TABLE OF CONTENTS

Board of Trustees 4
Members of the Corporation 6
Trustee Committees 8
Citation for the Bigelow Medal 9
Resident Scientific
and Technical Staff 11
Administrative Staff 13
Non-Resident Research Staff 14
Scientific Visiting Committees 15

THE DIRECTOR'S REPORT 17
Department of Applied Oceanography 21
Department of Biology 24
Department of Chemistry and Geology 29
Department of Geophysics 39
Department of Physical Oceanography 43
Department of Theoretical Oceanography and Meteorology 47

Publications 50
Ashore and Afloat 57
Cruises 1966 59
Scientific Departments and
Supporting Services Personnel 61
Grants and Fellowships 65
Treasurer's Report 67
Auditor's Report 68
Board of Trustees*

Honorary Trustees

HENRY B. BIGELOW
Founder Chairman

L. O. COLBERT

HORACE S. FORD

PAUL HAMMOND

A. C. HUNTSMAN

ALFRED C. REDFIELD

HARLOW SHAPLEY

HENRY L. SHATTUCK

RAYMOND STEVENS

SELMAN A. WAKSMAN

Museum of Comparative Zoology, Cambridge, Massachusetts 02138
4408 29th Street, N.W., Washington, D.C. 20008
100 Memorial Drive, Cambridge, Massachusetts 02142
Hammond, Kennedy & Company, Inc., 230 Park Avenue, New York, New York 10017
217 Indian Road, Toronto, Ontario, Canada
Maury Lane, Woods Hole, Massachusetts 02543
Sharon Cross Road, Peterborough, New Hampshire 03458
294 Washington Street, Boston, Massachusetts 02108
100 Memorial Drive (Apartment 5-3B), Cambridge, Massachusetts 02142
Institute of Microbiology, Rutgers University, New Brunswick, New Jersey 08904

To serve until 1970

John P. Chase

W. Van Alan Clark, Jr.

Charles W. Cole

Howard C. Johnson, Jr.

William W. Rubey

E. Bright Wilson, Jr.

The Chase Building, 535 Boylston Street, Boston, Massachusetts 02116
Ram Island, Marion, Massachusetts 02738
The Orient, Box 66, Amherst, Massachusetts 01002
International Bank for Reconstruction and Development, 20 Exchange Place, New York, New York 10005
Institute of Geophysics, University of California, Los Angeles, California 90024
Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138

To serve until 1969

Detlev W. Bronk

Harvey Brooks

Paul C. Cross

Hudson Hoagland

J. Seward Johnson

Lawrason Riggs III

Rockefeller University, 66th Street and York Avenue, New York, New York 10021
Division of Engineering and Applied Physics, Pierce Hall, Harvard University, Cambridge, Massachusetts 02138
Mellon Institute, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
Worcester Foundation for Experimental Biology, 222 Maple Avenue, Shrewsbury, Massachusetts 01545
Cedar Lane Farm, Oldwick, New Jersey 08858
St. Joseph Lead Company, 250 Park Avenue, New York, New York 10017
To serve until 1968

ARNOLD B. ARCONS
CARYL P. HASKINS
EDWIN V. HUGGINS
EDWIN A. LINK
HENRY A. MORES, JR.
WILLIAM WEBSTER

Department of Physics, Amherst College,
Amherst, Massachusetts 01002
Carnegie Institution of Washington, 1530 P Street, N.W.,
Washington, D.C. 20005
Suite 3120, 120 Broadway, New York, New York 10005
10 Avon Road, Binghamton, New York 13905
10 Otis Place, Boston, Massachusetts 02108
New England Electric System, 441 Stuart Street,
Boston, Massachusetts 02116

To serve until 1967

JAMES S. COLES
HOMER H. EWING
MILFORD R. LAWRENCE
EMANUEL R. PIORÉ
FRANCIS C. WELCH
CARROLL L. WILSON

Bowdoin College, Brunswick, Maine 04011
Greenville, Wilmington, Delaware 19807
Siders Pond Road, Falmouth, Massachusetts 02540
International Business Machines Corporation,
590 Madison Avenue, New York, New York 10022
73 Tremont Street, Boston, Massachusetts 02108
Jacobs Hill, Seekonk, Massachusetts 02771

Ex Officio

EDWIN D. BROOKS, JR.
PAUL M. FYE
NOEL B. McLEAN
MARY SEARS

P.O. Box 1135, Boston, Massachusetts 02103
Woods Hole Oceanographic Institution, Woods Hole,
Massachusetts 02543
Edo Corporation, College Point, Long Island,
New York 11356
Woods Hole Oceanographic Institution, Woods Hole,
Massachusetts 02543

Officers

PAUL M. FYE
President of the Corporation
NOEL B. McLEAN
Chairman of the Board of Trustees
EDWIN D. BROOKS, JR.
Treasurer
MARY SEARS
Clerk of the Corporation
GEORGE HOWLAND
Assistant Treasurer
FRANCIS C. WELCH
Deputy Clerk

Woods Hole Oceanographic Institution, Woods Hole,
Massachusetts 02543
Edo Corporation, College Point, Long Island,
New York 11356
P.O. Box 1135, Boston, Massachusetts 02103
Woods Hole Oceanographic Institution, Woods Hole,
Massachusetts 02543
P.O. Box 1135, Boston, Massachusetts 02103
73 Tremont Street, Boston, Massachusetts 02108

*As of 1 July 1966
Members of the Corporation

CHARLES FRANCIS ADAMS
Raytheon Company
Spring Street
Lexington, Massachusetts 02173

OLIVER AMES, III
"Edgewater"
Beverly Farms, Massachusetts 01920

PHILIP B. ARMSTRONG
Medical Center of Syracuse, State University of New York, Syracuse, New York 13210

ARNOLD B. ARONS
Department of Physics, Amherst College
Amherst, Massachusetts 01002

ERIC G. BALL
Harvard Medical School, 25 Shattuck Street
Boston, Massachusetts 02115

ALAN C. BEMIS
Westford Road
Concord, Massachusetts 01742

HENRY B. BIGELOW
Museum of Comparative Zoology
Cambridge, Massachusetts 02138

KINGMAN BREWSTER, JR.
Yale University
New Haven, Connecticut 06520

DETLEV W. BRONK
Rockefeller University
66th Street and York Avenue
New York, New York 10021

EDWIN D. BROOKS, JR.
P.O. Box 1135
Boston, Massachusetts 02103

HARVEY BROOKS
Division of Engineering and Applied Physics
Pierce Hall, Harvard University
Cambridge, Massachusetts 02138

GEORGE F. CARRIER
Division of Engineering and Applied Physics
Pierce Hall, Harvard University
Cambridge, Massachusetts 02138

JOHN P. CHASE
The Chase Building, 535 Boylston Street
Boston, Massachusetts 02116

C. LLOYD CLAFF
Single Cell Research Foundation, Inc.
5 Van Beal Road
Randolph, Massachusetts 02368

W. VAN ALAN CLARK, JR.
Ram Island, Marion, Massachusetts 02738

L. O. COLBERT
4408 29th Street, N.W.
Washington, D.C. 20008

CHARLES W. COLE
The Orient
Box 66, Amherst, Massachusetts 01002

ROBERT H. COLE
Department of Chemistry, Brown University
Providence, Rhode Island 02912

JAMES S. COLES
Bowdoin College, Brunswick, Maine 04011

MELVIN A. CONANT, JR.
Standard Oil Company of New Jersey
30 Rockefeller Plaza
New York, New York 10020

PAUL C. CROSS
Mellon Institute
4400 Fifth Avenue
Pittsburgh, Pennsylvania 15213

EDWARD M. DOUGLAS
P.O. Box 567
Vineyard Haven, Massachusetts 02568

HENRY B. DU Pont
Wilmington, Delaware 19801

FERDINAND EBERSTADT
65 Broadway, New York, New York 10006

CARL H. ECKERT
Scripps Institution of Oceanography
La Jolla, California 92038

HARRISON P. EDDY
c/o Metcalf & Eddy
1300 Statler Building
Boston, Massachusetts 02117

GIFFORD C. EWING
Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543

HOMER H. EWING
Greenvile, Wilmington, Delaware 19807

WILLIAM H. FORBES
School of Public Health, Harvard University
55 Shattuck Street
Boston, Massachusetts 02115

HORACE S. FORD
150 Memorial Drive
Cambridge, Massachusetts 02142

PAUL M. FYE
Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543

JOHN A. GIFFORD
14 Wall Street, New York, New York 10005

CECIL H. GREEN
Airlawn Station
P.O. Box 35084, Dallas, Texas 75235

DONALD R. GRIFFIN
Rockefeller University
66th Street and York Avenue
New York, New York 10021

PAUL HAMMOND
Hammond, Kennedy & Company, Inc.
230 Park Avenue
New York, New York 10017

CARYL P. HASKINS
Carnegie Institution of Washington
1530 P Street, N.W.
Washington, D.C. 20005

HALSEY C. HERRESHOFF
Department of Naval Architecture and Marine Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

HUDSON HoAGLAND
Worcester Foundation for Experimental Biology, 222 Maple Avenue
Shrewsbury, Massachusetts 01546

CLAUDE W. HORTON
3213 Cherry Lane, Austin, Texas 78703
GEORGE HOWLAND
P.O. Box 1135
Boston, Massachusetts 02103

EDWIN V. HUGGINS
Suite 3120
120 Broadway, New York, New York 10005

COLUMBUS O'D. ISELIN
Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543

FRANK B. JEWETT, JR.
Vitro Corporation of America
90 Park Avenue, New York, New York 10016

HOWARD C. JOHNSON, JR.
International Bank for Reconstruction and Development, 20 Exchange Place
New York, New York 10005

J. SEWARD JOHNSON
Cedar Lane Farm
Oldwick, New Jersey 08858

AUGUSTUS B. KINZEL
The Salk Institute
630 Fifth Avenue
New York, New York 10020

MILFORD R. LAWRENCE
Siders Pond Road
Falmouth, Massachusetts 02540

EDWIN A. LINK
10 Avon Road
Binghamton, New York 13905

ALFRED L. LOOMIS
Room 2420, 14 Wall Street
New York, New York 10005

AUGUSTUS P. LORING
Loring, Wolcott Office, Inc.
35 Congress Street
Boston, Massachusetts 02109

ROBERT M. LOVE
Cedar Point
Vineyard Haven, Massachusetts 02568

W. H. Lycan
Johnson & Johnson
New Brunswick, New Jersey 08901

GORDON J. F. MACDONALD
Institute for Defense Analyses
400 Army-Navy Drive
Arlington, Virginia 22202

LERoy F. Marek
34 Somerset Street
Lexington, Massachusetts 02173

ERNST MAYR
Museum of Comparative Zoology
Cambridge, Massachusetts 02138

FRANCIS K. McCUNE
1564 Danny Drive
Sarasota, Florida 33580

William D. McElroy
Department of Biology
The Johns Hopkins University
Baltimore, Maryland 21218

NOEL B. McLEAN
Edo Corporation
College Point, Long Island, New York 11356

DANIEL MERRIMAN
Bingham Oceanographic Laboratory
Yale University
New Haven, Connecticut 06520

ROBERT RULON MILLER
Dixon Corporation
Bristol, Rhode Island 02809

HENRY S. MORGAN
2 Wall Street, New York, New York 10005

ROBERT W. MORSE
Case Institute of Technology
Cleveland, Ohio 44106

HENRY A. MORSS, JR.
10 Otis Place, Boston, Massachusetts 02108

FRANK L. NICKERSON
71 Main Street
Falmouth, Massachusetts 02540

CHESTER W. NIMITZ, JR.
The Perkin-Elmer Corporation
Norwalk, Connecticut 06852

FRANK PACE, JR.
International Executive Service Corporation
720 Fifth Avenue
New York, New York 10019

ALBERT E. PARR
American Museum of Natural History
Central Park West at 79th Street
New York, New York 10023

JOHN C. PICKARD
Box 3797, Greenville, Delaware 19807

SUMNER T. PIKE
2 Church Street, Lubec, Maine 04652

EMANUEL R. PIORRE
International Business Machines Corporation
590 Madison Avenue
New York, New York 10022

