling. The amplitude-based variant can be applied to “standard” tomography experiments and thus represents new information for researchers. It is the dream of today’s tomography community eventually to populate large areas of the world’s oceans with long-duration, real-time tomographic instruments. The ability to provide surface wave field information in real time, in addition to the large amount of other information tomography produces, would be of considerable importance to both navigation and oceanographic research.

BECAUSE of the large expanse of the ocean and its complex spatial and temporal variabilities, it is essential to employ quantitative synoptic survey techniques that can rapidly and remotely sense the properties of large volumes of water in relatively short periods of time. Sonar techniques offer a solution to this requirement as sound can travel large distances through water with great speed. The variety of sonar techniques available includes active sonars that transmit their own signal and listen for the backscattered echoes (figure at right). Such devices can help direct the use of sampling methods, such as trawling, to capture organisms and coring to collect samples of the seafloor, and they can help provide for continuous interpolation of data between samples. Investigators using sonars in concert with these other techniques can produce large-scale acoustic “maps” of the area of interest as well as samples containing high quality morphological information at various locations within the map.

One of the greatest challenges in using sonars for remote sensing of the ocean is interpretation of the data. The physics of the interaction of sound with objects that are scattering the sound is usually a very complicated process, and analysis of backscattered echoes typically involves many ambiguities. Thus, it is important to understand the physical mechanisms causing the scattering in order to provide optimum interpretation of the echoes.
Much of my recent research has been motivated by field studies of macrozooplankton and micronekton at the Gulf Stream boundary northeast of Cape Hatteras, North Carolina. Our sonar measurements showed correlation between the presence of the organisms and the temperature structure of the boundary (figure below). However, we had difficulty making accurate comparisons between observed sonar data and trawl catch. Some of the discrepancies were due to the fact that many of the larger organisms detected by the sonar avoided the trawl, hence giving a larger sonar return than predicted from the trawl data. The remainder of the errors were attributed to the inadequacy of the scattering models. In particular, the proven to be the most successful “first approximation” to euphausiids, while short, straight cylinders whose length is comparable to the length of the thorax has best fit data involving shrimp. The promise of the theory is illustrated in the figure at the bottom of this column, a comparison between the bent cylinder model and laboratory backscatter data from euphausiids.

At this point in the research, the theory can describe scattering processes at a level more complex than can be tested by existing data. I have therefore embarked upon a laboratory investigation using a wide range of closely-spaced sonar frequencies and careful recording of organism behavior. The experiments will provide an empirical basis for parameters of the model, including the elastic properties of the shells, the fluid properties of the interior, and the statistical nature of the behavior (distributions of shape and orientation and organisms that were, for the most part, elongated (euphausiids and shrimp) were treated as spheres in the mathematical scattering models (there were no better models available at the time). Needless to say, predictions based on the trawl catch as well as independent laboratory studies demonstrated the need for more sophisticated models.

As zooplankton play a major role in the ocean food chain, it is important to have accurate estimates of their abundance. I, therefore, developed a general mathematical model that takes into account the elongation, deformation, and material properties of the many zooplankton that are shrimplike in shape. Although the solution usually involves use of a computer, simple convenient expressions can be derived from it under certain limiting conditions. After trying a variety of simple trial shapes in modeling the scattering, the bent fluid cylinder model has
their influence on the scattering).

Further development of the model is also underway. The shape of the organisms has so far been treated as smooth, but simple visual inspection of the animals as well as the characteristics of the scattering indicates that the texture of the organisms is important. I have therefore directed my most recent theoretical and numerical efforts toward the description of rough elongated objects. Predictions based on these new models indicate profound effects of roughness on scattering. In particular, the various wavelets that scatter from the organisms, including circumferential waves that first travel around the objects before returning to the sonar receiver, are attenuated by the texture when the dimensions of the texture reach the order of one-tenth of the acoustic wavelength or greater.

Once the scattering by the organisms has been fully understood from laboratory and theoretical investigations, we can then provide accurate and robust sonar interpretation methods for remote detection and classification of organisms. The research is applicable to all types of sonar technology, ranging from multibeam, single frequency sonars to single beam, multifrequency sonars.

BOTTLENOSE dolphins, *Tursiops truncatus*, produce individually distinctive vocalizations called signature whistles. These whistles appear to function both to broadcast individual identity and to maintain contact between individuals such as mothers and calves.

In a long-term field project organized by Randy Wells, WHOI Guest Investigator and Behavioral Ecologist at the Chicago Zoological Society, researchers have found that free-ranging bottlenose dolphin mothers and calves remain closely associated for up to 10 years, averaging 3 to 6. (Male bottlenose dolphins do not play a role in raising the offspring.) Clearly, the mother's whistle must be a dominant component of a young calf's acoustic environment in the wild. Do calves learn their signature whistles from their mothers?

Learning has not yet been found to play a role in natural vocal development of any mammal other than humans. Even our closest primate relatives do not seem to modify their vocal repertoire as a result of what they hear. This is surprising since we require this skill to develop our natural communication system, language.

Observational data gathered by Randy Wells and his coworkers over the past 20 years have provided information on matrilineal relationships among most of approximately 100 individuals in a resident coastal community of free-ranging bottlenose dolphins in waters near Sarasota, Florida. A capture and release program, where dolphins are temporarily held in a large net corral in shallow water to be measured, sampled, and marked, has provided information on age, sex, and life history. During these temporary captures, we record vocalizations from each known individual by placing a suction cup hydrophone directly on the head of the animal. It is otherwise difficult, if not impossible, to determine which dolphin is vocalizing. To date, we have obtained recordings from a total of 110 individuals, including 38 calves and their mothers, over a period of 15 years (recordings from 1975-76 were made by Michael Scott and Paul Graycar, who were working with Marineland of Florida).

When we examine dolphin whistles visually using spectrograms (plots of frequency versus time), we find that they tend to vary between 5 and 25 kilohertz, and to last about one second. The contour, or pattern of frequency changes over time, is distinctive for each dolphin's whistle. We asked independent judges,
who had no knowledge of the 38 mother-calf relationships included in the study, to compare spectrograms of whistles of mothers and calves. They rated the similarity of these whistles on a scale of 1 to 5 (with 1 being not similar and 5 being very similar).

As it turned out, 65 percent (11 of 17) of the whistles of male calves received mean ratings of similarity to their mother's whistles of 3.0 or greater (figure at left below). However, only 14 percent (3 of 21) of the whistles of female calves received mean ratings of similarity to their mother of 3.0 or greater (figure at right below). Apparently there is a sex difference in the propensity of calves to learn their signature whistles from their mothers.

Why might such a sex difference exist? We speculate that it may relate to the different roles males and females play in the social structure of the community. Randy Wells and his coworkers have found that Sarasota females tend to remain in their matrilineal groups, while the males tend to disperse into the community. If female calves were to produce whistles similar to those of their mothers, then several females in a matrilineal group would be producing similar whistles. It could thus be difficult for a young calf to maintain contact with his or her mother. On the other hand, it could be advantageous for males to retain characteristics of their mothers' whistles, perhaps to maintain contact with kin or to avoid inbreeding.

We are currently testing the validity of these ideas through careful observations of undisturbed mother-calf pairs along with simultaneous acoustic recordings. These observations may also help us to understand precisely how the acoustic environment and the mother's behavior affect the development of the signature whistle. For example, does a calf who does not develop a signature whistle like its mother's learn its whistle from another individual? There are preliminary indications that this may be the case (see figure at right). We hope that a better understanding of the factors governing vocal development in this species may provide new insights into the individually specific social relationships of these marine mammals.
AFTER the Gulf Stream leaves the coast at Cape Hatteras and begins its vigorous meandering, large recirculation gyres develop and enhance the downstream transport. Valentine Worthington, WHOI Scientist Emeritus, first described this circulation in 1976. The figures at right show his scheme for the total transport as well as for water colder than 4°C. The eastward transport in the Stream more than doubles from about 60 million cubic meters a second at Cape Hatteras to 150 million south of Nova Scotia, with half the addition coming from water colder than 4°C (for comparison, the Amazon carries less than 1 million cubic meters per second). Since the size of this recirculation is much smaller than that inferred from classical wind driven models, some other process is at work.

Worthington deduced this picture largely from water property analysis supplemented by intuition and a modest amount of direct velocity measurement. Hydrographic measurements have been the principal source of our knowledge about global ocean circulation over the past 100 years. Unfortunately, the hydrographic suite (salinity, temperature, depth) lacks any direct measure of velocity, so inferences about the actual circulation depend on some rather arbitrary assumptions about the circulation at a particular level – the so-called geostrophic method allows determination of relative velocities only. Advances in moored current meter technology, especially in the last 15 years, now provide us with real velocity data. The current meter has evolved into an extremely reliable ocean “wind recorder,” which can be deployed and left for periods greater than two years. Much of the development of this technology has taken place at WHOI, and, over the years, use has spread from our back door in the northwest Atlantic to practically every ocean basin.

Various investigators have made a large number of measurements in the Gulf Stream recirculation region (figure at right). Although the WHOI Buoy Group is responsible for the majority, scientists from the University of Rhode Island, the University of North Carolina, Oregon State University, Florida State University, and the Bedford Institute of Oceanography have also been active in the region. These measurements range from about three months to more than two years in duration, and they were taken at different times as part of experiments with differing specific objectives.

We separated the ensemble into three groups to determine the large scale structure of the deep circulation. Most noticeable is the consistently westward flow along isobaths of those vectors inshore of the 4,000 meter isobath. This is part of the so-called Deep Western Boundary Current of polar origins. Like the Gulf Stream, it flows along the western boundary, but unlike the Stream, it flows southward and transports its northern waters.
ich in oxygen and man-made tracers (such as freons and tritium) into the Southern Hemisphere and eventually onto the Indian and Pacific oceans.

Directly offshore of this “thermohaline” flow and between the Grand Banks and the New England Seamounts, water also moving westward on average, current meter measurements from shallower depths indicate that this westward ow fills most of the water column. However, this does not appear to be a part of large, global scale circulation. Instead, this water turns eastward near the New England Seamounts where the isobaths are an intersection with the Stream. It then essentially becomes the deep Gulf Stream, which eventually peels off and turns back westward where the Stream runs into the southern edge of the Grand Banks. This circulation, absent in Worthington’s analysis, transports on the order of 30 million cubic meters a second or as such as the Stream carries through the Straits of Florida. We have called this the northern Recirculation Gyre.

South of this gyre there is little evidence for the clockwise Worthington Gyre in the deep water. The only direct confirmation is near 55°W, 36°N where velocity vectors change from strongly eastward to strongly westward moving south. However, this is just the sense to expect if a broader flow were forced to navigate the low seamount found at this location (identified by the single contour on the figure below). The Worthington Gyre would appear to be more of a shallow, thermocline feature.

Little is known about the reason for these recirculations. In order to gain insight into what physical processes may be relevant, in 1987 the WHOI Buoy Group deployed the first current meter array designed to measure a cross section of the Stream from top to bottom. Part of the Synoptic Ocean Prediction program sponsored by the Office of Naval Research and...
A major advance in mooring technology is the use of plastic fairing to streamline the wire. It is installed on the upper portion of the mooring, piece by piece, as the wire is played out.

The National Science Foundation, these were set at the locations shown in the figure at the bottom of page 41 for a period of two years and recovered in the fall of 1989 from the British ship, RRS *Darwin*. Traditionally, moorings extending from top to bottom in the Gulf Stream were considered too risky. In this case, we employed two important developments to reduce strong-current drag on the mooring. A single, large syntactic sphere provided flotation at the top of the mooring in place of the more traditional group of smaller spheres, and clip-on fairing reduced drag on the wire by streamlining water motion around it. We were rewarded with outstanding instrument and mooring performance and have begun analysis of the collected information toward a better understanding of the Gulf Stream system.

Downstream of Cape Hatteras, the Gulf Stream often shows large, rapid fluctuations in location, transport, and structure so that hydrographic surveys of different regions separated by a few months may offer very different pictures. A long time series of Gulf Stream measurements would help us to understand its dynamics, but it is difficult to obtain the needed temporal and spatial resolution with measurements currently available. We can infer Gulf Stream location and surface currents using data from the U.S. Navy’s GEOSAT satellite altimeter, but it would be more useful to have three-dimensional series of measurements so that we could, for example, compute volume transports. Therefore, we are working on ways to combine the altimeter data with ship-based observations. Gulf Stream volume transport within the upper 800 meters can be calculated reasonably accurately using only expendable bathythermograph (XBT) measurements made while the ship is underway rather than traditional hydrographic measurements (salinity, temperature, and depth), which require the ship to hold its station. This decreases the time needed to make the
quired measurements between, for example, Bermuda and Cape Cod from 4 to about two and a half days. It would also enable measurements by ship rather than by expensive search vessels. One critical instrument available on most ships-of-opportunity is the acoustic Doppler current profiler (ADCP) that provides the reference-level velocity needed to convert the inferred velocity profile into an absolute velocity. Therefore, we need a way to obtain the velocity with the altimeter, using additional sea surface height to infer the velocity at the ocean surface.

The problem with using the altimetric measurements is that the measured sea surface height includes the Earth's gravitational geoid as well as the dynamic topography needed to compute currents. Commonly, the mean height profile over a long time period is removed to eliminate the geoid, but this also removes the mean dynamic topography (and therefore the mean currents), so that only relative variations in currents can be studied. If the geoid were known, we could subtract it rectify; however, the current geoid is only reliably on scales of thousands of kilometers and the Gulf Stream is about 100 kilometers across. If we could measure the dynamic height along a satellite subtrack and subtract it from the altimetric height, the remainder would be the along-track geoid, and it would then be available for further analyses. Alternatively, if we could estimate the mean height profile, it could be added back into the relative height profiles to obtain the absolute dynamic height. We investigated both methods.

A simple model of the velocity profile of the Gulf Stream and synthetic data were used to estimate the mean dynamic height for two and a half years of ERS SAR data. This mean sea surface was added back to the residual sea surface height to produce a time series of absolute dynamic height profiles. Along with the mean dynamic height field, this analysis produced time series of parameters to describe the Gulf Stream meandering and structure, time series of velocity profiles, and maps of kinetic energy (figure at left). The mean and temporally varying descriptions of the Gulf Stream showed two different flow regimes separated by a relatively narrow transition region coinciding with the New England Seamount Chain. West of about 64° W, the Gulf Stream has a predominately eastward direction with a narrow mean current profile, relatively smooth paths with eastward propagating meanders, and long time scales. East of about 58° W the mean current broadens by a factor of two because of increased meandering, time scales drop by a factor of three, and peak velocities and surface transport drop by 25 percent. An analysis of the correlation between Gulf Stream position and surface transport suggests that larger transports are correlated with more northerly positions.
The fast hydrographic profiler developed by Al Bradley and colleagues in the Applied Ocean Physics and Engineering Department faces heavy seas on a 1988 R/V Oceanus research voyage.
In separate surveys in April and December of 1989, XBT and ADCP measurements were repeated several times along a GEOSAT subtrack between Bermuda and Cape Cod (figure on page 43). In a period of only 14 days on the first survey, the Gulf Stream shifted southward by about 30 kilometers and rotated by about 30 degrees due to a meander. Velocity measurements from the ADCP were extrapolated to the surface to give peak values of about 2.0 meters per second. These agreed with the velocities calculated from GEOSAT using the synthetic mean within about 0.2 meters per second, which could be attributed to temporal variability (figure at right) or small departures from the geostrophic balance (balance between pressure gradient and velocity) at the ocean surface. This suggests that the synthetic method, which has been applied to the entire Gulf Stream region, gives a reasonably accurate mean. To reduce the measurement error, we made the December survey of the Gulf Stream on the same day as the GEOSAT overflight. (Unfortunately, the GEOSAT altimeter had begun to fail as early as the spring of 1989 and data were not available for the December survey.) In a comparison of the two surveys, the April transport was significantly larger than that in December, consistent with a relative maximum in the surface velocities from the GEOSAT analysis for the Gulf Stream region.