RICHARD W. PRATT
40 Glenoe Road
Chestnut Hills, Massachusetts 02167

ALFRED C. REDFIELD
Maury Lane
Woods Hole, Massachusetts 02543

ALFRED G. REDFIELD
Watson Laboratories, International Business Machines Corporation, 612 West 115th Street
New York, New York 10025

GEORGE H. RICHARDS
68 William Street
New York, New York 10005

LAWRENCE B. RICHARDSON
1895 Fountain Head Road
Hagerstown, Maryland 21741

LAWRASON RIGG III
St. Joseph Lead Company
250 Park Avenue, New York, New York 10017

GORDON A. RILEY
Institute of Oceanography
Dalhousie University, Halifax, Nova Scotia

WILLIAM W. RUBEY
Institute of Geophysics, University of California, Los Angeles, California 90024

FRANCIS C. RYDER
37 Larchwood Drive
Cambridge, Massachusetts 02138
Executive Committee

Arnold B. Arons
Harvey Brooks
Paul M. Fye
Hudson Hoagland
Noel B. McLean
William Webster
Carroll L. Wilson

Finance Committee

Edwin D. Brooks, Jr.
John P. Chase
Henry L. Shattuck
Francis C. Welch

Audit Committee

Charles Francis Adams
Milford R. Lawrence
Alfred M. Wilson
Resident Scientific and Technical Staffs

Paul M. Fye Director of the Woods Hole Oceanographic Institution

Bostwick H. Ketchum . . Associate Director
Lecturer on Biological Oceanography, Harvard University

Arthur E. Maxwell . . . Associate Director

Columbus O'D. Iselin . . . Henry Bryant Bigelow Oceanographer
Professor of Physical Oceanography, Harvard University
Research Oceanographer, Museum of Comparative Zoology
Professor of Oceanography, Massachusetts Institute of Technology

Department of Applied Oceanography

Lincoln Baxter II, Applied Physicist
Henri O. Berteaux, Research Associate
Robert R. Brockhurst, Applied Physicist
Robert G. Drever, Research Associate
Nicholas P. Fofonoff, Senior Scientist
Eric H. Frank, Research Associate
Earl E. Hays, Department Chairman, Senior Scientist
Associate Professor of Physics (Affiliate), Clark University
Robert H. Heinmiller, Research Associate
William M. Marquet, Research Associate
James W. Mavor, Jr., Mechanical Engineer
Marvin J. McCamis, Research Associate

Thomas O. McClure, Research Associate
Frank P. Omohundro, Research Associate
David M. Owen, Research Associate
George H. Power, Research Associate
William O. Rainnie, Jr., Oceanographic Engineer
Melvin A. Rosenfeld, Manager, Information Processing Center
Arnold G. Sharp, Research Associate
Paul B. Stimson, Research Associate
Douglas C. Webb, Research Associate
Jacqueline H. Webster, Research Associate
Valentine P. Wilson, Research Associate

Department of Biology

Edward R. Baylor, Associate Scientist
Francis G. Carey, Assistant Scientist
Nathaniel Corwin, Analytical Chemist
James E. Craddock, Assistant Scientist
George D. Grice, Jr., Associate Scientist
Robert R. Guillard, Associate Scientist
Georges R. Hampson, Research Associate
Robert R. Hessler, Associate Scientist
Edward M. Hulburt, Associate Scientist
Kunigunde Hülsemann, Assistant Scientist
Holger W. Jannasch, Senior Scientist
Privat Dozent in Microbiology, University of Göttingen
John W. Kanwisher, Senior Scientist
Associate Professor, Massachusetts Institute of Technology
Andrew Konnerth, Jr., Research Associate

Frank J. Mather III, Associate Scientist
William S. Maddux, Assistant Scientist
David W. Menzel, Assistant Department Chairman, Associate Scientist
John H. Ryther, Department Chairman, Senior Scientist
Howard L. Sanders, Senior Scientist
Instructor in Marine Ecology, Marine Biological Laboratory
Rudolf S. Scheltema, Assistant Scientist
Mary Sears, Senior Scientist
John M. Teal, Associate Scientist
Hans G. Trüper, Assistant Scientist
Harry J. Turner, Jr., Associate Scientist
Lecturer in Zoology, University of New Hampshire
Ralph F. Vaccaro, Associate Scientist
Stanley W. Watson, Associate Scientist
Charles S. Yentsch, Associate Scientist

Cooperating Scientists U.S. Geological Survey

Frank T. Manheim John S. Schlee A. Richard Tagg James V. A. Trumbull

John C. Hathaway Robert H. Meade
Department of Chemistry and Geology

WILLIAM D. ATHEARN, Research Associate
MAX BLUMER, Senior Scientist
Research Affiliate in Chemical Oceanography, Massachusetts Institute of Technology
VAUGHAN T. BOWEN, Senior Scientist
Lecturer in Biology, Yale University
ROBERT J. BYRNE, Assistant Scientist
DOUGLAS CORMACK, Assistant Scientist
EGON T. DEGENS, Senior Scientist
WERNER G. DEUSER, Research Associate
KENNETH O. EMMER, Senior Scientist
JOHN E. GORDON, Associate Scientist
JOHST B. HÜLSMANN, Associate Scientist
JOHN M. HUNT, Department Chairman, Senior Scientist

JOHN D. MILLIMAN, Assistant Scientist
VICTOR E. NOSHIN, JR., Assistant Scientist
RUSSELL K. PAUL, Research Associate
DAVID A. ROSS, Assistant Scientist
Associate Professor of Oceanography, Cape Cod Community College
PETER L. SACHS, Research Associate
ALVIN SIEGEL, Assistant Scientist
DEREK W. SPENCER, Associate Scientist
GEOFFREY THOMPSON, Assistant Scientist
ELAZAR UCHUPI, Associate Scientist
DAVID WALL, Assistant Scientist
JOHN M. ZEIGLER, Associate Scientist
Lecturer in Geology, Department of Geophysical Sciences, University of Chicago

Department of Geophysics

RICHARD H. BACKUS, Senior Scientist
Associate in Icthyology
Harvard University
JOHN C. BECKERLE, Associate Scientist
WILLIAM A. BERGREN, Assistant Scientist
STANLEY W. BERGSTROM, Research Associate
CARL O. BOWIN, Associate Scientist
ELIZABETH T. BUNCE, Associate Scientist
RICHARD L. CHASE, Assistant Scientist
WILLARD DOW, Electronics Engineer
WILLIAM M. DUNKLE, JR., Research Associate
RICHARD L. HAEDIECH, Assistant Scientist
EARL E. HAYS, Department Chairman, Senior Scientist
Associate Professor of Physics (Affiliate), Clark University

JOHN B. HERSEY, Senior Scientist
Professor of Oceanography, Massachusetts Institute of Technology
FREDERICK R. HESS, Research Associate
SYDNEY T. KNOTT, Hydroacoustics Engineer
ELI J. KATZ, Assistant Scientist
EDWARD L. MURPHY, Associate Scientist
JOSEPH D. PHILLIPS, Assistant Scientist
ALLYN C. VINE, Senior Scientist
RICHARD P. VON HERZEN, Associate Scientist
WILLIAM A. WATKINS, Research Associate
ASA S. WING, Research Associate
WARREN E. WITZELL, Research Associate
EARL M. YOUNG, Research Associate
EDWARD F. K. ZARUDZKI, Seismic Engineer

Department of Physical Oceanography

JOSEPH R. BARRETT, JR., Research Associate
ALVIN L. BRADSHAW, Applied Physicist
JOHN G. BRUCE, JR., Research Associate
DEAN F. BUMPUS, Senior Scientist
JOSEPH CHASE, Associate Scientist
Visiting Lecturer, State College at Bridgewater
C. GODFREY DAY, Research Associate
FREDERICK C. FUGLISTER, Department Chairman, Senior Scientist
WILLIAM G. METCALF, Associate Scientist
ARTHUR R. MILLER, Associate Scientist

CHARLES E. PARKER, Research Associate
KARL E. SCHLEICHER, Oceanographic Engineer
ELIZABETH H. SCHROEDER, Research Associate
MARVEL C. STAUCH, Research Associate
GORDON H. VOLKMAN, Research Associate
ARTHUR D. VORHIS, Associate Scientist
BRUCE A. WARREN, Assistant Scientist
T. FERRIS WEBSTER, Associate Scientist
GEOFFREY G. WHITNEY, JR., Research Associate
L. VALENTINE WORTHINGTON, Senior Scientist

Department of Theoretical Oceanography and Meteorology

DUNCAN C. BLANCHARD, Associate Scientist
ANDREW F. BUNKER, Associate Scientist
GIFFORD C. EWING, Senior Scientist
COLUMBUS O'D. ISELIN
Henry Bryant Bigelow Oceanographer
ERIC B. KRAUS, Senior Scientist

F. CLAUDE RONNE, Photographic Specialist
CLAES G. H. ROOTH, Acting Department Chairman, Associate Scientist
Visiting Associate Professor, Department of Geology and Geophysics, Massachusetts Institute of Technology
PETER M. SAUNDERS, Assistant Scientist
ALLARD T. SPENCER, Design Engineer
Administrative Staff of
the Woods Hole Oceanographic Institution

David D. Scott Assistant Director for Administration
Frederick E. Mangelsdorf Assistant Director for Development and Information
Richard S. Edwards Marine Superintendent
Jonathan Leiby Naval Architect
Arthur T. Henderson Procurement Supervisor
Harvey Mackillop Controller
James R. Mitchell Facilities Manager
Bruce Crawford Personnel Manager
Norman T. Allen Archivist
John L. Schilling Public Information Officer
John F. Pike Port Captain
Jess H. Stanbrough Technical Assistant to the Director
L. Hoyt Watson Executive Assistant, Associates Program
Award of the Bigelow Medal
to Columbus O’Donnell Iselin, 22 June 1966

Sailor, scientist, author, lecturer, administrator, counsellor, teacher, adviser to the U.S. Government and to international bodies, historian, guide to future developments, and above all a “pump primer.” Columbus O’Donnell Iselin is to a large extent responsible for the growth and development of oceanography into a major science. He is one of the few people of such accomplishments who has enlarged their subject without enlarging themselves as a public figure.

Just over 35 years ago American oceanography virtually was nonexistent. By good fortune, Columbus Iselin, as a student at Harvard, met Dr. Henry Bryant Bigelow who interested the mathematics major in the problems of the ocean. He (C.O’D.I.) built a 72-foot schooner, the CHANCE, and with a group of fellow students went to study the Labrador Current off Newfoundland, thus proving that valuable work could be done with a small ship — an absolute necessity in those days when little, if any, money was available for oceanography. Soon thereafter (1930) the Woods Hole Oceanographic Institution was founded. Dr. Bigelow became its first Director and Mr. Iselin, the Captain-scientist of the R.V. ATLANTIS which he had helped to design.

During the next ten years he studied the Gulf Stream and wrote a series of classic papers on this current. In 1940, he became the second Director of the Institution. Convinced that the U.S. Navy needed a knowledge of its environment in the coming war, he received his chance by being able to demonstrate that underwater sound location of submarines was influenced by the thermal characteristics of the ocean, thus laying the groundwork for the present-day multi-million dollar anti-submarine warfare industry. Neither the German nor the Japanese navies were aware of these developments during World War II.

Under Columbus Iselin’s guidance the study of ocean waves, air-sea interactions, submarine geology and other programs were actively pursued; programs which today have amassed great stores of knowledge of scientific as well as economic value.

There were no trained oceanographers but Iselin had an uncanny knack of finding and training young men, many of whom have become respected authorities in their fields. Always readily available, he roamed the corridors giving advice and suggestions, often in that indirect way which makes it appear that the resulting developments stem from the recipient’s own thoughts.

In the immediate post-war years when government support was difficult to obtain, Columbus Iselin retained the nucleus of his team at low pay but high morale, but also encouraged others to leave for university
positions or other marine laboratories, thus spreading talent in many places and by this initial leavening made it possible to interest universities, which had not been notably enthusiastic about the marine sciences.

Imprecise navigation always has bothered oceanography so that the wartime development of Loran greatly interested him. Soon, together with the bathythermograph, a new attack on the Gulf Stream problem was initiated, resulting in a new concept of ocean currents which kept physical oceanographers and mathematicians enthusiastically busy for many years. Iselin’s interest in navigation continues. The GEON system and developments in VLF navigation were sparked at Woods Hole, while the ATLANTIS II recently became the first research vessel to employ satellite navigation.

In the lean post-war years, Iselin also encouraged the study of coastal waters which largely had been avoided by oceanographers. These studies led to the first adequate theory on estuarine circulation, a work of great practical importance for pollution, coastal engineering and fishery problems.

In his careful writings, in lecturing, and as a member of many national and international committees, Columbus Iselin’s low key suggestions on many aspects of the ocean have received wide acknowledgment and acceptance. He foresaw the great post-war expansion in international fisheries and wrote and spoke extensively on fishery problems which are often more social and economic problems than scientific ones. He initiated the search for new fishery resources in deep water off the New England coast, a “pump priming” which led to a new lobster fishery and extensive searches by other agencies. Years ago he suggested the establishment of the marine equivalent of agricultural experimental stations. This idea seems about to become a reality.

Readily available to anyone, be it scientist, businessman, politician, reporter or layman, he has stated his views thousands of times with the slow voice of reason and has flown more than one million miles to express his ideas as readily to a scientific meeting as to a high school group, Rotarians, or others. A few of his statements have seeped into the national consciousness: “Fishermen remain hunters, not farmers.” “A major obstacle to progress is that the old idea of freedom of the seas is diametrically opposed to the wise management of ocean resources.” “Our greatest resource is H₂O: we must try to get it on the land more uniformly (through climatic control).” “Acre for acre, the sea is as fertile as good farm land.”

Practically no aspect of the ocean, now so widely discussed, has escaped his attention. As early as 1946, he encouraged the development of ocean buoy systems. The coupling of meteorology and oceanography, long-range weather forecasting as well as oceanographic forecasting, the possible moderation of climate and weather, international co-operation in science, education and naval warfare problems all were and are encouraged and discussed.

A most human man, never angry, always reasonable, Iselin also is well aware of the social problems resulting from scientific advances; the difficulties of government support and the lack of sufficient private funds to spur fundamental research and the slow progress from scientific knowledge to practical economic results.

The recipient of many honors, Columbus Iselin has two which cannot be won by professional excellence, the admiration and loyalty of those who are privileged to be associated with him at the Institution. Thus, there is considerable excitement throughout the laboratories that he is the recipient of the Henry Bryant Bigelow Medal, for he has all the qualities that make this award to him most fitting.
Non-Resident Research Staff

David L. Belding, Emeritus Scientist

Henry B. Bigelow, Emeritus Scientist

Cornelia L. Carey, Emeritus Scientist

Alfred C. Redfield, Senior Oceanographer (Emeritus)
Professor of Physiology (Emeritus), Harvard University

William C. Schroeder, Emeritus Scientist

Floyd M. Soule, Emeritus Scientist

Arnold B. Arons, Associate in Physical Oceanography
Professor of Physics, Amherst College

Bruce B. Benson, Associate in Physics
Professor of Physics, Amherst College

George L. Clarke, Associate in Marine Biology
Professor of Biology, Harvard University

Louis N. Howard, Associate in Mathematics
Professor of Mathematics, Massachusetts Institute of Technology

Galen E. Jones, Associate in Microbiology
Professor of Microbiology, University of New Hampshire

Robert H. Kraichnan, Associate in Theoretical Physics
Peterborough, New Hampshire

Willem V. R. Malkus, Associate in Physical Oceanography
Professor of Planetary Physics, University of California, Los Angeles

Paul C. Mangelsdorff, Jr., Associate in Physical Chemistry
Associate Professor in Physics, Swarthmore College

David A. McGill, Associate in Biology
Assistant Scientist, Department of Biology, Southeastern Massachusetts Technological Inst.

Giles W. Mead, Associate in Ichthyology
Curator of Fishes, Harvard University

Robert L. Miller, Associate in Submarine Geology
Professor of Marine Geophysics, University of Chicago

James M. Moulton, Associate in Marine Biology
Professor of Biology, Bowdoin College

Jerome Namias, Associate in Meteorology
Chief, Extended Forecast Division, U.S. Weather Bureau, Environmental Science Services Administration

Geoffrey D. Nicholls, Associate in Geochemistry
Senior Lecturer, Geochemistry, University of Manchester, England

Donald C. Rhoads, Associate in Paleocology
Assistant Professor of Geology, Yale University

Allan R. Robinson, Associate in Physical Oceanography
Professor of Geophysical Fluid Dynamics, Harvard University

William E. Schevill, Associate in Oceanography
Research Associate in Zoology, Museum of Comparative Zoology, Harvard University

Raymond Siever, Associate in Geology
Professor of Geology, Harvard University

Joanne Simpson, Associate in Meteorology
Chief, Experimental Meteorology Branch, Atmospheric Physics and Chemistry Laboratory, Environmental Science Services Administration

Edward A. Spiegel, Associate in Astrophysics
Associate Professor of Physics, New York University

Henry M. Stommel, Associate in Physical Oceanography
Professor of Oceanography, Massachusetts Institute of Technology

Thomas T. Sugihara, Associate in Geochemistry
Professor of Chemistry and Chairman of the Department of Chemistry, Clark University

George Veronis, Associate in Mathematics
Professor of Geology and Applied Science, Yale University

William S. von Arx, Associate in Physical Oceanography
Professor of Oceanography, Massachusetts Institute of Technology

Joseph B. Walsh, Jr., Associate in Mechanical Engineering
Research Associate, Department of Geology and Geophysics, Massachusetts Institute of Technology

Pierre Welander, Associate in Physical Oceanography
Docent, Stockholm University, Stockholm, Sweden

Alfred H. Woodcock, Associate in Oceanography
Research Associate in Geophysics, Institute of Geophysics, University of Hawaii
Scientific Visiting Committees

Department of Applied Oceanography

CLAUDE W. HORTON, University of Texas, Austin, Texas
C. E. MENNENKE, U.S. Naval Postgraduate School, Monterey, California
THOMAS C. SMITH, Daystrom, Inc., Poughkeepsie, New York

Department of Biology

HUDSON HOAGLAND, The Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts
JOHN D. H. STRICKLAND, Institute of Marine Resources, La Jolla, California
KARL M. WILBUR, Duke University, Durham, North Carolina

Department of Chemistry and Geology

WALLACE S. BROECKER, Lamont Geological Observatory, Palisades, New York
L. H. N. COOPER, The Laboratory, Marine Biological Association, Plymouth, England
BERNARD R. PELLETIER, Bedford Institute of Oceanography, Dartmouth, Canada

Department of Geophysics

ANTON L. HALE, Southwest Center for Advanced Studies, Dallas, Texas
FREDERICK V. HUNT, Harvard University, Cambridge, Massachusetts
J. LAMAR WORZEL, Lamont Geological Observatory, Palisades, New York

Department of Physical Oceanography

CLIFFORD A. BARNES, University of Washington, Seattle, Washington
MAURICE RATTRAY, JR., University of Washington, Seattle, Washington
ROBERT W. STEWART, University of British Columbia, Vancouver, Canada

Department of Theoretical Oceanography and Meteorology

GEORGE F. CARRIER, Harvard University, Cambridge, Massachusetts
JEROME NAMIAS, U.S. Weather Bureau, Washington, D.C.
P. A. SHEPPARD, Imperial College of Science and Technology, London, England
THE DIRECTOR'S REPORT

A Milepost in Education

For the past several years a Trustees' Education Committee has been looking into the role which graduate education should play at the Institution and the several ways in which a graduate-studies program might best take advantage of the unique character of the Institution. These studies culminated, this past summer, in a final report to the Board of Trustees recommending the establishment of a joint Ph.D. degree program in cooperation with a limited number of universities.

At the Annual Meeting of the Board of Trustees in June, it was unanimously voted to approve the establishment of joint doctoral programs based on the report (June 1966) of the Trustees' Education Committee and to authorize the Director and Executive Committee to formalize agreements with universities and to arrange for the necessary changes in the Institution's charter from the Commonwealth of Massachusetts. The latter half of the year has been devoted to further discussions with representatives from the Massachusetts Institute of Technology about the implementation of such a program and the preparation of the legal documents seeking the necessary change of the Institution's charter from the Commonwealth of Massachusetts. On December 2, 1966, the Corporation of the Massachusetts Institute of Technology approved the establishment of a joint Ph.D. degree program with the Institution, and on January 11, 1967, the Members of the Corporation of the Woods Hole Oceanographic Institution voted the necessary amendment to the Institution's charter.

Thus, all the formal steps within the Institution and at MIT were completed to permit the achievement of a new and unique plan for the training of young people in marine science. This is a milepost of considerable magnitude — one which may well become most significant in the development of the Institution.

Education at Woods Hole — a brief history

The founding of the Institution in 1930 resulted from a recommendation of the first Committee on Oceanography of the National Academy of Sciences.
In their report, its secretary, Henry B. Bigelow, wrote:

“A single well-equipped oceanographic institution in a central location on the Atlantic Coast is needed to supply necessary facilities for research and education, hitherto lacking, and to encourage the establishment of oceanography as a university subject. Such a central institution would contribute to the advancement of oceanographic research not only by the productivity of its staff but also by the impetus that it would give to studies in this field in various universities. The proposed institute would also serve a most important purpose by providing facilities for visiting investigators, and by coordinating the scattered interests of numerous governmental agencies and private organizations already active in parts of the field.”

From the day when it first opened its doors, the Institution has provided a common meeting ground and research facilities for faculty and students from many colleges and universities. As early as 1932, the first full year of laboratory operation, the staff, visiting investigators and students came to Woods Hole from eighteen different universities; in the following year, twenty-two universities were represented at the Institution. In subsequent years, these relationships with academic centers have continued to grow. The young Institution thus drew most of its intellectual nourishment from academic soil—from students and their teachers, even though the principal commitments of these individuals were to their parent universities. At the same time, the Institution gave a new impetus to the universities’ programs in oceanography. This was indeed a very satisfactory arrangement, for the Institution played a significant role in the academic process even though its educational activities were not formal in nature.

The educational program at the Institution has been based on the philosophy that oceanography is not a unique basic scientific discipline, but rather an interdisciplinary area of research which should draw the attention of investigators trained in each of the fundamental sciences. These investigators, challenged by oceanic problems, use their special knowledge and training to explore the problems of the ocean systems which involve the tools and methods of physics, chemistry, biology and mathematics. Other interdisciplinary areas of research, such as geology, meteorology, and engineering are also drawn upon in the pursuit of oceanographic studies. It would be most unwise, we believe, to disregard the true nature of oceanography in the development of our educational program. The formal education of research oceanographers must not consist of a smattering of each of the basic sciences but rather must be based on a rigorous background in one scientific discipline alone which, it appears to us, provides the most satisfactory basis for a career of original research.

Since its early days, there has been a three-pronged approach to education at Woods Hole: (1) there has been a very substantial scholarship program, which has provided fellowships to over 700 young scientists interested in the marine sciences, (2) faculty members from a large number of universities
(14 at the present time) have been appointed to positions on the non-resident staff, and (3) the regular staff members at Woods Hole have frequently held part-time faculty positions at collaborating universities. Thus, the Institution has successfully fulfilled its assigned role of “encouraging the establishment of oceanography as a university subject.”

Current Trends

In recent summers, the Institution’s educational program has become in some respects more formal. Summer courses have been offered for which some universities have given credit to their students. The Geophysical Fluid Dynamics course has continued to be a major summer discussion group in the fields of hydrodynamics and theoretical oceanography. Institution staff members, holding joint appointments at cooperating universities, have served as thesis advisers for graduate students pursuing their doctoral research work at sea and in the laboratories at Woods Hole. During the past five years, 25 graduate students have done their doctorate research at the Institution. In order to continue our leading role in oceanography, the Trustees and leaders within the Institution have become concerned with the formulation of new objectives in education and research. These have become increasingly important in maintaining a stimulating environment for the pursuit of significant and exciting new knowledge about the oceans. The pattern of informal participation in universities has become less appropriate today with the development of numerous independent marine programs wholly within university centers.