In the future, we plan to use the synthetic data method on the Kuroshio Extension and hope to make similar comparisons using the new Navy altimeter scheduled for launch in 1990 and ship-based measurements of dynamic topography.
WHOI researchers ranged from the Arctic to the Antarctic in 1989. The top photo shows part of the evacuation from the CEARX acoustics ice camp to a waiting ship when the camp drifted perilously close to open water. CEARX is an acronym for Coordinated Eastern ARCtic EXperiment. The camp was located at 81°30' N, 5° W. In the inset photo, Keith von der Heydt tends a remote hydrophone transmitter located several kilometers from the ice camp.

At the other end of the Earth, Mark Kurz samples a Taylor Glacier boulder for cosmogenic helium. The inset shows one of the camps in the antarctic dry valleys set up by Mark's research party - complete with a WHOI flag.
WHOI now has a Directorate for External Affairs, which brings together Communications, Development, and Industrial and International Affairs. This reorganization will focus and coordinate all of the Institution's outreach efforts in order to broaden the base of support for the scientific staff. It is essential that we maintain our competitive position as oceanography's most prestigious institution, the one most able and free to do science "from within." We are committed, therefore, to increasing significantly our endowment. With a strong base of endowment for salary support, or "hard money," we can attract and sustain the best and brightest staff while ensuring that WHOI remains the place where world-class oceanographers are collectively challenged to unravel how two-thirds of our planet works.

In the coming year, the External Affairs group will work closely together to articulate to the broadest possible audience our need to diversify the funding base at WHOI. The reason for this is clear and simple, but not widely understood by those outside our realm. In order for WHOI scientists to continue to pursue the research at which they excel and to take the risks they must, we cannot rely exclusively on the restrictive support of the federal government. Independent and unattached sources of income that can be used at the discretion of the Institution to support scientist's salaries and research must be available. Through increasing independence, we intend to take control of our future. Team building has been our focus this year, and we are aggressively seeking those who will commit themselves to a future of the best and most exciting years in the context of financial independence.

How do people learn about our cause? How do they get excited? How do we get them involved and invested in WHOI's future? And, how do we market oceanography?

First, we must articulate who we are, why we are unique and why our work is so essential. This message, whether through Oceanaus, Ocean Views, newsletters, WHOI in the News, the annual report, videotapes, congressional testimony, or personal presentations and visitations, must be communicated very convincingly. The position of the Director of Communications, who will oversee publications and public information, is still open, but we are well along in that search.

Jacqueline M. Suitor, the new Director of Development, is assembling a staff ready and able to manage a major endowment initiative. Those on board are excited by the challenge we face. WHOI does not have undergraduate alumni, key to fundraising at colleges. However, by not having a built-in constituency, we also are not limited by a well-defined group. We seek to interest the many people who will want to make a real difference in oceanography by becoming more involved in this Institution, and we plan to reach this global constituency by conveying our message in a clear and compelling fashion.

Our Development office provides committed donors with opportunities for personal involvement in the Oceanographic. It encourages substantial support from those who have both the resources and the interest to underwrite institutional initiatives.

In order to reach our fundraising goals, we recognize the critical need to expand our donor base. We are mounting a major effort to expand and strengthen our Associates Program under the able leadership of the President of the Associates, Charlie Dana, who with an ad hoc committee has made several recommendations for restructuring the membership. These will be implemented in June 1990.

A new office for industrial and international affairs was established this year. Its director, Paul Dudley Hart, is pursuing exciting initiatives with our counterparts in the Soviet Union and Japan with the aim of increasing financial support for and opening new territory to our scientists. We are also engaged in dia-
logues with CEOs of major chemical companies concerning the role of the oceans in the management of hazardous waste and sludge. In addition, talks are underway with oil company executives to provide them with scientific information in order for them to handle disasters in an environmentally sound fashion.

All the above equates to a new and vigorous plan to educate, excite, and motivate those who will dramatically increase our chances of scientific discovery by providing opportunity. Our message, even as we organize to articulate it more effectively, already must be reaching some as evidenced by the marked increase in the 1989 total of private support — 35 percent higher than 1988, nearly four million dollars! We are confident this is only the beginning of a real success story. To those of you who have made this such a banner year, my sincerest thanks and appreciation.

Charles D. Hollister
Vice President and
Associate Director for External Affairs
I NOTE with some amusement in reviewing last year's report that one "RADM Craig Dorman (Joint Program Graduate, Ph.D., 1972)" was listed among the "other speakers" at the Joint Program's 20th anniversary celebration. It reminds me of both how much we've changed, and yet how stable and successful the MIT/WHOI Joint Program, our major education program, has been.

During 1989, the education program witnessed:
- Charley Hollister's move from Dean to Vice President of the Corporation and Associate Director of External Affairs, my succession as (self-appointed) Acting Dean, and the search for a new, fully-salaried Associate Director of Education and Dean of Graduate Studies.
- An Advisory Committee review of the Joint Program, headed by Professor Owen Phillips of Johns Hopkins University, and a Navy Curriculum review by RADM Richard Pittenger, Oceanographer of the Navy.
- The second successful College Faculty Workshop, this time run concurrently with workshops at the Scripps Institution of Oceanography and the University of Washington as we attempt to promote our field to those who can most directly affect college students' career decisions.
- Continuation of our strong acceptance rate of over 65 percent in the graduate program; a record high of Summer Student Fellows, 32 with the addition of nine National Science Foundation REUs (Research Experience for Undergraduates), and the sustained private support of associates, alumni, and friends; a very strong group of 10 new Postdoctoral Scholars; the 31st summer of the Geophysical Fluid Dynamics Program; and continuation of our ongoing Guest Student Program for volunteer students who want hands-on laboratory experience (see insert for enrollments).
- Promotion of A. Lawrence "Jake" Peirson III to Associate Dean.

I deliberately stepped into Charley's shoes early in my tenure as Director so that I could acquaint myself in detail with our program and ensure that education had become and would remain an intrinsic and thoroughly integrated part of our research and life at WHOI. This gave me the opportunity to receive directly the report of the MIT/WHOI Joint Advisory Committee, from which I quote:

"In overall quality it is, in the minds of the committee, clearly among the best in the country, probably the best. It is of national importance in the education of scientists in ocean sciences and engineer-

The annual student entrance meeting in August of 1989 included a Craig Dorman look-alike contest. Students and administration office staff sported heavy eyebrows, circles on their cheeks, and red lipstick similar to one the Acting Dean was known to be fond of wearing.
ing and has already, in the twenty years or so of its formal existence, contributed massively to the preparation of a generation of ocean scientists and engineers who are now at the forefronts of their fields. The Joint Program [is] of cardinal importance to oceanography and a shared jewel in the crowns of two institutions.

Coming from highly respected scientists such as Owen Phillips, Frank Press, Robert Frosch, Frank Richter, James Holton, William Kemperer, Kenneth Macdonald, and our own Executive Committee members Mildred Dresselhau and Keith Thomson, this is no small praise. Of course they also had a few critiques and suggestions, the most significant of which was to undertake a national search for a new WHOI Dean of “high scientific stature, academic experience and administrative ability, with the responsibility and authority to ensure that the highest academic standards be maintained, to serve as an advocate for the Joint Program and an interface with MIT.” We took advantage of this charge to reconsider the role of education at WHOI. Given the national dilemma in science and engineering education, the excellence and excitement of our scientists and field, and the interest of a broad cross section of our staff and students in education, we decided that we should make a major commitment to increasing our educational outreach. To this end, we created a new Associate Director position and started an intensive national search under the leadership of Joe Pedlosky. (As this report went to press, we were pleased to announce the selection of former WHOI staff member John W. Farrington for this position. He will be leaving his post as Michael P. Walsh Professor of Environmental Science at the University of Massachusetts, Boston, to come to Woods Hole in August 1990.)

A few other less critical but still significant changes are:

- We are at long last constructing a Student Center in the attic of Clark extension.
- Thanks to the generosity of the Horace W. Goldsmith Foundation, we are starting a new tradition of offering entering students an opportunity to sail for a week on Sea Education Association’s 125-foot schooner Westward. The intent is to introduce them to practical oceanography while they get to know each other in one of the best ways possible, on a tall ship in the North Atlantic. This should also help us forge stronger ties with our neighbors at SEA.
- Thanks to help from MIT Joint Program Director, Sallie W. “Penny” Chisholm, we are renting an apartment at 100 Memorial Drive, Cambridge, for WHOI scientists to spend time more conveniently with their colleagues at MIT. We also expect to upgrade our microwave link between WHOI and MIT and, through the link, to introduce the Athena cluster concept so successfully developed by MIT to improve the use of computers in education.

The Navy curriculum review was equally successful. We timed an internal reassessment of the Master’s Degree Program to coincide with it, and we have decided to consolidate our M.S. efforts in the Oceanographic Engineering Program, with continued participation by Geology and Geophysics.

On a somewhat peripheral note, I was appointed by Governor Dukakis as a Trus-
1989 Ocean Ventures
Fund Awardees

Carol Arnosti
Effect of Structure on Bacterial Degradation of Carbohydrates

Debra Colodner
Geochemistry of the Element Iridium

Linda King
Chlorophyll Degradation in Recent Sediments

John Kokinos
Modern and Fossil Diatomate Cysts: New Techniques to Link the Present with the Distant Past

Christopher Scholin
A New Approach to the Study of New England's Toxic Algal Blooms

Paul Snelgrove
The Importance of Food Quality in the Maintenance of Deep-Sea Species Diversity

Nathalie Wasem
Application of 14C and 13C to the Study of Phosphorous Cycling in the Upper Ocean

1989 J. Seward Johnson Chairs in Oceanography

Chairs in Oceanography

Biology
Judith E. McDowell

Chemistry
Edward R. Stokolovitz

Geology & Geophysics
Elazar Uchup

Applied Ocean Physics & Engineering
James P. Lynch

Physical Oceanography
Nick P. Hofmann

and Jake and the Education Office have established, we intend to keep the Joint Program the best in the world, to make opportunities to participate in education more readily available to a larger segment of our staff, and to increase our outreach activities, while strengthening our ongoing fellowship programs.

Craig E. Dorman
Acting Dean

David Gray
In response to the deepening science education crisis in the United States, Dr. Robert D. Ballard, Senior Scientist in the Applied Ocean Physics and Engineering Department and Director of WHOI’s Center for Marine Exploration, conceived and executed the JASON Project. Named after the most advanced and versatile of the WHOI Deep Submergence Laboratory’s unmanned underwater vehicles (in turn named after the mythological Greek hero), in its first year the JASON Project brought over 225,000 school children into 12 museum sites around the country (and WHOI’s Redfield Auditorium) to experience underwater exploration in the Mediterranean Sea as it occurred.

JASON combined the underwater technology of WHOI with the communications expertise of Electronic Data Systems Corporation and the programming and broadcasting skills of the National Geographic Society and Turner Broadcasting System to create what Bob calls “telepresence.” After studying a curriculum developed by the National Science Teacher’s Association, the students visited a museum to join Bob and his team on board Star Hercules as they conducted geological studies on the Marsili Seamount or undertook an archaeological investigation of a fourth century shipwreck. Through telepresence, the students could watch the activities both in the control room and on the seafloor, and ask Bob questions. Some 84 live programs were broadcast during the 14-day expedition.

The JASON Project vividly demonstrated the excitement and joy of ocean sciences to nearly a quarter million school children, motivating them to study science and mathematics and focusing on science as an important intercultural bridge to the basic dynamics of human behavior. Scientists at WHOI had the added opportunity to receive data from instruments on the robot as well as the pictures, as they viewed the first discovery of hydrothermal vents in the Mediterranean and explored the surrounding geology and biology from half the world away in the comfort of the “Black Room” on the first floor of the Blake Building.
WHOI supported Bob in coordinating the entire prototype JASON Project in 1989. The results were sufficiently promising, with enough enthusiasm from the schools and museums (and sufficient strain on the participants) that it was decided to form an independent not-for-profit organization to continue and expand the effort. Consequently, the JASON Foundation for Education was incorporated in Washington, DC, “1) to conduct and support educational activities using the technology of telepresence across the spectrum of physical sciences, and in support thereof; 2) to foster, stimulate, and support scientific research in oceanographic and marine topics and other physical and social sciences; and 3) to aid, assist, and contribute to the support of corporations, associations, and institutions which are organized and operated exclusively for such purposes and which are described in Section 501(c) 3 of the Code.”

WHOI retains its close ties to the JASON Foundation for Education not just through Bob, who is Chairman of the Board, but through our own Chairman, Guy Nichols, and Director, Craig Dorman, who are also Directors (along with Les Aberthal, President and Chairman of the Board of Electronic Data Systems; Gilbert Grosvenor, President and Chairman of the Board of National Geographic Society; and Michael T. Gustafson, President of Wesco Resources). WHOI will contract annually to the Foundation to supply the services of the DSL team, vehicles, and production van for the field programs, and will continue to act as a downlink “museum” site for Cape schoolchildren’s participation.

The early May 1990 program was designed to take students to the depths of Lake Ontario to study the U.S. Navy vessels Hamilton and Scourge, which sank in a squall after taking part in all the major Naval battles fought on Lake Ontario in the War of 1812. In addition to history, the curriculum will feature the technology and control of the robot vehicles, the limnology of the lakes, the state of the ships, and ecology. Future expeditions are planned for the Galapagos Islands and the waters off Spain and Japan.
Some 270 WHOI employees with 10 or more years of service received awards at the first Employee Recognition Celebration. The October festivities, held in a tent on the Fensu House lawn, included music and refreshments. For 10-year service award is a lapel pin, the 20 a Seth Thomas clock, and the 30 choice of a Nichols & Stone WHOI armchair or rocker.

The Penzance and Vetlesen awards were established in 1989 by Director Craig Dorman with funds from the Penzance Foundation and the Vetlesen Foundation. The winners were chosen from staff nominations.

Vetlesen Awards are given for "selfless dedication of a major portion of... time and talents to the entire WHOI community over a long period of time," and the Penzance Award honors a WHOI group for exceptional contributions to the Institution and its staff.

This 1989 Vetlesen Award winner for "selfless dedication of a major portion of... time and talents to the entire WHOI community over a long period of time" are: Dick Caborn (top right photo); David Gliddon (at center); and Judy McDonald (right center).

The crew of S/V Oceanus received the 1989 Penzance Award for exceptional contribution to the Institution and its staff. (From left to right) are: Michael Stowe, Steve Murphy, Steve Liborsch, Ted Gomez, Doug Dwyer, Kevin Kinn, Mark Murphy, Don Bond, Bryn McPherson, Phil Hoagland, Hugh Smith, and Jimmy ane...
EVERAL events during the year celebrated the 25th anniversary of the commissioning of DSV *Alvin*. More than 90 employees and guests gathered under a tent on the Iselin Mall June 5 for refreshments, *Alvin* sea stories, and a presentation of several awards. Allyn Grim, Harold Froelich, Charles Moseman, and, posthumously, Paul Fye were honored for their contributions to making *Alvin* a special national symbol. Numerous greetings, citations, and awards lauded *Alvin* and the *Alvin* up, including the National Science Foundation’s Distinguished Public Service Award, a National Oceanic and Atmospheric Administration citation for 25 years outstanding operations and safe service to the marine science community, and the M International (formerly American Society of Metallurgy) designation as an iconic landmark. WHOI Associates led the 25th anniversary celebration with a June 16 Woods Hole dinner and a *Alvin* lecture and exhibits.

A Silver Jubilee Symposium in Redfield Auditorium October 16-18 drew 125 scientific users of *Alvin*. Their discussions ranged over *Alvin*’s many contributions to marine science in such areas as studies of hydrothermal vents, deep-sea fishes, marine snow, geophysics and seafloor structures at mid-ocean ridges, and deep-sea microbiology.

On November 17, the 1989 Elmer A. Sperry Award for “the invention, development and deployment of the deep-diving submarine *Alvin*” was presented to *Alvin* designers and visionaries Harold Froelich, Charles Moseman, Jr., and Allyn Vine. The occasion was the annual meeting of the Society of Naval Architects and Marine Engineers. Director Craig Dorman was the principal banquet speaker with a presentation focusing on underwater challenges of the present and future. The Sperry Award was established in 1955 to honor the inventions of Elmer Sperry and to encourage progress in transportation engineering.
Top left: *Asterias* tows a new meteorological buoy to a mooring test site. Top right: Rob Handy, left, and Beecher Wooding test a new ONR ocean bottom seismometer in the WHOI pier basin. Lower left: *Atlantis II* steamed into Woods Hole carrying an unusual red-suited passenger in December. Lower right: A second Clark Laboratory addition that will house part of the Physical Oceanography Department was well underway in December 1989.

Kory, Sean M. Diving in support of buoy engineering: The RTEAM project. In: Diving for

Biography

Chemistry

Geology & Geophysics

Physical Oceanography

Marine Policy & Ocean Management

Jouneyer, Christopher C. International law: In: Intervention in the 1980s: U. S. Foreign Policy in the Third

Tisdell, Clemin and James M. Broadus. Marine Reserves: Relevant policy and management issues with examples from the Great Barrier Reef Marine Park, Australia, and the United States. In: Marine Reserves: Relevant Policy and Management Issues With Examples From the Great Barrier Reef Marine Park,
Voyage Statistics

Ray Knox spent the year at Midstream Shipyard in Amelie, Louisiana, for a job that included lengthening the ship and a variety of other improvements. The old hull is shown at the top of the page, the new at the bottom, and the ship just in hull in the middle.
R/V Atlantis II & DSV Alvin

Total Nautical Miles for 1989 - 23,344
Total Days at Sea - 202
Total Dives - 26

<table>
<thead>
<tr>
<th>Voyage</th>
<th>Cruise Period</th>
<th>Principal Objective, Area of Operations</th>
<th>Ports of Call</th>
<th>Chief Scientist</th>
</tr>
</thead>
<tbody>
<tr>
<td>119-I</td>
<td>1 Jan-13 Mar</td>
<td>Maintenance at WHOI Pier</td>
<td>Woods Hole</td>
<td>S. Honjo</td>
</tr>
<tr>
<td>119-II</td>
<td>14 Mar-24 Mar</td>
<td>Transit to Joint Global Ocean Flux Study area, 20°W (JGOFS)</td>
<td>Funchal, Madeira</td>
<td>L. Sullivan (LDGO)</td>
</tr>
<tr>
<td>119-III</td>
<td>28 Mar-7 Apr</td>
<td>Eastern North Atlantic, bottom tethered sediment trap array experiment (JGOFS)</td>
<td>Reykjavik, Iceland</td>
<td>J. Marra (LDGO)</td>
</tr>
<tr>
<td>119-IV</td>
<td>10 Apr-13 Apr</td>
<td>South of Iceland, marine luminescence in the mixed-layer pilot program</td>
<td>Ponta Delgada, Azores</td>
<td>H. Ducklow (UMD)</td>
</tr>
<tr>
<td>119-V</td>
<td>18 Apr-11 May</td>
<td>Eastern North Atlantic, primary production measurements (JGOFS)</td>
<td>Reykjavik, Iceland</td>
<td>W. B. Owens</td>
</tr>
<tr>
<td>119-VI</td>
<td>15 May-8 June</td>
<td>Eastern North Atlantic, North Atlantic Bloom Study (JGOFS)</td>
<td>Woods Hole</td>
<td></td>
</tr>
<tr>
<td>119-VI</td>
<td>13 June-27 June</td>
<td>Central North Atlantic, ALS recovery/transition to Woods Hole</td>
<td>Woods Hole</td>
<td></td>
</tr>
<tr>
<td>120-I</td>
<td>28 June-9 Aug</td>
<td>Refit Atlantis II for Alvin following biannual Alvin overhaul</td>
<td>Woods Hole</td>
<td></td>
</tr>
<tr>
<td>120-II</td>
<td>10 Aug-20 Aug</td>
<td>Alvin trials and certification, 9 dives</td>
<td>St. George, Bermuda</td>
<td>B. Walden</td>
</tr>
<tr>
<td>120-II</td>
<td>21 Aug-31 Aug</td>
<td>Continental slope, anatomy, age, and origin of passive margin unconformities, 1 dive</td>
<td>Woods Hole</td>
<td>W. Ryan (LDGO)</td>
</tr>
<tr>
<td>120-III</td>
<td>1 Sept-5 Sept</td>
<td>Continuation of Voyage 120-II</td>
<td>Woods Hole</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>8 Sept-9 Sept</td>
<td>Local SEA BEAM trials</td>
<td>Woods Hole</td>
<td>W. Ryan (LDGO)</td>
</tr>
<tr>
<td>122</td>
<td>16 Sept-26 Sept</td>
<td>Western North Atlantic, 7 dives, effects of deep-water sludge disposal at Deep Water Dumpsite 106</td>
<td>Woods Hole</td>
<td>J. Freitag (URI)</td>
</tr>
<tr>
<td>123-I</td>
<td>2 Oct-23 Oct</td>
<td>North Atlantic, temporal variability of lead in the Atlantic</td>
<td>Woods Hole</td>
<td>J. F. Grassle (RU)</td>
</tr>
<tr>
<td>123-II</td>
<td>29 Oct-29 Nov</td>
<td>Mid-Atlantic Ridge, hydrothermal circulation on sediment starved mid-ocean ridges</td>
<td>Ponta Delgada, Azores</td>
<td>E. Boyle (MIT)</td>
</tr>
<tr>
<td>124</td>
<td>5 Dec-20 Dec</td>
<td>Continental slope, anatomy, age and origin of passive margin conformities, 9 dives</td>
<td>Woods Hole</td>
<td>M. Langseeth (LDGO)</td>
</tr>
<tr>
<td>125-I</td>
<td>29 Dec-31 Jan '90</td>
<td>Mid-Atlantic Ridge, investigation of hydrothermal processes</td>
<td>Woods Hole</td>
<td>W. Ryan (LDGO)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Woods Hole to Jacksonville, Florida</td>
<td>G. Thompson</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P. Rona (NOAA)</td>
</tr>
</tbody>
</table>
R/V Knorr

Total Nautical Miles for 1989 - 1,932
Total Days at Sea - 10

<table>
<thead>
<tr>
<th>Voyage</th>
<th>Cruise Period</th>
<th>Principal Objective, Area of Operations</th>
<th>Ports of Call</th>
<th>Chief Scientist</th>
</tr>
</thead>
<tbody>
<tr>
<td>205-IV</td>
<td>6 Feb-15 Feb</td>
<td>Transit to Shipyard in Morgan City, Louisiana, for refit. Out of service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>205-V</td>
<td>2 Feb-20 Feb</td>
<td>Continuation of Voyage 205 IV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>205-VI</td>
<td>25 Feb-21 Mar</td>
<td>Tropical Atlantic, trans-Atlantic CTD and doppler profiling section</td>
<td></td>
<td></td>
</tr>
<tr>
<td>205-VII</td>
<td>28 Mar-1 Apr</td>
<td>Transit Barbados-Bermuda, Gulf Stream upper ocean studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>205-VIII</td>
<td>4 Apr-21 Apr</td>
<td>Western North Atlantic, Gulf Stream upper ocean studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>206-I</td>
<td>5 May-12 May</td>
<td>Sargasso Sea, biochemistry of nitric oxide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>206-II</td>
<td>13 May-20 May</td>
<td>Continuation of Voyage 206-I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>26 May-21 June</td>
<td>Gulf Stream, SYNOP (Synoptic Ocean Prediction) experiment mooring deployment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>26 June-28 June</td>
<td>North Atlantic, test SeaSoar system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>5 July-29 July</td>
<td>Shipyard maintenance work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210-I</td>
<td>8 Aug-19 Aug</td>
<td>Gulf Stream, SYNOP experiment mooring recovery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210-II</td>
<td>22 Aug-1 Sept</td>
<td>Continuation of Voyage 210-I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>6 Sept-7 Sept</td>
<td>NSF inspection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>212-I</td>
<td>11 Sept-11 Sept</td>
<td>Local waters, test of improved meteorological system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>212-II</td>
<td>12 Sept-13 Sept</td>
<td>Stellwagen Bank, sediment collection at long-term monitoring site</td>
<td></td>
<td></td>
</tr>
<tr>
<td>213-I</td>
<td>21 Sept-4 Oct</td>
<td>Western North Atlantic, microelectrode studies of benthic carbonate fluxes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>213-II</td>
<td>5 Oct-10 Oct</td>
<td>Bermuda-Woods Hole, flying fish profiler test, SYNOP buoy recovery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>214-I</td>
<td>14 Oct-19 Oct</td>
<td>Sargasso Sea, flow cytometry studies of marine microbial ecology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>214-II</td>
<td>20 Oct-29 Oct</td>
<td>Continuation of Voyage 214-I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>215-I</td>
<td>3 Nov-9 Nov</td>
<td>Continental slope, acoustic telemetry experiments with large fish</td>
<td></td>
<td></td>
</tr>
<tr>
<td>215-II</td>
<td>9 Nov-21 Nov</td>
<td>Continuation of Voyage 215-I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>216</td>
<td>30 Nov-13 Dec</td>
<td>Western North Atlantic, Gulf Stream upper ocean studies</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R/V Oceanus

Total Nautical Miles for 1989 - 36,583
Total Days at Sea - 231

<table>
<thead>
<tr>
<th>Voyage</th>
<th>Cruise Period</th>
<th>Principal Objective, Area of Operations</th>
<th>Ports of Call</th>
<th>Chief Scientist</th>
</tr>
</thead>
<tbody>
<tr>
<td>205-IV</td>
<td>5 Jan-27 Jan</td>
<td>Tropical Atlantic, SOFAR Float Study of deep boundary currents</td>
<td>Fortaleza, Brazil</td>
<td>P. Richardson</td>
</tr>
<tr>
<td>205-V</td>
<td>2 Feb-20 Feb</td>
<td>Continuation of Voyage 205 IV</td>
<td>Las Palmas, Canary Islands</td>
<td>P. Richardson</td>
</tr>
<tr>
<td>205-VI</td>
<td>25 Feb-21 Mar</td>
<td>Tropical Atlantic, trans-Atlantic CTD and doppler profiling section</td>
<td>Bridgetown, Barbados</td>
<td>D. Roemmich (SIO)</td>
</tr>
<tr>
<td>205-VII</td>
<td>28 Mar-1 Apr</td>
<td>Transit Barbados-Bermuda, Gulf Stream upper ocean studies</td>
<td>St. George, Bermuda</td>
<td>T. Joyce</td>
</tr>
<tr>
<td>205-VIII</td>
<td>4 Apr-21 Apr</td>
<td>Western North Atlantic, Gulf Stream upper ocean studies</td>
<td>Woods Hole</td>
<td>T. Joyce</td>
</tr>
<tr>
<td>206-I</td>
<td>5 May-12 May</td>
<td>Sargasso Sea, biochemistry of nitric oxide</td>
<td>St. George, Bermuda</td>
<td>O. Zafiriou</td>
</tr>
<tr>
<td>206-II</td>
<td>13 May-20 May</td>
<td>Continuation of Voyage 206-I</td>
<td>Woods Hole</td>
<td>O. Zafiriou</td>
</tr>
<tr>
<td>207</td>
<td>26 May-21 June</td>
<td>Gulf Stream, SYNOP (Synoptic Ocean Prediction) experiment mooring deployment</td>
<td>Woods Hole</td>
<td>D. R. Watts (URI)</td>
</tr>
<tr>
<td>208</td>
<td>26 June-28 June</td>
<td>North Atlantic, test SeaSoar system</td>
<td>Woods Hole</td>
<td>J. Luyten</td>
</tr>
<tr>
<td>209</td>
<td>5 July-29 July</td>
<td>Shipyard maintenance work</td>
<td>Brooklyn, New York</td>
<td>D. R. Watts (URI)</td>
</tr>
<tr>
<td>210-I</td>
<td>8 Aug-19 Aug</td>
<td>Gulf Stream, SYNOP experiment mooring recovery</td>
<td>Woods Hole</td>
<td>D. R. Watts (URI)</td>
</tr>
<tr>
<td>210-II</td>
<td>22 Aug-1 Sept</td>
<td>Continuation of Voyage 210-I</td>
<td>Woods Hole</td>
<td>D. R. Watts (URI)</td>
</tr>
<tr>
<td>211</td>
<td>6 Sept-7 Sept</td>
<td>NSF inspection</td>
<td>Woods Hole</td>
<td>K. Prada</td>
</tr>
<tr>
<td>212-I</td>
<td>11 Sept-11 Sept</td>
<td>Local waters, test of improved meteorological system</td>
<td>Woods Hole</td>
<td>G. Jones</td>
</tr>
<tr>
<td>212-II</td>
<td>12 Sept-13 Sept</td>
<td>Stellwagen Bank, sediment collection at long-term monitoring site</td>
<td>Woods Hole</td>
<td>S. Emerson (UWA)</td>
</tr>
<tr>
<td>213-I</td>
<td>21 Sept-4 Oct</td>
<td>Western North Atlantic, microelectrode studies of benthic carbonate fluxes</td>
<td>Woods Hole</td>
<td>A. Bradley</td>
</tr>
<tr>
<td>213-II</td>
<td>5 Oct-10 Oct</td>
<td>Bermuda-Woods Hole, flying fish profiler test, SYNOP buoy recovery</td>
<td>St. George, Bermuda</td>
<td>R. Olson</td>
</tr>
<tr>
<td>214-II</td>
<td>20 Oct-29 Oct</td>
<td>Continuation of Voyage 214-I</td>
<td>Woods Hole</td>
<td>F. Carey</td>
</tr>
<tr>
<td>215-I</td>
<td>3 Nov-9 Nov</td>
<td>Continental slope, acoustic telemetry experiments with large fish</td>
<td>Woods Hole</td>
<td>F. Carey</td>
</tr>
<tr>
<td>215-II</td>
<td>9 Nov-21 Nov</td>
<td>Continuation of Voyage 215-I</td>
<td>Woods Hole</td>
<td>T. Joyce</td>
</tr>
</tbody>
</table>
Officers of the Corporation

- Gay W. Nichols
 Chairman of the Board of Trustees
- John H. Steele
 President
- Craig E. Dorman
 Director
- Charles D. Hollister
 Vice President
- Kenneth S. Safe, Jr.
 Treasurer
- Edwin W. Ham
 Assistant Treasurer
- Gary B. Walker
 Clerk