A formal step in this direction was taken during the summer of 1963 when Dr. Norris W. Rakestraw, then Dean of Graduate Studies at the Scripps Institution of Oceanography, was invited to come to Woods Hole to study in depth the Institution’s needs and obligations in education. Dr. Rakestraw’s study was followed in June 1964 by the appointment of the Trustees’ Committee which was charged with “reporting to the Board of Trustees on the Rakestraw Report and other educational proposals which have arisen . . .”

This Committee consisted initially of Dr. James S. Coles, President of Bowdoin College; Dr. Arnold B. Arons, Professor of Physics, Amherst College, and Professor Carroll L. Wilson of the Massachusetts Institute of Technology, with Dr. Detlev W. Bronk, President of Rockefeller University, and Dr. Jerome B. Wiesner, Provost of the Massachusetts Institute of Technology, added later. They considered at great length the role that educational activities should play within the Institution. Realizing that students are the life blood of basic research, bringing unorthodox ideas, youthful imagination and knowledge of new peripheral fields to bear on yet unsolved questions, the Committee concurred with the Seaborg Report of the President’s Scientific Advisory Committee in saying

“The process of graduate education and the process of basic research belong together at every possible level. We believe that the two kinds of activity reinforce each other in a great variety of ways and that each is weakened when carried on without the other.”
They concluded that our educational program must be strengthened to insure the Institution's long-range intellectual health and viability. Continuing to provide opportunities for students from universities to conduct their doctorate research in Woods Hole or at sea is important but not sufficient. In addition, we must attract students to the Institution by actively participating in a full-fledged graduate program leading to doctorates in various branches of oceanography.

Future Plans

The Trustees' Education Committee, in their final report last June, recommended that the Institution establish cooperative Ph.D. programs with one or more universities, and because of the close ties already existing suggested that such programs be explored first with the Massachusetts Institute of Technology and Harvard. Each of these proposed programs would use the facilities and staff both at Woods Hole and at the university and would culminate in a Ph.D. awarded jointly by the Institution and the university concerned. The Institution does not now have, nor do we plan to have, a large diversified faculty such as one might find at a university. It does have, however, a research staff expert in virtually all phases of oceanic studies that can be matched only at one or two other laboratories in the world. An obvious goal is, therefore, to devise a graduate education program in oceanography which would utilize the best that the cooperating university and the Institution could offer jointly. The participating institutions thus should supplement one another in a unique way and the resulting program, we believe, would be second to none in the world. It would offer the staff in Woods Hole the opportunity of actively participating in a graduate studies program with first-rate students, and it would make available to the university staff and students the unsurpassed facilities for oceanic research at Woods Hole.

Excellent progress has been achieved in the planning and development of a joint doctoral program with the Massachusetts Institute of Technology. Having completed all formal internal steps, the necessary charter modifications are now before the General Court and the Board of Higher Education of the Commonwealth. There is every reason to believe that this joint program will come into being during 1967, and it is hoped that one or more additional cooperative programs will be developed in the near future.

The establishment of formal graduate education programs at the Institution will have a profound and positive effect on the Institution. It is quite correct in this instance to say that things will never be the same again, for a major step ahead has been taken.

Paul M. Fye
Department of Applied Oceanography

The staff of the Department of Applied Oceanography grew in size by about fifty percent between December 1965 and December 1966. The relative increases were largest in the ALVIN Group and smallest in Electronics. Thus, the Institution has been strengthened in the engineering, in information processing and in the technical portions of many programs. Each group is involved quite intimately with the work of one or more of the other departments. This addition, therefore, actually represents an improvement and diversification in the capabilities of the Institution as a whole.

ALVIN

ALVIN had a busy year which must be considered quite successful. Due to unforeseen circumstances there was, however, considerably less time devoted to scientific work for the Institution than had originally been planned and more time was utilized by the Office of Naval Research and its problems than had been intended. About two-thirds of ALVIN's time had been scheduled for Woods Hole scientists and their colleagues with about a month each scheduled for the Office of Naval Research and other Navy oceanographic groups in surveying and in inspection of hydrophones in the Bermuda and Tongue of the Ocean areas where Institution personnel also wanted to work.

The unfortunate collision of the two planes over Palomares, Spain and the subsequent search for the "lost" bomb drastically altered the schedule. ALVIN departed from Otis Air Force Base in early February and finally returned in May. Suffice it to say that ALVIN found the bomb, participated in its recovery and returned to her home port. After some upkeep necessitated by the hard service off the coast of Spain, ALVIN went south. Several weeks were spent at Bermuda where an excellent survey was made on an installation there and where a member of the Biology Department, Robert Hessler, made a first dive. Then the scene of operation was shifted to the Tongue of the Ocean where the other two commitments were completed. There, too, dives were made with Allyn Vine of the Geophysics Department and with John Schlee of the Department of Chemistry and Geology. Coming back to Woods Hole, ALVIN made a dive in Oceanographer Canyon with scientists from the Department of Chemistry and Geology.

Improvements to ALVIN and extensive modification to the catamaran were made early in 1966, and the operations during the year reflected these changes. A study is still in progress on systems for improving the visibility from ALVIN.

Buoys

The Buoy Group is working very closely with members of the Department of Physical Oceanography in the processing and analysis of data obtained from the buoy sets (page 42). During 1966, buoys were anchored at five stations, at latitudes 39°20', 38°30' 38°00', 37°30', 36°00'N all along longitude 70°W. Each set contained current meter and temperature sensors with mechanisms to accumulate such data over a period of months. The northern and southern extremes were instrumented from surface to bottom, but the inner three had bottom instruments only. The strong currents in the Gulf Stream still present a formidable problem in obtaining measurements from surface to bottom. Although an overall sensor recovery of 64 per cent was reached during the year, this is not considered satisfactory and studies of the design and technique of the mooring system.
A promising design for correcting the distortion of ALVIN ports.

North and South Atlantic coverage by VLF navigational stations NSS, NBA and GBR.

ALVIN's plankton nets.

Parachute-shrouded H-bomb.

continue as an important part of the program. The high incidence of "fish bite" losses has been reduced by using a combination of cable and synthetic line. Cable terminations, rates of corrosion and cable failure are now the major causes of loss.

A measurement program of tensions experienced by the mooring is underway and is leading to some design changes. The major improvements in the instruments themselves has been the change from recording on film to recording on magnetic tape. This will be a more efficient and economical way to obtain the data. The use of location pingers on the submerged units was initiated and is becoming standard operating practice.

Computers

The Information-Processing Center is continuing to expand its influence throughout the Institution. Although the greatest amount of time for the computer is devoted to the analysis of data from the buoy line, a large number of investigators are now using it to their advantage. Many of these programs require small amounts of time, but they eliminate hours and hours of hand computation by assistants.

To facilitate use of the computer by the
staff a course in beginning Fortran was
given at four different times during 1966.
In addition a course in statistics for scien-
tists was given by one staff member from
the Center and one from the Chemistry
and Geology Department.

A start has also been made in applying
the computer to the business and adminis-
trative data of the Institution. Property
control records, programs for allocation of
payroll costs to projects and certain sum-
maries are now processed more efficiently
at the Center.

The physical equipment of the Informa-
tion-Processing Center was essentially un-
changed during 1966. The GE 225 has
served well as the first medium class com-
puter for the Institution. Although not used
appreciably in second or third shift operat-
ions it does lack the capability to process
certain data economically as compared with
larger machines. The recognition of this
restriction has caused a reduction in the
scope of some investigations to fit the com-
puter. As a result a study has been made to
determine the next logical step for the
improvement of computer facilities at
Woods Hole.

The “at sea” computer has also been
active. In the Geophysics Department the
magnetics-gravity-bathymetry-navigation
system (IBM 1710) has operated many
hours aboard ship. Also a real-time sound-
ing velocity profiler system using the PDP-5
was operational on ATLANTIS II during the
summer. An “at sea” computer committee
has been struggling valiantly to ascertain
the sort of system that should be installed
to improve the capabilities aboard ship.

Electronics

The Electronics Group has two func-
tions: one concerns the maintenance of a
large percentage of the instruments aboard
the ships and in the laboratories, the other
new instrumentation and the development
of measuring techniques. The present size
of the group is so limited that all personnel
become involved in both types of work. The
variety and complexity of the equipment to
be maintained and the small percentage of
“down time” reflects their effort and success.

In new instruments the emphasis has
been on a beacon navigation system for
ALVIN, on an isotherm follower, and on long
range (1600Km) Swallow floats. Significant
progress has been made and important
field tests have been conducted on all of
these, but none are as yet considered as
finished.

The Electronics Group has worked closely
with the Buoy Group in problems associated
with medium frequency (3.8 KHz) bea-
cons for locating subsurface and bottom
moorings by acoustic methods, and “call-
up” release mechanisms.

Rational components have been de-
veloped and assembled for the long-range
Swallow-float program and a series of tests
were successfully conducted from Bermuda
aboard CHAIN. Operationally useful attenu-
ation data at 780 Hz out to 500 Km were
obtained.

The evolution of a simple precise acous-
tic recorder for use in finding and locating
drifting or anchored buoys has been
satisfactory.

Sound Transmission

Two investigators are concerned with
sound transmission problems. One involved
the diffraction effect in long-range re-
fracted sound in the Mediterranean Sea.
This effect resulted in a spreading of the
expected focusing regions and is of interest
in the prediction of long-range sound in-
tensities. In addition, there has been a study
of the seasonal and spatial variation of
sound velocity in the North Atlantic and
Mediterranean, as measured directly and
as obtained from physical oceanographic
data from many sources.

EARL E. HAYS, Chairman
Biochemistry and Microbiology

During March-April, 1966, an opportunity was provided through the ANTON BRUUN Program sponsored by the National Science Foundation to study plankton growth and related chemical and microbiological activities in the highly-productive waters of the Peru Coastal Current. Due to the rapid biological changes which occur as the result of the upwelling of nutrient-rich waters along the Peruvian coast, it was possible by following a given parcel of water to measure organic production and decomposition directly, by short-term changes in particulate organic carbon, phosphorus, and chlorophyll, and indirectly through related changes in oxygen, phosphate, and nitrate.

Rapid growth during the first three days following upwelling, with rates of organic production exceeding 10 g carbon/m²/day, were followed by an equally rapid decline in the population. The latter probably resulted from zooplankton grazing since no nutrient regeneration accompanied the population decrease. Excretion of dissolved organic compounds was extremely low during the growth and decline of the population, amounting to no more than 5% of the organic matter fixed during photosynthesis.

Despite the rapid biological-chemical changes and the relatively high populations of plankton algae which developed and disappeared in the surface layers, no changes were observed in the levels of particulate organic carbon below about 50 m. These, and other observations made in the North Atlantic during 1966, confirm the earlier hypothesis that the levels of organic carbon in the deep-sea are extremely low, are constant geographically and at all depths below the mixed layer, and are not dependent upon or affected by the level of organic production or the biomass in the overlying surface water.

The kinetics of the heterotrophic uptake of tagged organic substrates by natural populations of microorganisms from the Peru Current and adjacent waters appear to differ from those studied from the Atlantic Ocean. In the latter region, uptake at various substrate levels showed a saturation-type curve with a linear reciprocal plot typical of the uptake kinetics of pure enzyme systems, as described by the Michaelis-Menten equation. In the Pacific, on the other hand, the usual uptake response to different substrate levels plotted as a sigmoid curve suggesting mixed populations with differing uptake kinetic constants. It is possible that these differences reflect differences between the populations of microorganisms in the stable waters of the western Atlantic and those characteristic of the newly upwelled and relatively unstable waters of the Peru Current.

The earlier concept of minimum population densities of certain species of marine bacteria and threshold concentrations of a limited substrate was confirmed. The fact that high growth rates and high population densities produce lower threshold concentrations suggests a positive feedback mechanism which is ineffective below a certain minimum population density, resulting in a drastic drop in growth rate and leaving a corresponding concentration of limiting substrate. The high levels of dissolved organic matter in seawater may be explained on the basis of those observations: i.e., that the compounds involved are
Frozen-etched preparation (left) of Nitrosocystis oceanus showing extensive cytomembranes as viewed with an electron microscope. Automatic growth chamber (right) for ammonia oxidizing bacteria.

Bacteriological sampler. The prominent vanes keep the instrument heading into current ahead of the hydrographic wire to avoid contamination.

Dactylostylus acutirostris
Richardson 1911
(Isopoda: Asellota)

Van Dorn water samplers.

Variety of fin whale (Balaenoptera sp.) from the Indian Ocean.

Surface chemistry determined from hourly bucket samples and phytoplankton—all counts taken along a section northeast of the Guianas, May-June 1965.
not resistant to bacteriological degradation
per se but are probably present at con-
centrations which are individually below
threshold levels.

Some promising headway was made dur-
ing the year on the problem of assaying for
minute concentrations of specific organic
substrates by enzymatic analysis. Sensitivity
of the method has been increased to the
point where it can be used for the direct
determination of glucose at a level of 10^{-8} M
without prior concentration or extraction.
Since the high salt concentration of natural
seawater inhibits the reactions, samples
must be diluted 1:2 with distilled water
giving a final sensitivity of 3×10^{-8} M.

Ecological, morphological, and biochemical
studies have continued on specific
groups of marine microorganisms including
the nitrifying, sulfate reducing, and sulfide
oxidizing bacteria. Organisms have been
cultured from a variety of coastal and off-
shore locations, several new species of each
group have been isolated, and comparative
studies are now in progress. The latter are
soon to be facilitated through the installa-
tion of a Phillips-300 electron microscope.

Comparative physiological studies have
also been undertaken with strains of plank-
ton algae which appear morphologically to
be the same species but which have been
isolated from markedly different environ-
ments (e.g., tropical vs. temperate, estua-
rine vs. oceanic). Relative growth rates of
the different isolates as a function of such
environmental variables as temperature and
salinity have revealed several examples of
physiological races of algal species.

Floristic studies of marine phytoplankton
during the past year have extended observa-
tions in the Eastern Tropical Pacific, the
Caribbean, the Gulf of Mexico, the Gulf
Stream, and the Gulf of Maine. A seasonal
study of the dinoflagellates of the Woods
Hole region in relation to bioluminescence
has been initiated.

Chromatographic and spectrophotomet-
ric studies of phytoplankton pigments and
their decomposition products have included
both laboratory cultures and natural popu-
lations. The former have provided a basis
for reevaluating the taxonomic position of
several species of nannoplankton. The latter
have been greatly facilitated by the
development of a submersible batch filtra-
tion unit which permits the in situ filtration
of large volumes of water thus insuring an
adequate quantity of natural material for
pigment fractionation.

Invertebrate Zoology

The role of pelagic larvae in the trans-
Atlantic distribution of benthic invertebrates
may be demonstrated by the presence of
such larvae in the surface plankton of the
major current systems of the North Atlantic
Ocean. Furthermore, these larvae must in-
trinsically have long pelagic lives or possess
mechanisms for delaying metamorphosis to
enable them to survive the oceanic crossing.
To date 450 plankton samples from twelve
major and twelve additional shorter North
Atlantic cruises have been sorted. Long dis-
tance larvae have been identified for abour
forty species of molluscs, fifteen to twenty
species of sipunculids, and two brachiopods.
The data for Crustacea and annelids are
not complete, but larvae of both groups
are well represented in the plankton sam-
ples. Estimates of the frequency with which
larvae are likely to be distributed across the
Atlantic are roughly the same as the pro-
posed rates of natural mutation, suggesting
that larval transport provides an important
genetic link between widely-separated
populations of the same species.

Techniques have been improved during
the past years for obtaining deep-sea bottom:
samples with the new epibenthic sled. Samples were taken in the Sohm Abyssal Plain and near Bermuda to permit testing of the hypothesis concerning the homogeneity of the deep-sea fauna and to make comparisons of bathyal island fauna with that of the continental slope. These samples show a remarkable diversity but, at the same time, contain large numbers of closely related species. The latter is in contrast to the oft-quoted ecological theory which states that, because the requirement of related species are similar, they are to be found in different habitats.

Analysis of deep-living copepods from the western Indian Ocean has been completed. Of 269 species encountered, 241 are also common to the North Atlantic Ocean. No significant decrease in the so-called "North-Atlantic species" was found in progressively more northern Indian Ocean samples. These observations provide evidence of the effective inter-oceanic dispersal of copepods by the deep-sea currents and may also indicate a slow rate of speciation among bathypelagic Crustacea which may be typical of deep-sea faunas in general.

Experiments with euphausids taken from the oxygen-minimum layer of the Eastern Tropical Pacific showed that these animals were able to maintain normal respiration rates in water containing less than 1% of the level of oxygen saturation and were
perfectly normal after exposure to such water for periods of several hours. This behavior suggests a special adaptation to living under near-anoxic conditions, as most animals show a sharp decrease in respiration when oxygen pressure falls below 10-30% saturation.

Previous studies of euphausids taken from the deep scattering layer indicated that pressure has little or no effect on their respiration. Preliminary experiments with decapods, however, show that higher pressures increase metabolic rates, at least partially compensating for the opposing effects of decreasing temperature with depth.

For the first time in many years, plankton investigators at the Institution have included a study of the ecology and life history of salps. An attempt was made to assess the geographical and vertical distribution of a swarm of *Thalia democratica*, to determine the number of individuals comprising a salp swarm, to relate changes in relative abundance of solitary (oozooid) to aggregate (blastoooid) forms, and to record any environmental changes which could be associated with the swarming.

Vertebrate Zoology

During January-February, forty-two collections of bathy- and mesopelagic fishes were made from *Anton Bruun* off the coast of Chile. Identification of the fishes is nearly complete and has revealed a rich and varied fauna including some 125 species of open-ocean fishes, several encountered for the first time outside of the North Atlantic.

Continued emphasis on the tagging of oceanic fishes resulted in 1966 in the release of over 7,000 marked individuals and 663 returns. Major effort was placed on bluefin tuna, based largely on the New Jersey-Cape Cod seine fishery, which produced 590 returns from 4,200 releases. Catch and effort and size-frequency data were gathered concurrently. Returns from 1965 releases of young bluefin included 46 local recaptures and 13 from the Bay of Biscay. These and earlier observations indicate that the transatlantic migration of the bluefin does not occur annually or involve the entire stock. First evidence of a trans-equatorial migration was provided by a return from 140 miles southeast of Recife, Brazil, of a tuna tagged in 1963 off the Bahamas.

Physiological experimentation with giant bluefin (and certain species of sharks) have shown them to be warmer than the water they inhabit by as much as 12°C. This is accomplished by means of a complex system of countercurrent heat exchangers formed from masses of intermingled arteries and veins in the fish’s gills, the so-called *rete mirabile*, which provides an effective thermal barrier in the circulatory system between the muscles, where heat is produced, and the gills, where it is lost. It is of some interest that two such unrelated groups of fast-swimming fishes as the tuna and the isurid sharks have evolved almost identical heat-conserving anatomical structures.

Acoustic telemetry of physiological data has been developed on free-swimming SCUBA divers as an outgrowth of earlier methods worked out for porpoises and sea’s. With a unit one and one-half inches in diameter and ten inches long it is now possible to transmit electrocardiograms, temperature, breathing, and speed of a diver from a distance of up to one kilometer through the water. Depth may be included in the measurements by increasing the diameter of the case to three inches. The primary purpose of this technique is to permit study of the exercise physiology of man in the sea compared to that of marine mammals. A secondary use of the device is as a safety feature for surface monitoring of the physiology of deep divers.

John H. Ryther, Chairman
Department of Chemistry and Geology

Organic Compounds

Previous investigators have found that the straight chain paraffin hydrocarbons in recent, nearshore sediments contain in the C_{18}-C_{32} range predominantly odd carbon number chains. Generally, these exceed the even carbon number chains by a factor of about four. The hydrocarbons in terrestrial plant waxes show a similar odd carbon predominance and plants — terrestrial or marine — are considered the sources of the hydrocarbons in marine sediments.

The studies of hydrocarbons in marine benthic and pelagic algae collected from their natural environment and in planktonic algae grown in pure and uncontaminated cultures, show little or no odd carbon predominance in the C_{15}-C_{32} range. All algae show a major concentration maximum at C_{16} or C_{17} and a secondary maximum between C_{27} and C_{30}. Recent sediments from local nearshore environments show the same odd carbon number predominance previously reported from other areas. This suggests that the normal paraffins of Recent sediments are largely derived from sources other than the benthic or planktonic organisms studied. A possible application of this work may lie in the determination of the relative contributions of terrestrial and marine organic matter to the sediments of the shelf, slope and deep sea.

Different genera of algae have different hydrocarbon distribution patterns especially in the C_{15} to C_{17} molecular weight range. This finding confirms and extends that of the great variability of the hydrocarbon distribution pattern found earlier in zooplankton and further suggests the use of hydrocarbons as biochemical and geochemical tracers. The isoprenoid hydrocarbon pristane, isolated earlier from zooplankton, occurs in several planktonic and benthic algae while phytane was not detected. This substantiates the earlier interpretation that pristane is a biochemical product while phytane appears to be formed during diagenesis of sediments.

A study of the accumulation of plankton derived hydrocarbons in the liver of the basking shark, Cetorhinus maximus (Gunnerus), has been completed. The hydrocarbons incorporated with the planktonic food pass through the digestive system of the shark and eventually are deposited unaltered in the liver. There is no fractionation or hydrogenation of the olefinic hydrocarbons. This and earlier work indicates that the half-lives of hydrocarbons in marine organisms are sufficiently long to trace their dispersal through several stages of the food chain.

Red Sea

A detailed geophysical and geochemical study of the hot brines and associated mineral deposits in the Red Sea was made on chain in the fall of 1966. A hundred stations were made in the Red Sea, taking about sixty cores, twenty-five hydrocasts, thirty heat flow measurements, and fifty-seven continuous temperature depth profiles. The hot brine together with associated heavy metals is apparently periodically ejected from the subsurface due to some magmatic event. The minerals are deposited over a wide area; bottom currents disperse the hot water except in the deeper restricted areas where the high salt content causes stratification of the water. The concept of periodic injections is clearly indicated by the layering of highly colored iron rich sediments from cores taken on the flanks of the holes above the present hot water levels. The major iron deposits are
in the ATLANTIS II hole which is approximately twelve kilometers long and six kilometers wide. A small channel extends southwest from the ATLANTIS II hole to the DISCOVERY hole. Between these a new brine pool, the CHAIN hole, was discovered which contained water with a maximum temperature of 34°C as compared to maximum temperatures of 56°C and 44°C found in the ATLANTIS II and DISCOVERY holes. The brine pools of the three holes appear to be separated by sills at the northern and southern end of the CHAIN hole, although they were undoubtedly in communication during periods of ejection of the hot water. Two new instruments, were successfully tested on this cruise; the first a temperature telemetering pinger which takes a continuous recording of water temperatures during its lowering. This instrument takes advantage of a dual pinger system, with the time difference between the pings being temperature dependent. This enabled detailed temperature profiles to be made in all three holes. The second instrument, a German Kasten corer obtained relatively undisturbed cores twenty-five centimeters square and four meters in length. These combined with free fall, piston and gravity cores, gave a fairly complete picture of the sedimentation pattern along the twenty kilometer length of the rift valley where the holes are located.

Continuous Seismic Profiling showed a second strong reflection about one hundred and fifty meters below the sediment surface on the flanks but not in the hot hole areas. Faulting was also observed on both flanks of the rift zone. Reflections were also obtained from the hot saline water in the ATLANTIS II and DISCOVERY holes, but none were observed in other deep holes north of 19°N in the Red Sea. The temperature pinger indicated no hot water in deeps of the Red Sea except in the known hot hole area.

Sea Water Chemistry

The solubility of naphthalene in various salt solutions was determined as part of our continuing studies on electrolyte-nonelectrolyte interactions. Naphthalene salting by five two-salt mixtures was found to be additive and from this it was possible to predict naphthalene salting in an artificial sea water. Several natural waters also had predictable salt effects thereby proving that any natural solubilizers present are not contributing to the solubility of non-electrolytes such as naphthalene.