Corporation Members

<table>
<thead>
<tr>
<th>Name</th>
<th>Company/University</th>
<th>City, State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charles F. Adams</td>
<td>Raytheon Company</td>
<td>Lexington, MA</td>
</tr>
<tr>
<td>Ruth M. Adams</td>
<td>Hanover, NH</td>
<td></td>
</tr>
<tr>
<td>Arthu Yorke Allen</td>
<td>New York, NY</td>
<td></td>
</tr>
<tr>
<td>Arnol B. Arons</td>
<td>University of Washington</td>
<td>Seattle, WA</td>
</tr>
<tr>
<td>Marjorie Atwood</td>
<td>Newport, RI</td>
<td></td>
</tr>
<tr>
<td>Glenn W. Bailey</td>
<td>Bairmaco Corporation</td>
<td>New York, NY</td>
</tr>
<tr>
<td>Joseph A. Baute</td>
<td>Markham Corporation</td>
<td>Keene, NH</td>
</tr>
<tr>
<td>Alan C. Bemis</td>
<td>Concord, MA</td>
<td></td>
</tr>
<tr>
<td>FitzGerald Bemiss</td>
<td>Richmond, VA</td>
<td></td>
</tr>
<tr>
<td>George F. Bennett</td>
<td>Boston, MA</td>
<td></td>
</tr>
<tr>
<td>Kenneth W. Bilby</td>
<td>Greenwich, CT</td>
<td></td>
</tr>
<tr>
<td>Harris J. Bixler</td>
<td>Brown's Head Ventures</td>
<td>Belfast, ME</td>
</tr>
<tr>
<td>Charles A. Blakely</td>
<td>Blackey Maddox Investment Company</td>
<td>Boston, MA</td>
</tr>
<tr>
<td>John R. Bockstoe</td>
<td>South Dartmouth, MA</td>
<td></td>
</tr>
<tr>
<td>Joan T. Bok</td>
<td>New England Electric System</td>
<td>Westborough, MA</td>
</tr>
<tr>
<td>William H. Bossert</td>
<td>Harvard University</td>
<td>Cambridge, MA</td>
</tr>
<tr>
<td>Lewis M. Branscomb</td>
<td>Harvard University</td>
<td>Cambridge, MA</td>
</tr>
<tr>
<td>Garry D. Brewer</td>
<td>Yale University</td>
<td>New Haven, CT</td>
</tr>
<tr>
<td>Randolph W. Bromery</td>
<td>University of Massachusetts</td>
<td>Amherst, MA</td>
</tr>
<tr>
<td>Edwin D. Brooks, Jr.</td>
<td>Boston, MA</td>
<td></td>
</tr>
<tr>
<td>Harvey Brooks</td>
<td>Cambridge, MA</td>
<td></td>
</tr>
<tr>
<td>C. Terry Brown</td>
<td>San Diego, CA</td>
<td></td>
</tr>
<tr>
<td>Louis W. Cabot</td>
<td>Waltham, MA</td>
<td></td>
</tr>
<tr>
<td>James F. Calvert</td>
<td>St. Michaels, MD</td>
<td></td>
</tr>
<tr>
<td>Henry Charnock</td>
<td>The University</td>
<td>Southampton, England</td>
</tr>
<tr>
<td>John P. Chase</td>
<td>Boston, MA</td>
<td></td>
</tr>
<tr>
<td>Hays Clark</td>
<td>Hobe Sound, FL</td>
<td></td>
</tr>
<tr>
<td>James M. Clark</td>
<td>Woods Hole, MA</td>
<td></td>
</tr>
<tr>
<td>Dayton H. Clewell</td>
<td>La Canada, CA</td>
<td></td>
</tr>
<tr>
<td>Robert H. Cole</td>
<td>Brown University</td>
<td>Providence, RI</td>
</tr>
<tr>
<td>James S. Coles</td>
<td>New York, NY</td>
<td></td>
</tr>
<tr>
<td>Melvin A. Conant</td>
<td>Arlington, VA</td>
<td></td>
</tr>
<tr>
<td>Nancy W. Cushing</td>
<td>Squaw Valley Ski Corporation</td>
<td>Olympic Valley, CA</td>
</tr>
<tr>
<td>Charles A. Dana, III</td>
<td>Middletown, RI</td>
<td></td>
</tr>
<tr>
<td>Joel P. Davis</td>
<td>Osterville, MA</td>
<td></td>
</tr>
<tr>
<td>Thomas M. Debevoise</td>
<td>Woodstock, VT</td>
<td></td>
</tr>
<tr>
<td>Thomas J. Devine</td>
<td>New York, NY</td>
<td></td>
</tr>
<tr>
<td>Craig E. Dorman</td>
<td>Woods Hole Oceanographic Institution</td>
<td>Woods Hole, MA</td>
</tr>
<tr>
<td>Mildred S. Dresselhaus</td>
<td>Massachusetts Institute of Technology</td>
<td>Cambridge, MA</td>
</tr>
<tr>
<td>Joseph Z. Duke</td>
<td>ARC International</td>
<td>Jacksonville, FL</td>
</tr>
<tr>
<td>James D. Ebert</td>
<td>Chesapeake Bay Institute</td>
<td>Baltimore, MD</td>
</tr>
<tr>
<td>William Everdell</td>
<td>Glen Head, NY</td>
<td></td>
</tr>
<tr>
<td>William H. Forbes</td>
<td>Milton, MA</td>
<td></td>
</tr>
<tr>
<td>Robert A. Frosch</td>
<td>Birmingham, MI</td>
<td></td>
</tr>
<tr>
<td>Gerard A. Fulham</td>
<td>Osterville, MA</td>
<td></td>
</tr>
<tr>
<td>Thomas A. Fulham</td>
<td>Wellesley, MA</td>
<td></td>
</tr>
<tr>
<td>Robert B. Gagnion</td>
<td>Woods Hole Oceanographic Institution</td>
<td>Woods Hole, MA</td>
</tr>
<tr>
<td>William G. Gahagan</td>
<td>Gahagan & Bryant Associates</td>
<td>Wilmington, DE</td>
</tr>
<tr>
<td>Richard N. Gardner</td>
<td>Columbia Law School</td>
<td>New York, NY</td>
</tr>
<tr>
<td>W. H. Krome George</td>
<td>Aluminum Company of America</td>
<td>Pittsburgh, PA</td>
</tr>
</tbody>
</table>
Audit Committee

Joan T. Bok, Chairman
Arthur Yorke Allen
Peter H. McCormick
Carl E. Peterson

Buildings and Grounds Committee

James M. Clark, Chairman
Halsey C. Herreshoff
Norman E. MacNeil
Walter A. Smith
F. Thomas Westcott

Development Committee

Walter A. Smith, Chairman
Charles F. Adams
James M. Clark
James S. Coles
Charles A. Dana, III
Joel P. Davis
Kenneth S. Safe, Jr.
John A. Scully
Marjorie M. von Stade

Executive Committee

Guy W. Nichols, Chairman
James M. Clark
Craig E. Dorman
Mildred S. Dresselhaus
Weston Howland
George K. Moss
Keith S. Thomson

Investment Committee

Thomas J. Devine
Edwin W. Hiam
Weston Howland
David B. Stone
Kenneth S. Safe, Jr. (ex officio)

Nominating Committee

Richard D. Hill, Chairman
Charles A. Dana, III
Phyllis F. McKee
Richard P. Mellon
Robert C. Scamans, Jr.
Joseph F. Shea

Trustees of the Employees' Retirement Trust

Gerald W. Blakeley, Jr.
Edwin W. Hiam
E. Kent Swift, Jr.

In Memoriam

The Institution gratefully acknowledges the service and support of Robert M. Akin, Jr., John M. Alden, John A. Gifford, George Nichols, Jr., Howard Simons, and Alfred M. Wilson, who passed away in 1989, and Harold E. Edgerton, who passed away in early 1990.
Applied Ocean Physics and Engineering Department

Albert J. Williams 3rd
Department Chairman, Senior Scientist

John J. Akens
Research Specialist

Julie M. Allen
Research Associate

Geoffrey P. Allsup
Research Associate

Robert D. Ballard
Senior Scientist, Director, Center for Marine Exploration

Henri O. Berteaux
Senior Research Specialist

Alessandro Bocconcelli
Ocean Engineer

Paul R. Boutin
Research Specialist

Andrew D. Bowen
Research Engineer

Albert M. Bradley
Research Specialist

Neil L. Brown
Senior Research Specialist

Cheryl Ann Butman
Associate Scientist

Josko A. Catipovic
Assistant Scientist

Robert J. Chapman
Ocean Engineer

Robert R. Chase
Adjunct Scientist

Peter R. Clay
Research Specialist

Clayton W. Collins, Jr.
Research Associate

Kenneth W. Doherty
Research Specialist

James A. Doughty
Research Associate

Alan R. Duester
Ocean Engineer

Robert L. Eastwood
Ocean Engineer

Robert L. Elder
Ocean Engineer

Ned C. Forrester
Research Engineer

Dudley B. Foster
Research Associate

Alan J. Fougere
Research Engineer

Shimshon Frankenthal
Visiting Investigator

Lee E. Freitag
Ocean Engineer

George V. Friark
Senior Scientist

Charlotte M. Fuller
Research Associate

Wayne R. Geyer
Assistant Scientist

Donzel E. Gleason
Research Associate

Robert G. Goldsborough
Research Associate

Roger A. Goldsmith
Research Specialist

Hans C. Graber
Assistant Scientist

Robert C. Gromann
Research Specialist

Mark A. Groesenbaugh
Assistant Scientist

John T. Hallinan
Research Engineer

Christine L. Hammond
Research Associate

Alan A. Hinton
Ocean Engineer

David S. Hosom
Research Specialist

Cynthia J. Hoyt
Research Associate

Maxine M. Jones
Research Specialist

Sean M. Kery
Ocean Engineer

Richard L. Koehler
Research Specialist

Donald E. Koelsch
Research Specialist

Stephen P. Liberatore
Research Associate

William S. Little, Jr.
Research Specialist

James F. Lynch
Associate Scientist

Andrew R. Maffei
Research Specialist

William M. Marquette
Senior Research Specialist

John S. Merriam, Jr.
Ocean Engineer

Robert W. Morse
Scientist Emeritus

Arthur E. Newhall
Research Associate

James B. Newman
Research Engineer

Michael E. Pare
Research Associate

Kenneth R. Peal
Research Specialist

William J. Plant
Senior Scientist

George H. Power
Research Specialist

Kenneth E. Prada
Senior Research Specialist

Bryce Prindle
Visiting Investigator

Subramaniam D. Rajan
Assistant Scientist

Griffith Raymond
Ocean Engineer

Scientific & Technical Staff

Paul A. Reinholdsten
Visiting Investigator

Harold E. Rochat
Research Associate

Warren J. Sass
Research Associate

Edward K. Scheer
Research Associate

Arnold G. Sharp
Research Specialist

Robin C. Singer
Ocean Engineer

John L. Spiesberger
Associate Scientist

Jess H. Stanbrough
Research Specialist

Timothy K. Stanton
Associate Scientist

Victoria R. STARZAK
Research Associate

W. Kenneth Stewart, Jr.
Assistant Scientist

Eugene A. Terray
Research Specialist

John H. Trowbridge
Assistant Scientist

Suzanne B. Volkman
Research Associate

Christopher von ALT
Research Engineer

Keith von der Heydt
Research Specialist

Barrie B. Walden
Research Specialist, Manager, Submersible Operations

Robert G. Walden
Senior Research Specialist

Robert M. Weiman
Research Engineer

Ehud Weinlein
Adjunct Scientist

Valentine P. Wilson
Research Associate
Clifford L. Winget
Research Specialist

Warren E. Witzell, Jr.
Research Associate

Dana R. Yoerg
Associate Scientist

Biology Department

Peter H. Wiebe
Department Chairman,
Senior Scientist

Donald M. Anderson
Associate Scientist

Richard H. Backus
Scientist Emeritus

Francis G. Carey
Senior Scientist

David A. Caron
Associate Scientist

Hal Caswell
Senior Scientist

 Nathaniel Corwin
Research Specialist

James E. Craddock
Research Specialist

John W. H. Dacey
Associate Scientist

Cabell Davis
Assistant Scientist

Edward F. DeLong
Assistant Scientist

Mark R. Dennett
Research Associate

Paul V. Dunlap
Assistant Scientist

Kurt M. Frisstrup
Research Associate

Scott M. Gallager
Research Specialist

Quentin H. Gibson
Adjunct Scientist

Ronald W. Gilmer
Research Associate

Dale D. Goehringer
Research Associate

Joel C. Goldman
Senior Scientist

J. Frederick Grasse
Senior Scientist

George R. Hampson
Research Specialist

G. Richard Harbison
Senior Scientist

Brian L. Howes
Assistant Scientist

Holger W. Jannasch
Senior Scientist

Dale F. Leavitt
Research Associate

Phillip S. Lobel
Associate Scientist

Laurence P. Madin
Associate Scientist

Frank J. Mather III
Scientist Emeritus

Judith E. McDowell
Associate Scientist

John J. Molongoski
Research Associate

Lauren S. Mullineaux
Assistant Scientist

Robert J. Olson
Associate Scientist

Douglas C. Prusher
Assistant Scientist

Richard J. Ridge
Research Specialist

John H. Ryther
Scientist Emeritus

Howard L. Sanders
Scientist Emeritus

Rudolf S. Scheltema
Senior Scientist

William E. Schevill
Scientist Emeritus

Mary Sears
Scientist Emeritus

Roxanna M. Smolowitz
Visiting Investigator

John J. Stegeman
Senior Scientist,
Stanley W. Watson
Chair for Excellence in Oceanography

Diane K. Stoecker
Associate Scientist

Craig D. Taylor
Associate Scientist

John M. Teal
Senior Scientist

Ruth D. Turner
Adjunct Scientist

Peter L. Tyack
Associate Scientist

Frederica W. Valois
Research Specialist

Norman R. Wanwright
Adjunct Scientist

John B. Waterbury
Associate Scientist

William A. Watkins
Senior Research Specialist

Stanley W. Watson
Scientist Emeritus

James R. Weinberg
Assistant Scientist

Isabelle P. Williams
Research Associate

Carl O. Wirsén, Jr.
Research Specialist

Chemistry Department

Frederick L. Sayles
Department Chairman,
Senior Scientist

Mark A. Altabet
Assistant Scientist

Michael P. Bacon
Associate Scientist

Lary A. Ball
Research Associate

Neil V. Blough
Assistant Scientist

Peter G. Brewer
Senior Scientist

Ken O. Buesseler
Assistant Scientist

John L. Bullister
Assistant Scientist

Susan A. Casso
Research Associate

Charles H. Clifford
Research Associate

Werner G. Deuser
Senior Scientist

Wayne H. Dickinson
Research Associate

Ellen M. Druffel
Associate Scientist

Timothy I. Eglington
Assistant Scientist

John W. Farrington
Adjunct Scientist

Alan P. Fleer
Research Associate

Nelson M. Frey
Senior Research Specialist

David M. Glover
Research Associate

Sheila M. Griffin
Research Associate

Terence R. Hammer
Research Associate

John M. Hunt
Scientist Emeritus

William J. Jonkis
Senior Scientist,
W. Van Alan Clark Chair for Excellence in Oceanography

Carl G. Johnson
Research Associate

Mark D. Kurz
Associate Scientist

Hugh D. Livingston
Senior Research Specialist

Susan H. Lohmann
Adjunct Scientist

Dempsey E. Lott III
Research Specialist

Christopher S. Martens
Adjunct Scientist

William R. Martin
Assistant Scientist

Geology & Geophysics Department

David A. Ross
Department Chairman,
Senior Scientist

David G. Aubrey
Associate Scientist

William A. Berggren
Senior Scientist

Carl O. Bowin
Senior Scientist

James E. Broda
Research Specialist

Wilfred B. Bryan
Senior Scientist

Elizabeth T. Bunce
Scientist Emeritus

Daniel R. Burns
Assistant Scientist

Kenneth D. Burrhus
Research Specialist

Johnson R. Cann
Adjunct Scientist

William B. Curry
Associate Scientist

Henry J. B. Dick
Associate Scientist

Kenneth O. Emery
Scientist Emeritus

John I. Ewing
Scientist Emeritus

Susan H. Lohmann
Adjunct Scientist

Dempsey E. Lott III
Research Specialist

Christopher S. Martens
Adjunct Scientist

William R. Martin
Assistant Scientist

James W. Moffett
Assistant Scientist

Edward T. Peltzer III
Research Specialist

Daniel J. Repeta
Associate Scientist

Peter L. Sachs
Research Associate

David L. Schneider
Research Associate

Brian W. Schroeder
Research Associate

Edward R. Sholkovitz
Associate Scientist

Derek W. Spencer
Senior Scientist

Geoffrey Thompson
Senior Scientist

Jean K. Whelan
Senior Research Specialist

Oliver C. Zaffirou
Senior Scientist

74
Physical Oceanography Department

Robert C. Beardsley
Department Chairman, Senior Scientist
Gary L. Bond
Research Associate
Alvin L. Bradshaw
Research Specialist
Kenneth H. Brink
Associate Scientist
Melbourne G. Briscoe
Associate Scientist
Harry L. Bryden
Senior Scientist, Henry B. Bigelow Chair for Excellence in Oceanography
Dean F. Bumpus
Scientist Emeritus
Michel J. Caruso
Research Associate
David C. Chapman
Associate Scientist
James H. Churchill
Research Specialist
Gabriel T. Csanady
Adjunct Scientist
Thomas W. Danforth
Research Associate
Jerome P. Dean
Research Specialist
Nicholas P. Fofonoff
Senior Scientist
Daniel E. Frye
Research Specialist
Paul D. Fucole
Ocean Engineer
Dale B. Haidvogel
Adjunct Scientist
Melinda M. Hall
Assistant Scientist
Karl R. Heilrich
Assistant Scientist
Nelson G. Hogg
Senior Scientist
William R. Holland
Adjunct Scientist
Hsiao-Ming Han
Research Specialist
Rui Xin Huang
Assistant Scientist
Terrence M. Joyce
Senior Scientist
Kathryn A. Kelly
Assistant Scientist
Steven J. Lentz
Assistant Scientist
Richard Limeburner
Research Associate
James R. Luyten
Senior Scientist
Michael S. McCartney
Associate Scientist
James R. McCulloch
Research Specialist
William G. Metcalfe
Scientist Emeritus
Robert C. Millard, Jr.
Research Specialist
Alfred W. Morton
Research Associate
W. Brechner Owens
Associate Scientist
Melora M. Park
Research Associate
Richard E. Payne
Research Associate
Joseph Pedlosky
Senior Scientist, Henry L. and Grace Doherty Oceanographer
Albert J. Plueddemann
Assistant Scientist
Lawrence J. Pratt
Associate Scientist
James F. Price
Associate Scientist
Philip L. Richardson
Senior Scientist
Roger M. Samelson
Assistant Scientist
Karl E. Schleicher
Research Specialist
Raymond W. Schmitt
Associate Scientist
William J. Schmitz, Jr.
Senior Scientist
Marvel C. Stalup
Research Specialist
Henry M. Stommel
Senior Scientist
John M. Toole
Associate Scientist
Richard P. Trask
Research Associate
George H. Tupper
Research Associate
James R. Valdes
Research Specialist
William S. von Arx
Scientist Emeritus
Bruce A. Warren
Senior Scientist
Robert A. Weller
Associate Scientist
John A. Whitehead
Senior Scientist
Geoffrey G. Whitney, Jr.
Research Associate
Alfred H. Woodcock
Scientist Emeritus
Christine M. Wooding
Research Associate
L. Valentine Worthington
Scientist Emeritus