The Ligand exchange method, previously reported for concentrating the dissolved organic matter from sea water has been further tested. The Gulf of Maine contains about forty per cent more free amino acids than Buzzards Bay, although the relative amounts of amino acids are essentially the same. The method has been extended to the extraction of polymeric, non-dialyzable humic acid-like compounds in sea water. Butanol and acetone extracts of this material gave infra-spectra comparable to the yellow organic products that had been obtained in freshwater streams. The results show that the resin extraction procedure will concentrate large as well as small molecules from sea water. Studies of the nature of the bonding between the chelex resin and the copper have revealed the presence of two types of bonding, one of a chelating nature and very strong, and the other very weak.

Techniques were developed for the routine analysis of Fe, Pb, Li, Mg, Sr, Zn, Ca, Cr, Ni, Co, Mn and Cu in sea water by atomic absorption spectrophotometry. Li, Sr and Mg are determined directly by aspirating normal or diluted seawater and using artificial brine standards. Other metals are being analyzed through extraction with a chelating agent, ammonium pyrroli-
Dine dithiocarbamate and dissolution in methyl-isobutyl ketone.

Radio Isotopes

Particulate material collected on air filters at sea was analyzed for seven gamma emitting radioisotopes: Cs137, Ce144, Sb125, Ru106, Mn54, Zr95 and Be7. The concentration of these isotopes in the air over the sea decreases from northern to southern latitudes. Concentration fluctuations by factors of 2 to 4 were found in samples collected at the same latitude only a few days apart. The Ce144 to Cs137 ratio for all latitudes sampled showed a decrease from November 1964 to May 1966 which corresponds to that expected from radioactive decay during this period. This indicates very little fractionation between Ce and Cs on reaching the sea surface from the atmosphere and no measurable introduction of new Ce144 to the atmosphere during this period. Fallout radioisotope concentrations in sea-level air over the Atlantic from 5° to 35°N are in the same range as those measured over land.
at similar latitudes. It is planned to correlate surface water data with air filter data from the same location to determine how rapidly the isotopes are distributed in the upper layers and what fractionation occurs between isotopes in surface water compared to those in the air above.

Analyses of Sr\(^{80}\) in ocean surface water show that current movements considerably smear the north to south gradients evident in land-based measurements of fallout delivery rates. Integration of vertical profiles of concentration continues to support the concept that the rate of delivery of fallout is much higher to the ocean surface than to the land surface. Analyses in Lake Michigan show it has received as much as double the fallout typical for its latitude zone. It is not yet known if water surfaces have a higher collecting efficiency or if meteorological differences are responsible for higher over-ocean fallout.

Samples of Sargassum from the Western North Atlantic were found to have little Cs\(^{137}\) or Sr\(^{80}\) in contrast to fairly large amounts previously reported from analyses of Sargassum from the Gulf of Mexico. The North Atlantic samples did contain large amounts of Fe\(^{55}\) and Mn\(^{54}\). From the analyses of Fe\(^{55}\) in the Sargassum and published estimates of the standing crop of Sargassum and the expected delivery of Fe\(^{55}\) to the Sargasso Sea, it was calculated that about one per cent of the total bomb test Fe\(^{55}\) in this area is now in Sargassum tissues.

Continued work on the vertical distribution of fallout isotopes in marine sediments indicates that different mechanisms are causing variations in the vertical movement of fallout isotopes from the surface down. As expected, vertical profiles of Ce\(^{144}\) and Eu\(^{155}\) correspond to movement only by mechanical mixing by organisms; profiles of Sr\(^{80}\), Cs\(^{137}\) and Mn\(^{54}\) all appear more or less modified by physiological processes, and Sn\(^{125}\), surprisingly, is very similar in distribution to Mn\(^{54}\).

Preliminary studies of the uptake from sea water of Ce\(^{144}\) indicates that on an equal weight basis some copepods can remove as much cerium as can clay particles. Continued studies of the interactions of lanthanide elements with clay particles has proven that the lanthanides interact as ions in solution and not as colloid particles. The distribution coefficient shows no correlation with the measured total base exchange capacity of pure clay because the reactions are at concentration levels far below those required to saturate the clays.

Shell Morphology

About two hundred specimens of molluscs, largely from marine environments, were analyzed for the amino acid composition of mineralized and unmineralized tissues. In addition, the spatial conformation of the molecular network of proteins in the shells was determined by gel-filtration, electrophoresis and solubility studies. The objective of this work was to relate molecular biological changes in terms of amino acid composition and spatial conformation of proteins to (1) molluscan phylogeny and (2) environmental variations, such as salinity, water depth and temperature. The analytical data was subjected to Factor Analysis and from this it was possible to construct a phylogenetic tree of Mollusca from the amino acid data. This biochemical model agrees in general with conventional biological taxonomy. It also demonstrates that shell morphology and the molecular biology of the organism are inter-related.

The protein chemistry of the molluscs also showed the presence of cystine, amino sugars, phenolic amino compounds, quinones and hydroxylysine, the latter of which may provide cross links in the shell tissues.
The molecular weight of the individual protein units range from 20,000 to 80,000. The chemical work plus X-ray and electron-micrograph studies showed that the proteins are fibrous in nature and resemble the so-called keratin-mysin-epidermin-fibrin groups of proteins.

Carbon Isotopes

A detailed study was made of the ratio of C\(^{13}\) to C\(^{12}\) in the organic matter from bottom sediments of rivers, lakes, estuaries, bays and the open sea along the Atlantic coast of the United States. Data from about thirty rivers showed the samples furthest upstream to be the lightest with increasing C\(^{18}\) going downstream into the ocean. C\(^{13}/C^{12}\) ratios of organic matter from sediments taken across the shelf and on the continental slope were essentially the same as those on the seaward side of the outermost sand bars. Since the terrestrially derived organic matter has about six per mil less C\(^{18}\) than the marine organic matter it is apparent that the terrestrial effect does not extend much beyond the nearshore areas. If terrestrial organic matter is finding its way farther out to sea its effect is being diluted by much greater amounts of the heavier marine organic matter. Two samples of peat found on Georges Bank had C\(^{13}/C^{12}\) values of -25.9 and -26.3 respectively, relative to the PeeDee belemnite. This means there has been no fractionation in the peat bog since the last ice age when this land was emergent.

Studies of laboratory cultured marine plankton grown under controlled environmental conditions, showed that the plant material became enriched in C\(^{12}\) as the temperature decreased. There also appeared to be a five per mil enrichment by plants left in darkness for twelve days. These results are complicated by the fact that the major biochemical fractions of the plankton show as wide variation between each other as occurred in the total organism during these experiments.

Continental Margin

Field work for the initial five year joint Woods Hole Oceanographic Institution - U.S. Geological Survey Program for geological studies of the continental margin was finished in the fourth year. Ship time totaled 634 days including time involved in underwater dives of **ALVIN**. Laboratory studies and final reports will be completed during the coming year, after which the program will be directed toward investigation of details of processes, local topographic problems, and extension of work to new areas such as the continental rise between the Grand Banks and Florida. Greater emphasis will also be placed on subsurface studies with **ALVIN**, side-scanning sonar, and details of the third dimension through offshore drilling.

Submarine canyon extensions off the east coast were surveyed during 1966 beyond the 2000-meter contour. Canyons related to the major drainage areas on the East Coast show deep sea extensions, many of which have a high levied right bank and most, like the Washington, bend toward the left where they enter the continental rise. Others like the Hudson and Wilmington canyons bend sharply to the right and deepen about seventy miles down the rise, suggesting that they are partly erosional in that area. Two cycles of canyon formation appear to have occurred off the East Coast with the deeper canyons, such as the Hudson, involved in both cycles. These topographic studies of the submarine canyons were supplemented by a month of dredging their side slopes from **GOSNOLD**. In addition, **ALVIN** was used to collect rock and sediment samples, to trace rock outcrops, and to photograph the floor and the
western side of Oceanographer Canyon (southeast of New England) and the precipitous eastern side of the Tongue of the Ocean (near New Providence Island, Bahamas).

About twenty-five hundred kilometers of continuous seismic profiling were recorded during 1966 over several submarine canyons and their seaward extensions on the continental rise, and over the junction of the continental slope and rise south of Block Island. The profiles indicate that the base of the slope from Cape Fear to Halifax, Nova Scotia, is characterized by massive slump structures. Slumps off Block Island are more than one kilometer thick and nine kilometers wide. Continuous Seismic Profiling traces in the Gulf of Mexico show that the Florida Escarpment is located along a former coral reef and that the sediments of the continental margin west of the Mississippi Delta are disrupted by salt or mud intrusions.

Similar records in Long Island, Block Island, and Rhode Island sounds and Buzzards Bay, reveal a prominent reflecting horizon ranging from 16 to 200 meters below sea level; it probably delineates the top of pre-Cretaceous basement rocks in some areas and the top of Cretaceous sediments in others. The survey indicates that the topography of the reflecting horizon below the seafloor was formed by pre-glacial fluvial erosion and that the Pleistocene glaciers simply deepened existing troughs into flat bottomed, broad, U-shaped valleys characteristic of glaciated areas.

Gravel dispersal patterns and topography of the Gulf of Maine indicate that Pleistocene glaciers moved southward in two principal lobes, (1) into Great South Channel, and the Bay of Fundy into the Jordan Basin area and continued thence into the northeast channel with ice rafting of some erratics along the slopes and rise and out into the deep ocean basin as far south as Hudson Canyon. Absence of shoals, rounded gravel and resistant minerals on Browns Bank and the southwestern Scotian Shelf indicates that the glacier terminated over the deep sea with little opportunity for modifying the gravel through river transport.

Textural patterns of total bottom sediment on the continental margin east of New England reflect Pleistocene glacial sedimentation and post-Pleistocene reworking and deposition. South of New England the shelf is covered with fine to medium-grained sand associated with minor amounts of gravel and sandy silt. Lack of a gradient in sediment texture across the shelf supports the idea that the deposits probably originated as fluvial and beach sands during lower stands of sea level. The skewness of sediment from the continental slope indicates that it was deposited by two mechanisms: by tractive currents and by subsequent settling from the water column. Silty clays on the lower slope and continental rise are probably pelagic in origin.

Heavy minerals having densities greater than 2.9 gm/cm³ in the sand-sized fraction of sediments from the continental margin appear to have three major sources. One source is modern rivers such as Penobscot, Kennebec, and Merrimack which deposit their heavy minerals close to shore. A second was the glaciers that distributed minerals along Long Island Sound, Cape Cod, and generally seaward of the river deposits. The third of heavy mineral assemblages is a coarse-grained lag type of deposit that has been reworked by waves and currents from coastal-plain sediments underlying Georges Bank. Dispersal of sediments is generally in an offshore direction except on Georges Bank where some material is carried landward into the Gulf of Maine.
Suspended matter in surface waters of the open shelf and slope consists predominantly of organic matter, whereas inshore waters along the coast and in estuaries commonly contain less than forty per cent organic matter. Plankton species having mineralized tests are common in nearshore waters off Florida and Georgia but are relatively rare farther offshore. Both industrial and domestic pollutants such as soot, ash, iron aggregates, and cellulose products are common in coastal areas adjacent to major centers of population. Recognizable mineral grains make up less than ten per cent of the total suspended matter in most samples. Size distributions of the grains suggest that the suspended mineral matter in estuaries and nearshore waters is derived and deposited fairly locally. Very little suspended sediment appears to be transported across the shelf in surface waters under normal conditions. Moreover, studies of circulation in estuaries and on the continental shelf suggest that the net movement of water along the bottom is landward, thereby minimizing any seaward transport of fine grained sediments except possibly during intense storms.

Sediment cores from the six holes drilled off eastern Florida by the Joint Oceanographic Institutions Deep Earth Sampling program were examined for organic constituents. Sediments from the Blake Plateau contained over 80% calcium carbonate from the Eocene through the post-Miocene and less than 0.2% and 0.02% respectively, of organic carbon and nitrogen. In contrast, the shelf holes which generally contained less than 80% calcium carbonate from Oligocene through post-Miocene had organic carbon and nitrogen contents around 1.0% and 0.06% respectively. This decrease in organic matter with increasing calcium carbonate content has been observed in recent sediments of other coastal areas.

Analyses of interstitial waters of the JOIDES cores show that fresh and brackish waters characterize submarine strata as far as 120 km from land. The major cationic composition of the interstitial waters in cores 40 and 100 km from the Florida coast
indicates that they are related to waters found in the Floridan aquifer on the mainland, but that they have been in longer and more intimate contact with subsurface high magnesium carbonate sediments. Estimates of flow rates on land and comparison of water compositions suggests that the waters were introduced into the underground aquifers more than ten thousand years ago, possibly when the present sea bottom was exposed.

Manganese and phosphorite concretions occur both separately and as complex intergrowths on the Blake Plateau. The purest manganese concretions are found in water deeper than 750 m, whereas intergrowths and relatively pure phosphorite generally occur at shallower depths. The phosphorite appears to be a lag deposit left by erosion of phosphatic sediments in coastal plain strata. Although manganese and phosphate had several episodes of reworking and resolution, the manganese concretions are younger and are currently being deposited at a rate of 0.01 mm per thousand years (by C14 dating).

Mid-Atlantic Ridge

A detailed geological and geochemical study has been made for four areas of the Mid-Atlantic Ridge: about 22°-23° N; about 10°-11°N (the Vema Fracture Zone); the Romanche Trench and Fracture Zone; St. Paul’s Rocks. A complex suite of metamorphosed basalts and tuffs, of metamorphic grades up to the green-schist facies, was found along the median valley around 22°N. In the 11°N area there is evidence of volcanic activity along the crest of the Ridge, offset by an older complex set of fractures, the valleys containing thinly bedded, little disturbed sediments deposited since the Paleocene. In the Romanche Trench, a surprising series of dolerites, hornblendites, gabbros, clastics, schists and lithified sediments were dredged from a single, deep basin observed below 7400 m. St. Paul’s Rocks were found to top a massif isolated on all sides from the Ridge and largely surrounded by a shallow moat which acts as a sediment trap. The massif includes rocks which crystallized at quite different levels in the mantle, and were afterward incorporated and mylonized during intrusion of the hot, but solid massif. A highly vesicular very fresh alkali basalt was found on the northeast flank of the massif about 3000 m deep.

Dinoflagellates

The encysted stage in the life history of nekrctic dinoflagellates is being investigated in order to (1) correlate cysts with their better known motile stages and thus establish the cyst cycle for numerous species and (2) to correlate the cyst stage with fossil dinoflagellates and hystrichospheres. The ultimate objective is to establish a systematic correlation between fossil and modern dinoflagellates, trace the phylogeny of the group and use the fossils in stratigraphic and paleoeocological interpretations, especially in epicontinental and totally marine Pleistocene and Holocene sediments. The importance of the cyst mechanism as a factor in the survival and localization of dinoflagellate populations is also being investigated.

Over five hundred experiments were carried out to isolate and incubate marine cysts and restore the motile phase. These experiments showed that the resting cysts of a large number of dinoflagellates were typical hystrichospheres and fossil dinoflagellates. Some were found to produce calcitic cysts previously known only as fossils and some produced cysts that are yet unknown as fossils.

The following observations were made from these studies: (1) The taxonomy of
modern dinoflagellates as well as the fossil scheme should be revised to attach more importance to the cyst phase of the life history. (2) In fossil systematics the single most reliable criterion for establishing a phylogenetic scheme is the nature and position of the excystment aperture or archepyle. (3) The cyst mechanism is a factor of considerable influence in the seasonal and geographic distribution of numerous neritic dinoflagellates. (4) The most primitive form of dinoflagellate organization may be a uniflagellated condition which is found briefly after excystment rather than a naked biflagellate as had been formerly believed.

Coastal Hydrodynamics

A correlation of beach erosion profiles and sea state was made from field data of beaches of the East and Gulf Coasts. It was generally found that the steeper slopes faced the rougher seas with the inner slope generally having several times the angle of the outer slope.

Preliminary wave observations at Highland Light on Cape Cod indicate stronger seas and far greater percentages of waves from the northeast than would be predicted from published hindcasts. Additional work is expected to show that more open ocean swell reaches the coast, and local winds build high waves at a faster rate, than is predicted by hindcasting theories.

The role played by tidal currents in longshore transport of sand and the effects of tidal flow on nearshore morphology is being investigated by determining the tidal com-
ponent of the nearshore fluid movement from the surf zone to depths of about sixty feet. Recording current meters were mounted in sixty feet of water at Nauset Light and Cape Cod Light on outer Cape Cod with the assistance of the U.S. Coast and Geodetic Survey. Tidal heights were also supplied at the two stations. The cross section of tidal flow between the recording current meter stations and the beach was accomplished by means of tracking subsurface drogues and surface flares. Analysis of the data is underway.

Bottom sand ripples interacting with the oscillatory fluid motion under shoaling waves have been recorded as important agents in placing sand in suspension. Since this interaction may be responsible for much of the selective sorting in the nearshore zone it is important to determine ripple stability on tidal beaches. Last summer several tidal cycles were monitored at a subtidal location. Wave height, period and near bottom horizontal velocity were recorded while SCUBA divers measured ripple parameters. Preliminary examination of the data indicates that the low tide ripple forms are fairly stable with relatively small changes in ripple parameters during periods of high tide.

Trace Elements

The accuracy and precision of trace element analyses in a variety of matrices with the direct reading emission spectrometer has been greatly improved from an investigation of the various parameters affecting the analysis. Background corrections for each element are being made for high precision work and improvements in burning techniques have cut background variations from about twenty-five per cent to less than ten per cent. A computer program has been developed to process the data from the direct reader and incorporate the necessary corrections. Currently trace elements are being analyzed in the ashes of planktonic organisms, basalts and greenstones from the Mid-Atlantic Ridge, and dredge samples from St. Paul's Rocks massif in the equatorial Atlantic. The latter rocks are also being studied petrographically as part of a more detailed study of the structure and composition of the massif.

Wet chemical and radiochemical analyses show there are significant variations in North Atlantic water columns in both the strontium and barium ratios to salinity, and of the lanthanide elements to salinity and to each other.

Statistics

Three multivariate statistical programs were developed principally for use with geochemical data from sea water and sediments although the techniques themselves have a far wider applicability. Computer programs have been written and are now operational for three procedures: Factor Analysis, Canonical Correlation and Multiple Regression. During the past year the Factor Analysis technique was used in studying trace elements in sediments and amino acids in shell proteins. Currently under study are chlorophyll and nutrient concentration data from past cruises, trace element data from Indian Ocean cores, fish populations in the Central Atlantic, and transition metal distribution in particulate and dissolved fractions of water samples from the Gulf of Maine. The Canonical Correlation program has not yet been used although it could be quite useful in examining the relationship between the distribution of various organisms and certain physical and chemical parameters of the environment. The Multiple Regression Program was used to examine the relationship of amino acid and amino sugar contents of crab shells to the degree of classification.

John M. Hunt, Chairman
Department of Geophysics

A five-month cruise of CHAIN to the Mediterranean and the Red Sea was one of the major sea-going activities, but others of shorter duration were made: to the Outer Ridge north of the Puerto Rico Trench from 16 February until 2 April and to the Caribbean from 18 May to 30 June both aboard CHAIN and south of Bermuda from 10 June until 6 August on ATLANTIS II. Preliminary equipment tests were made on several other short trips. Using geological and geophysical techniques, the features of the Outer Ridge were studied in relation to the Puerto Rico Trench and the Greater Antilles. In the region south of Bermuda the rather complex water structure near 30°N and the larger scale variations to the south of that region were examined acoustically. The cruise to the Caribbean was made to delimit the distribution of pelagic fish and sound scatterers. One cruise, primarily for a geological survey of the Eastern Mediterranean, included participation in a North Atlantic Treaty Organization acoustical exercise west of Ireland, a detailed geophysical, geological and geochemical examination of the hot brine holes in the Red Sea, and a geophysical examination of a section of the Mid-Atlantic Ridge.

Submarine Geophysics and Geology

A program in submarine geophysics and geology has been carried out in the North Atlantic Ocean, in the Caribbean, in the Mediterranean, and in the Red Sea. Attention was chiefly focused on the structure and composition of the sediment and shallower rocks of the sea floor to ascertain the nature, origin, and development of the earth's crust. Each of the major cruises has yielded gravimetric, magnetic, seismic reflection, and bathymetric profiles useful in evaluating such concepts as sea-floor spreading and continental drift, which have recently dominated ideas about the evolution of the earth's surface. Sea-floor spreading, an intriguing possibility, is believed to be caused by convection cells in the earth's mantle resembling conveyor belts which move the continents across the earth's surface. Mid-ocean ridges are thought to be the locus of such upwelling. The investigations of the Mid-Atlantic Ridge and Red Sea aboard CHAIN have provided information which supports this hypothesis. Symmetrical patterns of intense magnetic anomalies, high heat-flow, geologic evidence of faulting and folding of Recent sediment strata and volcanic activity, especially in the Red Sea area, suggest that these areas are sites of active ocean-floor spreading.

The geophysical and geological investigations of the Caribbean area have continued. The recent CHAIN cruise attempted to determine the structure of the Antilles Outer Ridge, and its relation to the Puerto Rico Trench to the south and the deep ocean basin to the north. While our general interest is directed toward relating the trench system to the geologic history of the North Atlantic Basin and the Antilles Island Arc, during this cruise special emphasis was placed on determining the nature of the acoustically transparent sediment layer which lies over much of this area. Specifically, it was hoped to determine the extent of this layer and its relation to the complex underlying basement rocks. A study of modern submarine valleys in the layer suggests that the processes which formed it in the past are still active today. Further, a latitudinal submarine rise appears to have controlled the areal deposition of the sediments of the transparent layer. An isopach map of the transparent
layer shows that the thickest accumulation is north of the rise.

In addition to current research in the Caribbean area analyses of previous geophysical data from the Cayman Trough to the west of the Puerto Rico Trench suggests that this deep ocean basin, although similar in depth and extent to the Puerto Rico Trench, is of different origin. Unlike the Trench which is believed to have resulted from compressive forces depressing the crust to great depth, the Cayman Trough appears to have resulted from tectonic forces which have rifted the oceanic crust apart. Gravity profiles from the Trough suggest that the structure is not contiguous with the structure producing the Puerto Rico negative gravity anomaly of the Antillean Arc. It appears that the Cayman Trough was developed on the gently sloping northern flank of the Nicaraguan Rise by extension of the crust. Geologic data from southern Cuba suggests the initiation of the extension began in the Paleocene. From geological and gravity information it is concluded that the Enriquillo-Cul de Sac Trough of southern Hispaniola is a young extension of the Cayman Trough structure, and that the latter is extending eastward at the present time.

The sea floor in the Mediterranean Sea may have special significance in our understanding of such broad geophysical concepts as continental drift. Here the continents of Africa and Europe are separated by the relatively narrow Mediterranean Sea. Preliminary results from the investigations aboard CHAIN showed the sea floor to be complexly faulted and folded. Evidence for the recent deformation of the beds of the Eastern Mediterranean was clear in seismic reflection profiles and sediment cores from that area. Southwest of the Peloponnesus, strata have been folded into anticlines and synclines which trend roughly east-west. The synclines form valleys which are filled with younger, flat-lying sediments. North of the submarine fan of the Nile lies the Herodotus Abyssal Plain. The flat-lying strata of this plain, when followed north, become part of the folded southern flank of the Central Mediterranean Ridge. Deformation of these sediments only a few meters below the sea floor on the Ridge itself is indicated by displacements of several centimeters along steeply dipping planes in sediment cores.

In support of the sea-going geological and geophysical investigations land-based facilities have been added for examining rock and sediment samples. A micropaleontology laboratory has been established for the study of fossil shells of minute Foraminifera and Radiolaria, commonly found in sea-floor rocks and sediments. Such animal remains can provide valuable evidence for determining the age of a sample and the environmental conditions under which it was formed. Another phase of this work will be a collaborative undertaking with scientists at Hokkaido University on the morphology of the shell structures using electron microscopy techniques.