Coastal Research Center

David G. Aubrey
Director
Bruce W. Tripp
Research Associate

Postdoctoral Investigators

M. Tundi Agardy
Marine Policy Center
Linda R. Boden
Applied Ocean Physics & Engineering
Amy Bower
Physical Oceanography
David M. Burdick
Biology
Mark E. Eisworth
Marine Policy Center
Victoria J. Fabry
Chemistry
Roger H. Francois
Chemistry
Glen G. Gawarkiewicz
Physical Oceanography
Kristina M. Gjerde
Marine Policy Center
Catherine Goyet
Chemistry
Albert J. Hermann
Physical Oceanography
William S. Kessler
Physical Oceanography
David J. Kiefer
Chemistry
Timothy J. Shaw
Chemistry
Margaret K. Tivey
Chemistry
Maurice A. Tivey
Geology & Geophysics
Regular Support Staff

Departmental Assistants

Applied Ocean Physics & Engineering

John N. Bouthillette
Leonard A. Boutin
Martin F. Bowen
Shirley J. Bowman
Gail F. Caldeira
Rodney M. Catanach
Cynthia L. Chandler
Bruce R. Cole
Agamora Collins
Charles E. Corwin
Thomas Crook
Eric Cunningham
Peter J. Cvitan
Edward A. Denton
Lisa DiPalma
Edward F. Dow, Jr.
Kenneth D. Fairhurst
Nancy R. Galbraith
Stephen R. Gegg
Allan G. Gordon
Matthew R. Gould
Carlton W. Grunt, Jr.
Channing N. Hilliard, Jr.
John N. Kemp
Robert G. Lowe
Christine M. Lynch
Ann Martin
Daniel R. Martin
Marguerite K. McElroy
Gretchen McManamin
Gail McPhee
Neil M. McPhee
George A. Meier
Laurel E. Moore
Anita D. Norton
Susan M. Oliver
Patrick O'Malley
Cheri A. Perry
Betsey G. Pratt
Stanley G. Rosenblad
Stephen P. Smith
Ellen M. Stone
Nancy Y. Trowbridge
Karlen A. Wannop
Judith A. White
Susan F. Witzell
Martin C. Woodward

Biology Department

Philip Alatalo
L. Susan Brown-Leger
Sheila A. Clifford
Nancy J. Copley
Mary Ann Dufur
Linda H. Davis
Margaret S. Dimmock
Diana G. Franks
Elizabeth D. Garland
Sally Hacker
Nancy J. Haley
Bruce A. Keafer
David M. Kulis
Bruce A. Lancaster
Ee Lim
Jane E. Marsh
Brennan G. McKeen
Ann E. Michaels
Zofia J. Mlodzinska
Stephen J. Molyneaux
Linda Morse-Porteous
Marjorie K. Panciera
Jane M. Peterson
Rosemarie F. Petreca
Daniel W. Smith
Lisa G. Taylor
Richard G. van Etten
Bruce R. Woodin
Bonnie L. Woodward
Erik R. Zettler

Chemistry Department

John E. Andrews III
Rebecca A. Belastock
Scott P. Birdwhistell
William R. Clarke
Barbara Curran
Marcia W. Davis
Peggy A. Dickinson
Anne S. Edwards
Armine Gulessarian
Mary C. Hartman
Nancy A. Hayward
Marilyn R. Hess
Hannah Hilliard
David P. Kammer
John J. Lee
Molly M. Lumping
Michael O. Mathewson
Robert K. Nelson
Joanne G. Olmstead
Charles A. Olson
Julianne Palmieri
Laura A. Priest
Edith H. Ross
Deborah K. Shafer
Margaret M. Sulawoski
N. Joyce Wisen
Amy E. Witter

Geology & Geophysics Department

Linda M. Angeloni
Pamela R. Barrows
John Billings
Stephen T. Bolmer, Jr.
Lee Anne Campbell
Dolores H. Chausse
Gregory J. Cohen
David L. DuBois
Kathryn L. Elder
Michelle B. Engemann
Emily Evans
Judith Fenwick
Pamela V. Foster
C. Eben Franks
Janet J. Fredericks
Alan R. Gagnon
K. L. Faith Hampshire
Robert E. Handy
Janet M. Johnson
Carol A. Kuflmann
Matthew B. Keller
Richard A. Krishfield
Peter B. Mills
Stephen F. O'Malley
Derinda R. Osternann
Hugh W. Popovce
May A. Reed
Lu Ping Zou

Physical Oceanography Department

Carol A. Alessi
R. Lorraine Barbour
Karim A. Bohr
Paul R. Bouchard
Maureen E. Carragher
Margaret F. Cook
Gennaro H. Crescenti
Jane A. Dunworth
Penny C. Foster
Robert E. Frazel
Barbara Gafron
Lisa M. Garner
Ruth A. Gerski
Veta M. Green
Brian J. Guest
William H. Horo
George P. Knapp III
Jane Louise-Dean
Mary Ann Lucas
Carol MacMurray
Craig D. Marquette
Theresa K. McKe
Anne Marie Michael
Ellen T. Montgomery
William M. Ostrom
Nancy J. Pennington
John B. Reese
R. David Simoneau
Ann Spencer
Robert J. Stanley
Susan A. Tarbell
Robert D. Tavares
John H. Thomson
Toshiko T. Turner
Bryan S. Way
W. David Wellwood
Scott E. Worhill
Jeanne A. Young
Marguerite E. Zemanovic

Marine Policy Center

Peter L. Britz
Ellen M. Gately
Hauke Kite-Powell
Ethel F. LeFave

Coastal Research Center

Frank J. Gable
Olimpia L. McCall

Oceanus Magazine

Sara L. Ellis
Administrative Staff

Kendall B. Bohr .. Assistant Purchasing Manager
Robert W. Braden II Advertising Coordinator, Oceanus
Richard S. Chandler Submersible Operations Coordinator
Paul Dudley Hart Director of Industrial & International Programs
Patricia J. Duffy Accounting Operations Administrator
Kim B. Fahney Executive Assistant/MPC
Larry D. Fleck Executive Assistant/DSL
Sonya Hagedorn Media Coordinator
Timothy M. Hawley Assistant Editor, Oceanus
Ann C. Henry Executive Assistant/AOP&E
Hartley Hoskins Coordinator, Oceanus Industries Program
Charles S. Innis, Jr. Security Officer
Susan Kadar Executive Assistant/Chemistry
Victoria A. Kabar Science Writer
Judith L. Kleindinst Executive Assistant/Biology
Kathleen P. LaBennrz Personnel Administrator
Shelley M. Lauzon Publications & Information Manager
Virginia A. LeFavor General Accounting Administrator
Alan J. Lakensgard Manager, Administrative Systems & Procedures
David J. Miller Assistant Sponsored Programs Administrator
Mozart P. Moniz Purchasing Manager
Theresa G. Monroe Manager of Benefits
Laura A. Murphy Payroll Administrator
A. Lawrence Peirson III Associate Dean
Claire R. Reid Executive Assistant/Physical Oceanography
R. David Ruddin, Jr. Assistant Controller
Paul R. Ryan Executive Assistant/Geology & Geophysics
C. L. Roy Smith Controller
Jacqueline M. Soutor Development Director
Martha E. Tarafa Executive Assistant to the Associate Director
Maurice J. Tavares Sponsored Programs Administrator
Mary Jane Tucci Housing Coordinator
Melissa R. Weidman Staff Training & Development Administrator
Mary Nan Weiss Senior Development Officer
Alan W. White Marine Science Advisor-Sea Grant
Barbara Wickenden Personnel Manager
Elaine Wilcox Benefits Administrator
Alexandra B. Witten Development Officer/Proposal Writer
Margaret M. Walden
John A. Wood
Dianna M. Zia

Facilities Personnel

Nadine N. Atwood
Helen L. Ayres
Ernest E. Baker
Janice M. Baker
Linda Benway
Thomas A. Bouche
Richard W. Bowman
John R. Bracebridge
Edmund K. Brown
Frank Cabral, Jr.
Richard J. Carter
John P. Clement
Charles Clemishaw
James E. Coddington
Arthur Costa
Gregory Cotter
Ronald C. Craft
William B. Cruyza
Charles V. Cunniff, Jr.
Pearl R. DeMello
James H. Dufur, Jr.
Daniel B. Dwyer
Michael J. Field
Fred W. Keller
Christopher F. Kennedy
Dennis E. Ladino
Donald C. LeBlanc
Donald F. LeBlanc
Timothy J. Lyons
Peter D. Marenna
David McDonald
Carlos A. Medeiros
Thomas W. Moore
Jose S. Mota
John R. Murphy, Jr.
Isabel M. Penn
Charles J. Peters, Jr.
Arthur Peterson
Edward J. Phares
Robert Pratt
Thomas D. Rennie
John E. Rice
John P. Romiza
Robert W. Schrieter
Peter J. Schwanz
Steven P. Solbo
Robert G. Spence
Mark L. St. Pierre
Harold W. Swanson
William R. Tavares, Jr.
Kevin D. Thompson
Michael Turner
Barbara M. Vallesio
Robert G. Weeks
John C. Williams
Ronald E. Woods

Library Personnel

Colleen D. Huffer
Marie M. Johnson
Maureen E. O'Donnell
Alora K. Paul
Susan S. Putnam
Margaret A. Rioux

Services Personnel

Elizabeth Ashmore
Frederick V. Brown
James P. Corr
Bernard C. Crampton
John A. Crobar
Judith G. Cushman
Lewis D. Greene, Jr.
Patrick J. Harrington
Robert J. Hindley
Howard A. Holland
John A. Keizer
Raymond L. Lavalley
Paul E. LeBlanc

Facilities, Services and Marine Operations Staff

Richard J. Bowen Master, R/V Atlantis II
Ernest G. Charette Assistant Facilities Manager
Joseph L. Coburn, Jr. Marine Operations Manager
Arthur D. Coburn, Jr. Boat Operator
Vicky Cullen Manager, Graphic Services
Richard H. Dimmock Port Engineer
William M. Dunkle, Jr. Research Associate, Data Library
Richard S. Edwards Port Captain
Joel Fahney Facilities Engineer
Dudley B. Foster Alvin Operations Group Expedition Leader
Richard E. Golub Facilities Engineer
Charles F. Hall Chief Engineer, R/V Atlantis II
J. Patrick Hickey Pilot, DSV Alvin
Paul C. Howland Master, R/V Oceanus
Jonathan Leiby Naval Architect
Barbara J. Martineau Marine Operations Administrator
William E. McKoon Facilities Manager
Barrett McLaughlin Chief Engineer, R/V Oceanus
Donald A. Moller Marine Operations Coordinator
Harry E. Oakes Chief Engineer, R/V Knorr
Gary Rajula Pilot, DSV Alvin
Toreenec M. Rioux Diving Officer
Eric W. Spencer Safety Officer
Thomas T. Tendelin Pilot, DSV Alvin
Paul D. Tibbetts Pilot, DSV Alvin
Ernest C. Wegman Marine Engineer
Carolyn P. Winn Research Librarian
Napoleon McCall, Jr.
Jay R. Murphy
Lewis J. Saffron
Albert Santiago, Sr.
Michael J. Sawyer
Robert Wachtman

Graphic Services Personnel

Steven W. Allsopp
Leonard Cartwright
John E. Cook
Terri C. Corbett
Jayne H. Doucette
David L. Gray
Frederic R. Heide
Mark V. Hickey
Thomas N. Kleindinst
William N. Lange
E. Paul Oberlander
John Porteous
Donna C. Schafer
Timothy M. Silva

Food Services Personnel

Sheila T. Payne

Marine Operations

Alden H. Cook
Patricia A. Odams
Stephen G. Page

Alvin Operations

Socrates J. Carelo
Timothy Connors
Margaret P. Stern
Cindy L. Van Dover

Marine Personnel

Wayne A. Bailey
Courtenay Barber III
Jonathan W. Barros
Mitchell G. Barros
Gunter H. Bauerlein
Kenneth E. Bazner
Harold A. Bean
Richard C. Bean
Lawrence T. Bearer
Edward R. Brodrick
David F. Casiles
Gary B. Chiljean
Harry F. Clinton
Arthur D. Colburn III
Alberto Colussi, Jr.
Lawrence P. Costello
Jerome M. Cotter
Michael H. Cronin
Hugh B. Dakers
Sallye A. Davis
James M. Denoncourt
Mark C. DeRoche
Craig D. Dickson
Roger J. Dubé
Richard S. Edwards, Jr.
Kevin C. Fisk
Leon J. Fitzgerald
John J. Ford
Edward F. Graham, Jr.
James A. Haley

Cecile S. Hall
David L. Hayden
J. Kevin Kay
Erin Lawton
Gregory A. LeBlanc
Jeffrey Little
John T. Lobo
Tomas M. Macedo
Joseph F. Martin
J. Douglas Mayer
William McBride
David H. Megathlin
Edward I. Melloni
Mirth Miller
Joseph Milner
Patrick S. Mone
Richard F. Morris
Paul D. Morrisey
Stephen D. Murphy
Michael P. Nolin
David I. Olmsted
David A. Ouellette
Michael Palmieri, Jr.
Patricia L. Passanen
Craig S. Peters
Richard F. Simpkin
Ernest G. Smith, Jr.
Michael J. Snow
Harry H. Stanton
Jeffrey M. Stolp
John Sweet
Philip M. Treadwell
Herman Wagner
Stephen A. Walsh
Carl Wood

1989 Retirees

Thomas Aldrich
David F. Casiles
Bernard Cassidy
Ruth Davis
John I. Ewing
Anthony Ferreira
Eric H. Frank, Jr.
Ralph M. Hollis
Joan Hulbert
Anthony G. Mendousa
Conrad Ocampo
Samuel Pierce
Joseph R. Poirier
Joseph Ribeiro

Top: Marie Johnson. Center left: Dan McConkie. Center right: Chris Kennedy. Bottom: Cecile Hall.
Doctor of Philosophy

John A. Collins
B.Sc. University College, Cork
M.Sc. University College, Wales
Special Field: Marine Geology & Geophysics
Dissertation: A Search for Layering in the Oceanic Crust

Peter H. Dahl
B.Sc. University of Washington
M.Sc. University of Washington
Special Field: Oceanographic Engineering
Dissertation: Acoustic Diffraction from a Semi-infinite Elastic Plate under Arbitrary Fluid Loading with Application to Scattering from Arctic Ice Leads

David M. Delonga
B.S.M.E. United States Naval Academy
M.B.A. University of Maryland
S.M.E. Massachusetts Institute of Technology
Special Field: Oceanographic Engineering

Martin E. Dougherty
B.S. Winona State University
Special Field: Marine Geology & Geophysics
Dissertation: Ocean Bottom Seismic Scattering

Kelly K. Falkner
B.A. Reed College
Special Field: Chemical Oceanography
Dissertation: An Investigation of the Marine Geochemistry of Gold

Ichiro Fukumori
B.S. University of Tokyo
Special Field: Physical Oceanography
Dissertation: Efficient Representation of the Hydrographic Structure of the North Atlantic Ocean and Aspects of the Circulation from Objective Methods

Tanya H. Furman
B.S.E. Princeton University
Special Field: Marine Geology & Geophysics
Dissertation: Evolution of Icelandic Central Volcanoes: Evidence from the Austurhorn Plutonic and Vestmanneseyjar Volcanic Complexes

Harry L. Jenter, Jr.
B.S. University of Michigan
S.M.C.E. Massachusetts Institute of Technology
Special Field: Oceanographic Engineering
Dissertation: Modelling Bottom Stress in Depth-Averaged Flows

Pamela J. Klooper-Sams
B.S. University of California, Irvine
Special Field: Biological Oceanography
Dissertation: Molecular Regulation of the Induction of Cytochrome P-450E in the Estuarine Fish Fundulus heteroclitus

Brian P. Palenik
B.S.E. Princeton University
Special Field: Chemical Oceanography
Dissertation: Dissolved Organic Nitrogen Utilization by Phytoplankton: the Role of Cell-Surface Deaminases

Jill V. Scharold
B.S. Michigan Technological University
Special Field: Biological Oceanography
Dissertation: Swimming Behavior and Energetics of Sharks

Peter N. Schweitzer
B.S. University of Maryland
M.S. University of Kansas
Special Field: Marine Geology & Geophysics
Dissertation: Inference of Ecology from the Ontogeny of Microfossils

Robert M. Sherrell
B.A. Oberlin College
Special Field: Chemical Oceanography
Dissertation: The Trace Metal Geochemistry of Suspended Oceanic Particulate Matter

Richard P. Siggell
B.S. University of Michigan
Special Field: Physical Oceanography
Dissertation: Tidal Dynamics and Dispersion around Coastal Headlands

William S. Spitzer
B.A. Harvard University
Special Field: Chemical Oceanography
Dissertation: Rates of Vertical Mixing, Gas Exchange, and New Production: Estimates from Seasonal Gas Cycles in the Upper Ocean Near Bermuda

Thomas W. Trull
B.S. University of Michigan
Special Field: Chemical Oceanography
Dissertation: Diffusion of Helium Isotopes in Silicate Glasses and Minerals: Implications for Petrogenesis and Geochronology

Cindy L. Van Dover
B.S. Rutgers University
M.S. University of California, Los Angeles
Special Field: Biological Oceanography
Dissertation: Chemosynthetic Communities in the Deep Sea: Ecological Studies

Alexander F. M. J. van Geen
B.Sc., B.Sc. University of Washington
Special Field: Chemical Oceanography
Dissertation: Trace Metal Sources for the Atlantic Inflow to the Mediterranean Sea

Ocean Engineer

Michael J. Byman
B.S. United States Naval Academy
Special Field: Oceanographic Engineering
Dissertation: An Application of Ocean Wave-Current Refraction to the Gulf Stream Using SEASAT SAR Data

John G. Cooke V
B.S.M.E. United States Naval Academy
Special Field: Oceanographic Engineering
Dissertation: Incorporating Thruster Dynamics in the Control of an Underwater Vehicle

John R. Daugherty
B.S. United States Naval Academy
Special Field: Oceanographic Engineering
Dissertation: Surfage Wave, Internal Wave, and Source Motion Effects on Matched Field Processing in a Shallow Water Waveguide

Electrical Engineer

John M. Richardson
B.Sc. United States Naval Academy
Special Field: Oceanographic Engineering
Dissertation: A Code-Division, Multiple Beam Sonar Imaging System

1989 Degree Recipients

Massachusetts Institute of Technology
Woods Hole Oceanographic Institution
Joint Program in Oceanography/Oceanographic Engineering

Master of Science

Deborah K. Barber
B.Sc. United States Naval Academy
Special Field: Physical Oceanography
Dissertation: Collinear Analysis of Altimeter Data in the Bering Sea

Chang Sheng Chen
B.S. Shandong College of Oceanography
M.S. Shandong College of Oceanography
Special Field: Physical Oceanography
Dissertation: The Structure of the Kuroshio West of Kyushu

David B. Chester
B.S. Southampton College of Long Island University
Special Field: Physical Oceanography
Dissertation: Acoustic Tomography in the Straits of Florida

Franz S. Hover
B.Sc. Ohio Northern University
Special Field: Oceanographic Engineering

Xiaoming Wang
B.S. Shandong College
M.S. University of Rhode Island
Special Field: Physical Oceanography
Dissertation: A Numerical Model of Mixing and Convection Driven by Surface Buoyancy Flux
Fellows, Students, & Visitors

MIT/WHOI Joint Graduate Program 1989-1990

Chang Sheng Chen
Shandong College of Oceanography, PRC
Shandong College of Oceanography, PRC

David B. Chester
Southampton College of Long Island University

Gail L. Christeson
Texas A&M University

Daniel T. Cobr
University of Brazil, Brazil
Massachusetts Institute of Technology

Debra C. Colodner
Yale University

Noellette M. Conway
Trinity College, United Kingdom

Matthew J. Cordery
University of Chicago

Mary Carla Curran
University of South Carolina, Columbia
Victoria University, Australia

Edward P. Dever
Texas A&M University
Texas A&M University

Daniel T. Diperna
Lafayette College

Scott C. Doney
University of California, San Diego

Michele D. Durand
Carleton College

Jeffrey A. Dusenberry
Northwestern University
Massachusetts Institute of Technology

Thomas Ehrendorfer
University of Vienna, Austria

Ira B. Ekhaus
Webb Institute
Massachusetts Institute of Technology

Art W. Epstein
Harvard University

Peter J. S. Franks
Queens University, Canada
Dalhousie University, Canada

J. Robert Fricke
Vanderbilt University
Vanderbilt University

Carl T. Friedrichs
Amherst College

John A. Furgerson
University of Southern California

Lawrence F. Galvin
United States Naval Academy

Sarah T. Gill
Yale University

Anand Gnanadesikan
Princeton University

John A. Goff
Brown University
Massachusetts Institute of Technology

Ramarayyan Gopalkrishnan
Indian Institute of Technology, India

Sarah A. Green
University of Minnesota

James R. Gunson
University of Western Australia
Flinders University, Australia

Jill K. Hahn
Harvard-Radcliffe College
Boston University

Erik H. Hauri
University of Miami, Florida

Robert H. Handrick
Oklahoma State University

Franz X. Haver
Ohio Northern University

Andrew T. Jessup
University of Michigan

Gregory C. Johnson
Bates College

Kevin T. M. Johnson
Pennsylvania State University
University of Hawaii

Walter S. Josephson
Emory University

Linda L. King
Mary Washington University

Barry A. Klinger
Massachusetts Institute of Technology

John P. Kornos
Stanford University
Stanford University

Laura S. L. Kong
Brown University

Alan J. Kuo
Harvard University

Kathleen M. Ledyard
Columbia University
Barnard College

Jennifer G. Lee
Yale University

Sang-Mook Lee
Seoul National University, Korea
Seoul National University, Korea

Alan J. Lewitus
Rutgers University
Mass Landing Marine Laboratories

Timothy E. Lindstrom
Rochester Institute of Technology

Zheng Y. Liu
Academia Sinica, PRC
Nanjing Institute of Meteorology, PRC

Alison M. MacDonald
Bryn Mawr College

Marjorie A. MacWhorter
Middlebury College

Cecilie Mauritzen
University of Bergen, Norway
University of Bergen, Norway

Mark A. McCaffrey
Harvard University

James D. McLaren
Dalhousie University, Canada

Bruce E. Miller
United States Naval Academy

Michael J. Moore
Cambridge University, United Kingdom

Julien J. Nicolas
Ecole Centrale de Paris, France
Massachusetts Institute of Technology

James M. Njeru
Lafayette College

Kirby S. Olson
Eckerd College

Lynn A. Oeschmann
Bryn Mawr College

M. Mercedes Pascual-Dunlap
University of Buenos Aires, Argentina

New Mexico State University

Richard A. Pawlowicz
Queens University, Canada

Kurt L. Polzin
Whitman College

James C. Preisig
United States Coast Guard Academy
Massachusetts Institute of Technology

Gopalkrishna Rajagopal
Indian Institute of Technology, India

University of Florida

Elise A. Ralph
University of Chicago

Cheri A. Reechia
University of Guelph, Canada

Randall G. Richards
Pennsylvania State University

Paul E. Robbins
Oberlin College

Yair Rosenthal
Hebrew University, Israel
Hebrew University, Israel
Nathalie A. Waser
Lycee Francaise
University of Pierre & Marie Curie, France
Christopher R. Weidman
State University of New York, Oneonta
Renée D. White
Wesleyan University
Susan E. Wijffels
Flinders University, Australia
William S. D. Wilcock
Cambridge University, United Kingdom
Imperial College, United Kingdom
University of Washington
Anthony J. Wisniewski
Indiana University
Ceceil J. Wolfe
Brown University
Thomas J. Woodford
University of Virginia, Charlottesville
Eun-Fen Yu
Chinese Culture University, ROC
National Taiwan University, ROC
Jan C. Zemba
University of California, Irvine
University of California, Irvine
Huang Min Zhang
Peking University, PRC
Academia Sinica, PRC
Xiaoming Zhang
Zhejiang University, PRC
University of Michigan
Michael J. Morey
Fairleigh Dickinson University
Richard C. Navitsky
New York University
Sarah Putch
Stanford University
David J. Poitier
St. Francis College
Carol J. Pride
Wesleyan University
Michael W. Raney
Trinity College
Julie A. Roberts
Stanford University
Jonathan L. Schreiber
Stanford University
Michael E. Seibert
Duke University
Doron M. Weisbourd
Trenton State College
Stephen C. Weldon
Cook College, Rutgers University
Mathew Williams
St. John's, Oxford University, United Kingdom

Geophysical Fluid Dynamics Summer Seminar
Fellows:
Eric Chassignet
University of Miami, Rosenstiel School
Liangqiu Chen
Florida State University
Vance R. Condie
Columbia University
Sandip Ghosal
Columbia University
Richard A. Jarvis
Cambridge University, United Kingdom
Scott W. Jones
University of California, San Diego
Roland Mallier
Brown University
George G. Sutyrin
Shirshov Institute, of Oceanography, USSR
LaAnne Thompson
MIT/WHOI Joint Program in Oceanography
Irene G. Yushina
Shirshov Institute of Oceanography, USSR

Staff Members and Lecturers:
James L. Anderson
Stevens Institute of Technology
Antoine Badan-Dangon
CICESE
Guest Students

Amy Abbot
Mount Holyoke College

Merryl Alber
Boston University

Elliot L. Buckerman
Vanderbilt University

Sara B. Barkan
Columbia Preparatory School

Saurav Dev Bhatta
Lafayette College

Michael E. Carson
The Haverford School

Robert K. Coughlin
Massachusetts Maritime Academy

Melissa L. Dore
Wellesley College

Adria Elskus
University of Rhode Island

Lara Farmanfarmaian
Tufts University

Maria Filonczuk
United States Naval Academy

Todd S. Fisher
The Haverford School

Sarah Haber
Arlington High School

Derek A. Hilles
Georgetown High School

Johanna M. Hurstak
Yale University

Jonathan Kohl
Dartmouth College

Randi Lewis
Westtown School

Kathryn C. MacDonald
Colgate University

Andrew N. MacQueen
Stonehill College

Carla A. Marcatonio
University of California, Santa Barbara

Geraldine A. Miceli
University of Rhode Island

Catherine M. Michmerhuizen
Lawrence University

Laura T. Praderio
Northeastern University

Sarah Repetto
McGill University, Canada

Nathan Robb
Westtown School

David Russell
Westfield High School

David Schlesinger
Boston University

Andrew Spry
University Surrey, Guildford, United Kingdom

Colon Stevenson
Westtown School

Carolyn Stewart
University of Washington

Geoffrey Stewart
Colby College

Maren Voss
Christian Albrechts University, Germany

Elisabeth A. Wing
West Morris Regional High School

Guest Investigators

Yaotsuka Akitani
Japan Marine Science and Technology Center

Brian Binder
Massachusetts Institute of Technology

Steven Boyd
Associates of Cape Cod, Inc.

Lorraine Buxton
Geodar Nor A/S, Norway

Jerry Cheney
WHOI Biology Department

Sallie W. Chisholm
Massachusetts Institute of Technology

Joong Ki Choi
University of Maryland

J. Phil Clarner
WHOI Biology Department

Neal Cornell
National Institute on Alcohol Abuse

Susan A. Darling
Associates of Cape Cod, Inc.

Virginia K. Eckenrode
Associates of Cape Cod, Inc.

Scott R. Farrow
WHOI Marine Policy Center

Michael Gallo
Robert Wood Johnson Medical School

John H. Gentile
Environmental Protection Agency

Charles H. Greene
WHOI Biology Department

Robert W. Griffith
Southeastern Massachusetts University

Llewellyn Hillis
Ohio State University

Toshihiro Hoaki
Marine Biotechnology Institute Co., Ltd., Japan

Edward M. Hulburt
WHOI Biology Department

Christopher C. Joyner
George Washington University

Brian Lake
National Oceanic & Atmospheric Administration

Celia Marrase
Instituto Ciencias del Mar, Spain

Victor T. Mastone
Massachusetts Executive Office of Environmental Affairs

Anna McCann
Trinity College

Newton Millham
Boston University

Emily Monosson
Environmental Protection Agency

Curtis Murphy
U.S. Navy

George Myers
Rutgers University

Experimental Marine Station

Frederick Olmsted
WHOI Biology Department

Erik J. Paus
Associates of Cape Cod, Inc.

Barrie M. Peake
University of Otago, New Zealand

Barbara Peri
Harvard Medical School

Amelia E. Scheltema
WHOI Biology Department

Ziv Sirkes
Institute of Naval Oceanography

Rodman C. Taylor
Taylor Seafood, Inc.

Maura G. Tyrell
Stonehill College

Catherine Villaret
Centre National de la Recherche Scientifique, France

Peter K. Weiszel
Massachusetts Department of Environmental Quality Engineering

Randall S. Wells
Long Marine Laboratory, University of California, Santa Cruz

Keqi Yang
First Institute of Oceanography, PRC

Robert Young
Massachusetts Institute of Technology

Jia Qin Zhang
Academia Sinica, PRC

Liuquan Zhao
South China Sea Branch of State Oceanic Administration, PRC
Atlantis Associates

Gifts $100,000 - $999,999
Anonymous

Gifts $50,000 - $999,999
Mr. Richard B. Sellsar

Gifts $25,000 - $49,999
Anonymous (2)
Mrs. John C. Pickard

Gifts $5,000 - $24,999
Anonymous (1)
Dr. and Mrs. John R. Backstocke
Mr. James M. Clark
Mr. and Mrs. Charles A. Dana, III
Mrs. Amelia Hollister Danieleus
Mrs. Paul M. Fye
Mr. and Mrs. Frank W. Hoch
Mr. and Mrs. George F. Jewett, Jr.
Karen Lloyd
Mrs. Noel B. McLean
Mr. and Mrs. Guy W. Nichols
Mr. and Mrs. Kenneth S. Safe, Jr.
Mr. and Mrs. Walter A. Smith
Dr. and Mrs. John H. Steele
Mrs. and Mrs. E. Kent Swift, Jr.
Mrs. Frank W. Titchiner
Mr. and Mrs. Dominic R. Tedeschi
Mr. and Mrs. John A. van Beuren
Mr. and Mrs. P. Thomas Westcott

Knorr Associates

Gifts $1,000 - $4,999
Anonymous (4)
Mr. and Mrs. Charles F. Adams
Mr. and Mrs. John M. Alden
Mr. and Mrs. Arthur Yorke Allen
Mr. and Mrs. Joseph A. Baute
Mr. Alan C. Bemis
Joan T. Sok
Dr. and Mrs. Lewis M. Bronscomb
Professor and Mrs. Harvey Brooks
Miss Zylpha B. Brown
Mr. and Mrs. John P. Chase
Mr. and Mrs. Hays Clark
Dr. James S. Coles and
Dr. Cecily C. Selby
Mr. and Mrs. Warner G. Cosgrove, Jr.
Margaret A. and Edgar G. Davis
Mr. and Mrs. Joel P. Davis
Mr. and Mrs. Thomas M. Debovise
Mr. and Mrs. Thomas J. Devine
Dr. and Mrs. Craig E. Dorman
Mr. and Mrs. F. Gerald Douglass
Mr. and Mrs. Donald R. Findlay
Mr. and Mrs. Anthony Fisher
Dr. and Mrs. Robert A. Fosch
Mr. and Mrs. W. H. Krome George
Mr. and Mrs. Nelson S. Gifford
Mrs. James R. Glazebrook
Mr. and Mrs. Henry U. Harder
Mr. and Mrs. Philip M. Harder
Mr. and Mrs. Charles J. Harrington
Mr. and Mrs. Richard L. Hatch
The Reverend William D. Henderson
Mr. and Mrs. Richard D. Hill
Mr. and Mrs. Robert W. Hubner
Mr. and Mrs. A. Dix Leesoo
Mr. and Mrs. John F. Magee
Mrs. Joan D. Manley
Dr. and Mrs. Edward A. Mason
Mr. and Mrs. Peter H. McCormick
Mr. and Mrs. A. Minis, Jr.
The Honorable Andrew G. T. Moore II
Mr. Dodge D. Morgan
Mr. and Mrs. George K. Moss
Mr. and Mrs. Peter B. Nalle
Mr. and Mrs. John D. O'Donnell
Mr. and Mrs. Robert W. Pierce
Dr. and Mrs. E. R. Piore
Mr. and Mrs. Hollis W. Plimpton, Jr.
Dr. Walter Scheuer
Mr. and Mrs. Edward G. Schware
Dr. and Mrs. Robert C. Seaman, Jr.
Mr. and Mrs. Joseph F. Shea
Mr. and Mrs. Robert C. Sylvia
Mr. and Mrs. Wm. Davis Taylor
Mr. Maurice Tempeleman
Mr. and Mrs. Philip R. von Stade
Mr. and Mrs. George R. Wallace, 3rd
Mr. Thomas J. Watson, Jr.
Mr. and Mrs. Taggart Whipple
P. A. B. Widener
Mr. and Mrs. Leslie J. Wilson

Alvin Associates

Gifts $500.00 - $999.99
Anonymous (3)
Mr. and Mrs. Richard W. Angle
Mr. Samuel M. Bemiss
Mr. and Mrs. Robert O. Bigelow
Mr. and Mrs. Hollis Cherney
Mr. James M. Clark, Jr.
Mr. and Mrs. LeRoy Clark, Jr.
Mr. Thirza J. Cleveland
Mr. Robert Cribbman
Mr. and Mrs. Norman C. Cross
Mr. and Mrs. Alexander C. Cushing
Mr. and Mrs. Alexander T. Daigualit
Dr. Sivra A. Earle
Dr. and Mrs. Harold E. Edgerton
Mr. and Mrs. William T. Ethridge
Dr. J. Horace Faulk, Jr.
Dr. and Mrs. Thomas A. Fulham
Ms. Mina Gerowin
Ms. Margery P. Goodale
Mr. and Mrs. Charles Goodwin
Mr. Robert V. Hatcher, Jr.
Mr. and Mrs. Edwin W. Hiam
Dr. and Mrs. Charles D. Hollister
Dr. and Mrs. David H. Hutchinson
Mr. and Mrs. Paul Jameson
Mr. and Mrs. James F. Jefferson
Ms. Lee A. Kimball
Mr. and Mrs. C.J. Kjorlien
Dr. and Mrs. Alexander D. Laugnir
Mr. Robert E. Lenk
Mr. Douglas Liebhabfak
Mr. and Mrs. Stanley Livingston, Jr.
Mr. and Mrs. Norman E. MacNeil
Mr. and Mrs. Donald F. McCullough
Mr. and Mrs. James A. McCurdy
Mr. and Mrs. Alan F. McHenry
Mr. and Mrs. Richard F. Mellon
Mr. and Mrs. John S. Montgomery
Mr. and Mrs. Albert L. Nickerson
Mr. Walter C. Paine
Mr. and Mrs. Carl E. Peterson
Mr. and Mrs. Allan Ray Punnam
Mr. and Mrs. Julius Rosenthal II
Mr. William B. Ruger, Sr.
Mr. and Mrs. John A. Scully
Captain and Mrs. Charles N. Shane
Mr. and Mrs. Geoffrey R. Simmonds
Mr. Philip M. Smith
Prof. and Mrs. Robert M. Solow
Dr. and Mrs. Derek W. Spencer
Mr. and Mrs. David B. Stone
Ms. Marilyn Stoutenbourg
Christopher and Susan Schultz
Tappcott
Mr. and Mrs. Cecil B. Thompson
Mr. and Mrs. Richard F. Teckner
Mr. and Mrs. John J. Valois
Richard B. Wenger, M.D.
Mr. and Mrs. Jerome B. Wiener
Mr. and Mrs. Paul Windels, Jr.

Bequests

The Estate of Julia E. Bemis
The Estate of Gladys M. Green

Gifts Received in Memory of:

Mr. Duke Castnahan
Mr. Christopher Haehler Frantz
Mrs. Ann Frantz
Mr. James J. Gerowin
Dr. Wendell F. Jackson
Mr. Joseph V. McKee, Jr.
Mr. John C. Pickard
Mr. James R. Shapley
Mr. Joseph Smart
Mr. Frank W. Titchiner
Mr. Robert Young, Jr.

Gifts Received in Honor of:

The 60th Birthday of
Mr. Warren A. Brown

Corporate and Foundation Gifts

Gifts Greater than $1,000,000
The Andrew W. Mellon Foundation

Gifts $100,000 - $999,999
Amoco Production Company, Tulsa
The John D. and Catherine T. MacArthur Foundation
Penzance Foundation
The Pew Charitable Trusts
The Florence and John Schumman Foundation
The G. Unger Vetlesen Foundation

Gifts $1,000 - $4,999
Alden Electronics
Bentzos, Inc.
Brady Foundation
Homolestrix
Houston Area Research Center
Indiana University
International Union for the
Conservation of Nature and
Natural Resources
Jet Propulsion Laboratory
Joint Oceanographic
Institutions Inc.
Marathon Oil
Marine Biological Laboratory
Marine Biotechnology
Institute, Ltd.
Marquest Group, Inc.
Massachusetts Centers of
Excellence Corporation
Massachusetts Institute
of Technology
North Atlantic Treaty
Organization
National Cancer Institute
National Institute on Deafness
and Other Communication
Disorders
National Undersea Research
Center at Fairleigh
Dickinson University
Old Dominion University
Research Foundation
Pennsylvania State University
Purdue University
R. D. Instruments
Rockefeller University
Rutgers University
Shell Development Company
Skidaway Institute of
Oceanography
Sobotka & Company, Inc.

Taylor Seafood, Inc.
Texas A&M Research Foundation
Truro Conservation Trust
Tufts University
Union Oil Company of California
United States Government:
Department of Commerce
National Oceanic and
Atmospheric
Administration
National Marine
Fisheries Service
National Sea Grant Program
Department of Defense
Department of the Army
Department of the Navy
Institute for Naval
Oceanography
Naval Research Laboratory
Naval Postgraduate School
Naval Undersea
Systems Center
Navy Engineering
Logistics Office
Office of Naval Research
U.S. Coast Guard
Department of Energy
Department of the Interior
Minerals Management Service
U.S. Geological Survey
Environmental Protection
Agency
National Aeronautics &
Space Administration
National Institutes of Health
National Science Foundation

University of California
University of Delaware
University of Massachusetts
University of Miami
University of Rhode Island
University of Southern Florida
University of Southern
Mississippi
University of Washington
University of Wisconsin
Webb Research Corporation

Shelley Lauzon

Sources of Support
Received through the
Office of Sponsored
Programs

Applied Sciences Associates
Aero Oil and Gas Company
Battelle Memorial Institute
Billfish Foundation
Blue Ridge Foundation
Camp Dresser & McKee
Cape Libraries Automated
Materials Sharing, Inc.
Chilmark Planning Board
Columbia University
Cornell University
The Charles Stark Draper
Laboratory, Inc.
Edgartown Harbor Association
Explorers Club
Friends of Squibnocket
Harbor Branch Oceanographic
Institution

The June Associates dinner celebrated Alvin's 25th anniversary with colorful balloons and good company.
THE Institution’s financial results depict a successful year. In 1989, total revenues increased by 26% to $82,293,250 from $65,356,152, an increase of $16,937,098 of which $12,363,543 was for the *Knorr/Melville* refit.

Excluding the *Knorr/Melville* refit, increases in government and nongovernment sponsored research income of $2,508,527 and $825,293, respectively, accounted for $3,333,820 of the $4,573,355 yearly change and represented increases of 5% and 10% respectively over the previous year. This increase occurred principally in Physical Oceanography and Geology and Geophysics. For government research, the National Science Foundation showed a $537,596 decrease, down 2% due to reduced ship operation support as a result of the *Knorr* refit. Research funding from the United States Navy increased by $2,590,372, up 17%, due primarily to new programs in tactical oceanography. Other government funding advanced by $455,751, an increase of 12%. The increase of $825,293 from nongovernment sources was principally revenues from the Jason Program in the Mediterranean. The backlog at year end of sponsored research excluding the vessel refit decreased by $1,191,750 to $27,754,606. Increases for other income of $1,036,619 and $203,116 for the education program accounted for the remainder of the total increase.

The five year trend for total revenues, shown in the graph above, reflects an increase of 61% for this period. Sponsored research, excluding the *Knorr/Melville* refit, increased 33% during this same period.

Total expenses increased $16,910,289 to $79,782,345 from $62,872,056, an increase of 27% from 1988. Costs of sponsored research, excluding the *Knorr/Melville* refit, increased by $3,333,820, up 6%. Education expenses increased 8% while other expenses increased by 46%, principally in the unsponsored research and external affairs areas.

Current unrestricted funds, totaling $2,923,395, were allocated as follows: $1,900,000 to unexpended plant funds, $500,000 to replenish the Director’s Innovative Fund, $250,000 to Director’s Discretionary Fund, and $273,395 in other transfers.

In 1989, gifts and grants from private sources increased by $1,010,353 to $3,814,776 from $2,804,423. A graph depicting gifts for the last five years is shown above.

The market value of the endowment including new gifts of $630,172 increased by $12,001,241 to $101,650,113 from $89,648,872.

Capital expenditures totalled $6,185,240 in 1989, an increase of $4,165,842 over 1988. Total expenditures include $2,727,996 for the Clark and $939,676 for the Fye laboratory additions and $994,586 for student housing. Funds for capital expenditures were provided from depreciation recovery, unrestricted income, and grants from government agencies.

The number of employees at year end increased by 56 to 867 principally as a result of additional positions on the scientific and technical staffs.

You are invited to review the Institution’s audited financial statements and accompanying notes presented on the following pages.

Gary B. Walker
Assistant Director for Finance & Administration

Kenneth S. Safe, Jr.
Treasurer

George A. Smith
Controller
Balance Sheets December 31, 1989 and 1988

<table>
<thead>
<tr>
<th>ASSETS</th>
<th>1989</th>
<th>1988</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current fund (Note A):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cash</td>
<td>$ 9,652,026</td>
<td>$ 6,620,237</td>
</tr>
<tr>
<td>Short-term investments, at cost which approximates market</td>
<td>15,356,620</td>
<td>18,196,388</td>
</tr>
<tr>
<td>Reimbursable costs and fees:</td>
<td>982,821</td>
<td>872,880</td>
</tr>
<tr>
<td>Billed</td>
<td>1,388,283</td>
<td>1,430,724</td>
</tr>
<tr>
<td>Unbilled</td>
<td>941,650</td>
<td>1,480,990</td>
</tr>
<tr>
<td>Other receivables</td>
<td>472,706</td>
<td>357,134</td>
</tr>
<tr>
<td>Inventories</td>
<td>425,900</td>
<td>326,154</td>
</tr>
<tr>
<td>Deferred charges and prepaid expenses</td>
<td>691,380</td>
<td>190,938</td>
</tr>
<tr>
<td>Deferred fixed rate variances</td>
<td>1,821,858</td>
<td>470,768</td>
</tr>
<tr>
<td>Due to other funds</td>
<td>(7,148,192)</td>
<td>(9,885,113)</td>
</tr>
<tr>
<td>Total</td>
<td>$24,585,014</td>
<td>$20,076,150</td>
</tr>
<tr>
<td>Endowment fund (Notes A and B):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investments, at market</td>
<td>88,954,391</td>
<td>52,624,766</td>
</tr>
<tr>
<td>Cash and equivalents</td>
<td>12,009,750</td>
<td>35,569,296</td>
</tr>
<tr>
<td>Pooled income investments, at market</td>
<td>194,629</td>
<td>163,803</td>
</tr>
<tr>
<td>Due from current fund</td>
<td>29,316</td>
<td>1,158,348</td>
</tr>
<tr>
<td>Annuity investments, at market</td>
<td>101,488,086</td>
<td>89,507,113</td>
</tr>
<tr>
<td></td>
<td>162,027</td>
<td>141,759</td>
</tr>
<tr>
<td>Total</td>
<td>$101,650,113</td>
<td>$89,648,872</td>
</tr>
<tr>
<td>Plant fund (Note A):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land, buildings, and improvements</td>
<td>30,757,821</td>
<td>25,685,973</td>
</tr>
<tr>
<td>Vessels and dock facilities</td>
<td>7,395,774</td>
<td>7,410,793</td>
</tr>
<tr>
<td>Laboratory and other equipment</td>
<td>5,412,765</td>
<td>4,836,566</td>
</tr>
<tr>
<td>Work in process</td>
<td>215,186</td>
<td>1,058,389</td>
</tr>
<tr>
<td>Less: accumulated depreciation</td>
<td>43,784,556</td>
<td>38,941,721</td>
</tr>
<tr>
<td>Due from current fund</td>
<td>(19,383,653)</td>
<td>(17,700,548)</td>
</tr>
<tr>
<td>Total</td>
<td>$31,519,779</td>
<td>$29,967,938</td>
</tr>
<tr>
<td>Total all funds</td>
<td>$157,754,906</td>
<td>$139,692,969</td>
</tr>
</tbody>
</table>

Statements of Current Fund Revenues, Expenses and Transfers for the years ended December 31, 1989 and 1988

<table>
<thead>
<tr>
<th>Revenues:</th>
<th>1989</th>
<th>1988</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sponsored research:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government</td>
<td>$49,698,822</td>
<td>$47,191,295</td>
</tr>
<tr>
<td>Non-government</td>
<td>9,296,049</td>
<td>5,471,536</td>
</tr>
<tr>
<td>Total</td>
<td>$58,994,871</td>
<td>$52,662,831</td>
</tr>
<tr>
<td>Knorr / Mellohi refit</td>
<td>14,628,534</td>
<td>2,264,991</td>
</tr>
<tr>
<td>Education funds availed of</td>
<td>2,411,787</td>
<td>2,238,671</td>
</tr>
<tr>
<td>Total restricted</td>
<td>70,666,792</td>
<td>60,166,133</td>
</tr>
<tr>
<td>Unrestricted:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fees</td>
<td>488,004</td>
<td>497,682</td>
</tr>
<tr>
<td>Endowment income</td>
<td>1,498,306</td>
<td>1,260,688</td>
</tr>
<tr>
<td>Gifts</td>
<td>1,177,005</td>
<td>670,392</td>
</tr>
<tr>
<td>Tuition</td>
<td>1,150,474</td>
<td>1,111,089</td>
</tr>
<tr>
<td>Investment income</td>
<td>1,273,869</td>
<td>1,133,669</td>
</tr>
<tr>
<td>Oceanus subscriptions</td>
<td>389,104</td>
<td>238,165</td>
</tr>
<tr>
<td>Other</td>
<td>346,916</td>
<td>298,523</td>
</tr>
<tr>
<td>Total unrestricted</td>
<td>6,226,468</td>
<td>5,189,839</td>
</tr>
<tr>
<td>Total revenues</td>
<td>$82,293,250</td>
<td>$65,356,152</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expenses:</th>
<th>1989</th>
<th>1988</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sponsored research:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salaries and fringe benefits</td>
<td>17,178,058</td>
<td>15,690,678</td>
</tr>
<tr>
<td>Ships and subsistences</td>
<td>6,943,470</td>
<td>8,947,175</td>
</tr>
<tr>
<td>Material and equipment</td>
<td>10,127,523</td>
<td>9,267,937</td>
</tr>
<tr>
<td>Subcontracts</td>
<td>4,899,922</td>
<td>4,065,538</td>
</tr>
<tr>
<td>Laboratory overhead</td>
<td>5,472,201</td>
<td>7,434,575</td>
</tr>
<tr>
<td>General and administrative</td>
<td>5,346,493</td>
<td>5,245,207</td>
</tr>
<tr>
<td>Other</td>
<td>9,318,415</td>
<td>7,718,541</td>
</tr>
<tr>
<td>Total</td>
<td>$58,996,471</td>
<td>$56,662,651</td>
</tr>
<tr>
<td>Knorr / Mellohi refit</td>
<td>14,628,534</td>
<td>2,264,991</td>
</tr>
<tr>
<td>Education:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faculty expense</td>
<td>1,359,440</td>
<td>1,147,741</td>
</tr>
<tr>
<td>Student expense</td>
<td>985,430</td>
<td>1,018,212</td>
</tr>
<tr>
<td>Postdoctoral programs</td>
<td>405,909</td>
<td>325,845</td>
</tr>
<tr>
<td>Other</td>
<td>266,545</td>
<td>290,417</td>
</tr>
<tr>
<td>Total</td>
<td>3,017,024</td>
<td>2,794,215</td>
</tr>
<tr>
<td>Unsponsored research</td>
<td>1,258,890</td>
<td>797,037</td>
</tr>
<tr>
<td>External affairs</td>
<td>1,519,841</td>
<td>899,177</td>
</tr>
<tr>
<td>Other activities</td>
<td>363,579</td>
<td>452,985</td>
</tr>
<tr>
<td>Total expenses</td>
<td>79,782,345</td>
<td>62,872,056</td>
</tr>
<tr>
<td>Net increase before transfers</td>
<td>2,510,905</td>
<td>2,484,096</td>
</tr>
<tr>
<td>Transfers - (to) from:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Designated reserves</td>
<td>(1,012,496)</td>
<td>(173,223)</td>
</tr>
<tr>
<td>Endowment fund</td>
<td>(381,879)</td>
<td>(381,879)</td>
</tr>
<tr>
<td>Plant fund</td>
<td>(1,900,000)</td>
<td>(880,000)</td>
</tr>
<tr>
<td>Other</td>
<td>(10,899)</td>
<td>(10,899)</td>
</tr>
<tr>
<td>Total</td>
<td>(2,995,395)</td>
<td>(1,555,392)</td>
</tr>
<tr>
<td>Net increase (decrease) - unrestricted current funds</td>
<td>$ (412,490)</td>
<td>$ 928,804</td>
</tr>
</tbody>
</table>

The accompanying notes are an integral part of the financial statements.
Statement of Changes in Fund Balances
for the year ended December 31, 1989

<table>
<thead>
<tr>
<th>Current Funds</th>
<th>Endowment Fund</th>
<th>Plant Fund</th>
<th>Total All Funds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Restricted</td>
<td>Designated</td>
<td>Unrestricted</td>
</tr>
<tr>
<td>Increases:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gifts, grants and contracts:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government</td>
<td>806,024,295</td>
<td>(86,024,295)</td>
<td>$66,024,295</td>
</tr>
<tr>
<td>Nongovernment</td>
<td>8,629,651</td>
<td>8,629,651</td>
<td>9,806,706</td>
</tr>
<tr>
<td>Endowment and similar funds</td>
<td>3,992,615</td>
<td>3,992,615</td>
<td>5,491,011</td>
</tr>
<tr>
<td>Net increase (decrease) in realized and unrealized appreciation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplemental retirement plan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>149,170</td>
<td>149,170</td>
<td>3,550,407</td>
</tr>
<tr>
<td>Total increases</td>
<td>78,795,131</td>
<td>78,795,131</td>
<td>6,226,458</td>
</tr>
<tr>
<td>Decreases:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expenditures</td>
<td>(76,066,792)</td>
<td>(3,715,553)</td>
<td>(79,782,345)</td>
</tr>
<tr>
<td>Depreciation (Note A)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant asset addition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (decrease) increase</td>
<td>(76,066,792)</td>
<td>(3,715,553)</td>
<td>(79,782,345)</td>
</tr>
<tr>
<td>Net change before transfers</td>
<td>2,728,339</td>
<td>2,728,339</td>
<td>5,230,244</td>
</tr>
</tbody>
</table>

Transfers – additions/deductions:

Current revenues to:

Plant funds | 1,012,496 | (1,900,000) | 1,012,496 | (1,900,000) | 1,012,496 | (1,900,000) | 0 | 0 |

Other | 10,899 | (10,899) | 0 | 0 |

Total transfers | 104,278 | 1,012,496 | (2,923,395) | (1,806,621) | 0 | 0 |

Change in fund balances for year | 2,832,417 | 1,012,496 | (412,496) | 3,432,693 | 12,001,241 | 3,159,733 | (1,607,880) | 16,988,705 | 12,941,709 |

Fund balance, December 31, 1988 | 2,832,417 | 1,012,496 | (412,496) | 3,432,693 | 12,001,241 | 3,159,733 | (1,607,880) | 16,988,705 | 12,941,709 |

Fund balance, December 31, 1989 | $12,870,628 | $1,954,563 | $2,040,741 | $16,665,932 | $101,650,113 | $24,400,903 | $7,118,876 | $149,835,824 | $122,850,119 |

The accompanying notes are an integral part of the financial statements.

Report of Independent Accountants

To the Board of Trustees of Woods Hole Oceanographic Institution:

We have audited the accompanying balance sheet of Woods Hole Oceanographic Institution as of December 31, 1989 and the related statements of changes in fund balances, and of current fund revenues, expenses and transfers for the year then ended. We previously audited and reported upon the financial statements of the Institution for the year ended December 31, 1988; totals for that year are shown for comparative purposes. These financial statements are the responsibility of the Institution’s management. Our responsibility is to express an opinion on these financial statements based on our audit.

We conducted our audit in accordance with generally accepted auditing standards. Those standards require that we plan and perform the audit to obtain reasonable assurance about whether the financial statements are free of material misstatement. An audit includes examining, on a test basis, evidence supporting the amounts and disclosures in the financial statements. An audit also includes assessing the accounting principles used and significant estimates made by management, as well as evaluating the overall financial statement presentation. We believe that our audit provides a reasonable basis for our opinion.

In our opinion, the financial statements referred to above present fairly, in all material respects, the financial position of Woods Hole Oceanographic Institution as of December 31, 1989, the changes in its fund balances, and its current fund revenues, expenses and transfers for the year then ended, in conformity with generally accepted accounting principles.

Boston, Massachusetts
March 30, 1990

Coopers & Lybrand
Notes to Financial Statements

A. Summary of Significant Accounting Policies:

Fund Accounting
The accompanying financial statements have been prepared on the accrual basis. In order to comply with the internal designations and external restrictions placed on the use of the resources available to the Institution, the accounts are maintained in accordance with the principles of fund accounting. This procedure classifies resources into various funds in accordance with their specified activities or objectives.

Cash
Included in cash at December 31, 1989 and 1988 is $9,807,566 and $5,061,264, respectively, representing advances received from the United States Navy. Such amounts are restricted in use to certain vessel repair and other research programs. Interest earned on unspent funds revert to the federal government.

Investments
Investment securities held by the Endowment Fund are carried at market value determined as follows: securities traded on a national securities exchange are valued at the last reported sales price on the last business day of the year; securities traded in the over-the-counter market and listed securities for which no sales prices were reported on that day are valued at closing bid prices. Purchases and sales of investment securities are recorded on a trade date basis. Realized gains and losses are computed on a specific identification method. Investment income, net of investment expenses, is distributed on the unit method. Unrestricted investment income is recognized as revenue when earned and restricted investment income is recognized as revenue when it is expended for its stated purpose. Realized and unrealized gains and losses are recognized on a specific fund basis.

Contracts and Grants
Revenues earned on contracts and grants are recognized as related costs are incurred. The Institution has negotiated with the federal government fixed rates for the recovery of certain indirect costs. Such recoveries are subject to carryforward provisions that provide for adjustments to be included in the negotiation of future fixed rates. The deferred fixed rate variance account represents the cumulative amount owed to or from the federal government.

Gifts
Unrestricted gifts are recognized as revenue when received and restricted gifts are recognized as revenue as they are expended for their stated purposes.

Noncash gifts are generally recorded at market value on the date of gift, although certain noncash gifts for which a readily determinable market value cannot be established are recorded at a nominal value until such time as the value becomes known.

Plant
Plant assets are stated at cost. Depreciation is provided on a straight-line basis at annual rates of 2% to 12 1/2% on buildings and improvements, 3 1/2% on vessels and dock facilities and 20% to 33 1/3% on equipment. Depreciation expense on plant assets purchased by the Institution amounting to $1,607,080 in 1989 and $1,534,200 in 1988, has been charged to operating expenses. Depreciation on certain government funded facilities (Atlantis II, the Laboratory for Marine Science and the dock facility, amounting to $261,814 in each year) is accounted for as a direct reduction of the plant asset and invested in plant fund. Title to the research vessel Atlantis II is contingent upon its continued use for oceanographic research.

The Institution consolidates available cash from the plant fund with other cash in the current fund for investment purposes.

Reclassifications
Certain amounts in the 1988 presentation have been reclassified to conform with the 1989 presentation.

B. Endowment Fund Investments:
The cost and market value of investments held at December 31, 1989 and 1988 are as follows:

<table>
<thead>
<tr>
<th></th>
<th>1989</th>
<th>Market</th>
<th>1988</th>
<th>Market</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>government agencies</td>
<td>$22,229,145</td>
<td>$22,269,101</td>
<td>$19,305,864</td>
<td>$19,188,872</td>
</tr>
<tr>
<td>Convertible bonds</td>
<td>256,906</td>
<td>256,900</td>
<td>337,795</td>
<td>278,435</td>
</tr>
<tr>
<td>Corporate bonds</td>
<td>10,116,249</td>
<td>10,570,631</td>
<td>8,907,802</td>
<td>8,745,226</td>
</tr>
<tr>
<td>Other bonds</td>
<td>333,982</td>
<td>345,092</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common stock</td>
<td>4,157,851</td>
<td>5,870,864</td>
<td>19,699,737</td>
<td>23,079,219</td>
</tr>
<tr>
<td>Other</td>
<td>1,685,715</td>
<td>1,636,203</td>
<td>1,357,733</td>
<td>1,333,001</td>
</tr>
<tr>
<td>Total investments</td>
<td>$82,079,784</td>
<td>$88,954,391</td>
<td>$49,778,331</td>
<td>$52,624,756</td>
</tr>
</tbody>
</table>

C. Investment Units:
The value of an investment unit at December 31, 1989 and 1988 was $1,9471 and $1,7596, respectively. The investment income per unit for 1989 and 1988 was $.1073 and $.0901, respectively.

<table>
<thead>
<tr>
<th></th>
<th>1989</th>
<th>1988</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit value, beginning of year</td>
<td>$1,7596</td>
<td>$1,6900</td>
</tr>
<tr>
<td>Unit value, end of year</td>
<td>1,9471</td>
<td>1,7596</td>
</tr>
<tr>
<td>Net change for the year</td>
<td>.1875</td>
<td>.0666</td>
</tr>
<tr>
<td>Investment income per unit for the year</td>
<td>1,073</td>
<td>999</td>
</tr>
<tr>
<td>Total return per unit</td>
<td>$2,948</td>
<td>$.1597</td>
</tr>
</tbody>
</table>

D. Endowment Income:
Endowment income consisted of the following:

<table>
<thead>
<tr>
<th></th>
<th>1989</th>
<th>1988</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interest and dividends</td>
<td>$5,920,374</td>
<td>$4,845,424</td>
</tr>
<tr>
<td>Investment management costs</td>
<td>(428,963)</td>
<td>(351,670)</td>
</tr>
<tr>
<td>Net endowment income</td>
<td>$5,491,011</td>
<td>$4,493,754</td>
</tr>
</tbody>
</table>

E. Retirement Plans:
The Institution maintains two noncontributory defined benefit pension plans covering substantially all employees of the Institution. Pension benefits are earned based on years of service and compensation received. The Institution’s policy is to fund pension cost accrued. Combined net pension expense for two plans consisted of the following for 1989:

<table>
<thead>
<tr>
<th></th>
<th>1989</th>
<th>1988</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service cost</td>
<td>$2,638,284</td>
<td>$2,429,429</td>
</tr>
<tr>
<td>Actual return on plan assets</td>
<td>(10,609,999)</td>
<td>(10,609,999)</td>
</tr>
<tr>
<td>Net amortization and deferral</td>
<td>5,538,959</td>
<td>5,538,959</td>
</tr>
<tr>
<td>Net pension expense</td>
<td>$1,775,680</td>
<td>$1,775,680</td>
</tr>
</tbody>
</table>

Below is a reconciliation of the combined funded status of the plans at December 31, 1989:

<table>
<thead>
<tr>
<th></th>
<th>1989</th>
<th>1988</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accumulated benefit obligation</td>
<td>$4,436,333</td>
<td>$4,436,333</td>
</tr>
<tr>
<td>Projected benefit obligation</td>
<td>62,593,200</td>
<td>62,593,200</td>
</tr>
<tr>
<td>Market value of plan assets</td>
<td>69,162,092</td>
<td>69,162,092</td>
</tr>
<tr>
<td>Plan assets in excess of the projected benefit obligation</td>
<td>(6,560,402)</td>
<td>(6,560,402)</td>
</tr>
<tr>
<td>Unrecognized net transition asset</td>
<td>6,213,473</td>
<td>6,213,473</td>
</tr>
<tr>
<td>Unrecognized prior service costs</td>
<td>(713,915)</td>
<td>(713,915)</td>
</tr>
<tr>
<td>Unrecognized net gain</td>
<td>2,573,373</td>
<td>2,573,373</td>
</tr>
<tr>
<td>Accrued pension cost</td>
<td>$1,304,326</td>
<td>$1,304,326</td>
</tr>
</tbody>
</table>

In addition to the $80,162,092 of plan assets listed above, the Institution has approximately $1,640,000 available at December 31, 1989 to fund certain benefits.

The discount rate and rate of increase in future compensation used to determine the projected benefit obligation as of December 31, 1989 were 7.25% and 7.06%, respectively. The expected return on plan assets was 8.00%.

F. Postretirement Health Care Benefits:
In addition to providing pension benefits, the Institution provides certain health care benefits for retired employees and their spouses. Substantially all of the Institution’s employees may become eligible for the benefits if they reach normal retirement age (as defined) or elect early retirement with certain time in service requirements. The cost of retiree health care is recognized as an expense when paid. These costs amounted to $240,912 in 1989 and $190,301 in 1988.