The long-standing interest in the physical properties of oceanic rocks was broadened considerably with the development of a rock magnetism laboratory. The magnetization of sea-floor rocks and sediments is believed to have recorded the Earth's magnetic-field direction in the distant past. By measuring this "fossil" magnetism it is hoped to trace the history of the ancient geomagnetic field. Detailed knowledge of the epochs when the geomagnetic field reversed its polarity is especially useful in determining the age of sea-floor rocks. In addition such information can provide important clues about the nature and origin of the geomagnetic field itself and its curious reversal mechanism.
Oceanic Acoustics

Acoustics is an important tool of the marine geophysicist. Coupled with magnetic, gravimetric and sea-floor sample information, it enables him to probe far beneath the sea-floor.

Continuous seismic reflection profiling, the primary acoustical tool of marine geophysics today, provides information about the depth of the geologic structure in the oceanic crust. Low-frequency sound waves periodically emitted by a ship are reflected from sub-bottom reflectors and received on a hydrophone towed astern of the ship. The continuing success of this technique has encouraged the geophysicist to examine in more detail the crustal structures. However, in order to detect the very weak signals which return to the surface in presence of the high-noise environment associated with a moving ship special efforts are required. To increase the signal-to-noise ratio of the system, linear arrays of hydrophones have usually been employed. These arrays provide greatest sensitivity to signals returning vertically from the sea-floor whereas they tend to reject flow and ship noise. A further improvement of this technique has resulted from recent development of a continuous-line hydrophone. It consists of a flexible hose-like coaxial
capacitor which is rugged and inexpensive compared to the spaced, multiple hydrophone arrays. Also since the complete length is sensitive, it eliminates the undesirable side-lobe properties of spaced-hydrophone arrays. Prototype models have been used and have given excellent results on several cruises.

Sound traveling in the ocean is analyzed by considering sound as rays or waves depending upon the physical situation. The ray picture is an approximation to the exact wave solution, and when applicable over a large portion of the path but does not apply over the complete path. This condition is met in water that contains multiple sound channels. A theoretical analysis of this problem has been undertaken and a method is evolving for calculating the behavior of sound under such conditions.

Programs have continued in the analysis of previous experiments in sound transmission and bottom reflectivity, and preparations are being made for a cruise to study sound transmission in the Baltic Sea.

Internal Waves and Thermal Fronts

As part of a long-range sound transmission project, detailed examinations of the thermal and sound velocity structure were made in the area southwest of Bermuda. It was discovered that a rather strong horizontal thermal gradient in a north-south direction existed near latitude 30° North. This has been designated as a thermal front region and has been studied each year for several years. Towed thermistor arrays, sound velocity profiles, and air-borne radiometer measurements have been used in this work. The picture that has evolved has interesting possibilities for our understanding of large-scale water movements and their effects on sound propagation.

In a horizontal plane near the ocean surface about 200 miles south of Bermuda, contours that define horizontal thermal gradients meander along a general east to west line with a characteristic wavelength larger than several hundred miles. Superimposed on this large-scale wave are shorter waves that are about twenty-four miles in length. These meandering near-surface thermal fronts are evidence for Rossby waves in the Atlantic Ocean. The scales and periods of the horizontal waves are so long that it is difficult to define their motion and to select appropriate measurement techniques.

Further observations have established that these meandering waves extend to great depths in the deep ocean. Their role in the overall motions of the ocean and the Gulf Stream is of interest. Short-period internal gravity waves have also been shown to be associated with the surface thermal front. Studies of these waves have been undertaken in an attempt to understand how they are generated in the frontal region, why they appear to exhibit different spatial wavelengths on each side of the frontal zone, and the part they play in sound transmission in this and similar areas.

Mesopelagic Fish

Sixty-eight midwater trawl collections were made in the Caribbean Sea and the Gulf of Mexico. A typical haul nets several hundreds of individual fish representing twenty to thirty species. Twenty-four collections were made between the Lesser Antilles and Africa. Sorting, identification, and measuring of these and unfinished portions of the previous collections progressed during the year. An attempt is being made to delineate faunal boundaries throughout the North Atlantic. Acoustic measurements of the strength of the scattering layer were continued on these cruises as an integral part of the program. The use of the computer facility was found to aid in the statistical analysis of the data on mesopelagic fish.

Earl E. Hays, Chairman
Department of Physical Oceanography

In recent years, extensive physical-oceanographic observations have been made in the Atlantic and Indian Oceans, and a large body of raw data has been accumulated. During the past year, therefore, the emphasis in the research of this department has been placed on digestion of this material rather than on ambitious new observational programs. Of particular interest has been greater attention to variability in the ocean, on several time scales, and more refined descriptions of the characteristics, distribution, and relationships of water masses. Field work has continued, of course, but at a relatively modest pace.

Variability

Time-series analysis of horizontal velocities as measured by current meters at our permanent moorings in the slope water (39° 20'N, 70° 00'W), and Sargasso Sea (36° 00'N, 70° 00'W) has progressed without requiring major changes in our previously developed ideas about the local current fluctuations. Energy is concentrated at the inertial and semi-diurnal tidal frequencies, and at higher frequencies the power spectra appear consistent with the theory of homogeneous, isotropic turbulence. At lower frequencies, however, there seems now to be considerably more intermittence than anticipated: both the mean current speeds and the amplitudes of the inertial and tidal motions may vary by an order of magnitude within a few days. New statistical techniques will have to be introduced for a proper understanding of these non-stationary processes.

These moorings are equipped with wind recorders to investigate relations between the shallow motions and changing weather patterns. As a preliminary step in this investigation the wind recorder results have been evaluated by comparison with wind vectors derived from daily weather maps; this comparison shows reliable performance by the recorders, and indicates that during periods of directional persistence, gaps in the recorder data can be filled in from the weather maps.

Large-scale motions with a seasonal period are known to occur at the sea surface in the North Indian Ocean, and it seems likely that similar variations might be observed at mid-depths in the saline water emanating from the Red Sea. Data collected during the southwest and northeast monsoons by the ATLANTIS II, ARGO, and DISCOVERY have been examined from this viewpoint, but did not, however, indicate any very significant, broad-scale differences.

Changes of still longer period have been anticipated in the flow on the continental shelf off the Middle Atlantic States in connection with the continuing drought in this area. Usually the low-density river effluent forces a southwestward flow along the shelf, but it appears from salinity observations made from lightships over the last ten years that the river discharge has been so much reduced during the drought years that the prevailing southwesterly winds have stopped and even occasionally reversed this "normal" drift. The coastal water has thus tended to stagnate, and exchange less water with that offshore.

Water Masses

For several years an atlas of horizontal charts based substantially on data collected during the International Geophysical Year has been in preparation as a description of the relations between potential temperature and salinity in the deep North Atlantic. This material has now been completed, and shows with clarity and detail the distributions of the five types of deep and bottom water in the North Atlantic: the two differ-
ent overflows from the Norwegian Sea (one through the Denmark Strait, the other past the Faroe Islands), the outflow from the Mediterranean Sea, water sinking from the surface of the Labrador Sea, and Antarctic Bottom Water. Despite the obvious value of such an atlas to Atlantic oceanographers, its publication has been delayed by a perplexing lack of financial support.

Some publication funds have, however, been obtained for an atlas of profiles pertaining to the Mediterranean Sea. To supplement these profiles, calculations have been made of the volumetric distribution of Mediterranean water in terms of temperature-oxygen characteristics, matching earlier calculations made in terms of temperature-salinity characteristics.
Water-mass analysis is often not suitable for tracing flow in near-surface water because of air-sea interaction processes, and for this reason attempts to identify the “source” region of the Equatorial Undercurrent by its temperature-salinity characteristics have been ambiguous. Examination of temperature-oxygen characteristics, however, has proved most productive. In the temperature range 13-24°C Equatorial Undercurrent water is higher in dissolved-oxygen concentration by about 1 ml/l. than the water on its flanks. Although similar water exists in abundance well to the north of the Undercurrent, a belt of low-oxygen water between precludes any direct connection. On the other hand, the oxygen maximum of the Undercurrent can be traced directly to the North Brazilian Coastal Current; therefore the Undercurrent itself must be primarily a continuation of the latter current.

Field Investigations

The series of monthly cruises begun in September 1965 to monitor the behavior and structural changes in two cyclonic (cold core) eddies detached from the Gulf Stream was terminated at the end of February 1966. During this six-month period the eddies contracted slowly in the horizontal, but were still easily detectible by temperature measurements at the end of the survey. Extrapolation of their rates of decay suggests life times of the order of one year for such eddies. Shortly after detaching from the Stream, both eddies moved rapidly westward (speeds around 13 cm/sec), but later on when they were smaller, they moved about much more erratically, and showed little additional net displacement. Such behavior is vaguely suggestive of Rossby-wave dynamics, but no definite conclusions can be drawn.

On the basis of a few deep current measurements it has become apparent that the volume transport of the Gulf Stream downstream from Cape Hatteras cannot be reliably estimated by the conventional method of dynamic computations based on assumptions of level isobaric surfaces somewhere in the Stream. Detailed velocity measurements are mandatory. Ideally, one would like to see a series of current-meter strings moored across the stream, but moorings of this sort are not yet feasible. One seems required therefore to fall back on dynamic computations, but computations tied to closely-spaced velocity measurements across the Stream. A moderately successful attempt to make a single measurement of volume transport in this way was carried out in June on a section across the Stream south of New England, based on neutrally buoyant floats for the velocity measurements. Over a time of two weeks, nine floats, spaced at ten to twelve mile intervals across the Stream, were followed for periods of two to three days each, their tracks being bracketed with concurrently occupied hydrographic stations. The derived volume transport was $101 \times 10^6 \text{m}^3/\text{sec}$, but with an uncertainty of 20-30%, arising primarily from the mixture of time scales involved in the measurements and vagueness in the boundaries of the “Stream”. (The latter difficulty must always be present because of inherent imprecision in the meaning of “Gulf Stream” away from continental boundaries, and will probably require an uncertainty of at least twenty per cent in measurement by any method.)

The deep velocities observed directly in the Stream on this cruise were notably smaller than the few earlier measurements made elsewhere. Whether this difference is one of variation primarily in time or in space cannot be determined at the present time.

Investigation of thermal fronts occurring in the general region of the North Atlantic Subtropical Convergence continued on a
cruise during March. A network of fourteen hydrographic stations across the frontal region, made for computation of the field of geostrophic shear, showed penetration of the fronts from the surface to depths of 100-200 m. In addition, parachute drogues launched both north and south of the surface frontal edge moved toward the edge, demonstrating clearly that the front was associated with horizontal convergence.

During the International Indian Ocean Expedition two patches of very hot brine were discovered at the bottom of the Red Sea. More detailed measurements of temperature and salinity this year revealed layering in the brine patches, with estimated salinities reaching 320°/o, and maximum temperatures of 56°C in one patch, 45°C in the other.

Physical Properties of Sea Water

Since electrical conductivity has now become the measure of salinity in the ocean, it is important to measure the various factors which determine it. The effect of nitrate and phosphate utilization during photosynthesis has therefore been assessed experimentally for the case of sea lettuce. The exchange processes are evidently complex, but the actual effect for typical oceanic concentrations of nutrients is very small, only about 0.001°/o salinity units, which is insignificant for routine salinity measurements.

Existing values of the thermal-expansion coefficient for sea water are derived from compressibility or sound-velocity measurements, and are not up to the accuracy of modern oceanic temperature observations. Improvements in thermometry have thus been of little help in making more detailed investigations of adiabatic effects in the ocean. To remedy this deficiency, apparatus has been constructed and tested for making careful direct measurements of changes in volume of sea water as a function of changes in temperature. The measurements soon to be undertaken are expected to give more accurate and hence considerably more useful values of the thermal-expansion coefficient.

Frederick C. Fuglister, Chairman
Department of
Theoretical Oceanography and Meteorology

A central theme for the year's activities is that of interface phenomena and, in a wider sense, also thermocline processes. Greater competence in these problems is one of the main goals of current personnel recruitment efforts.

The meteorological work on the Indian Ocean data has continued to demand the most attention. Next year we should see its completion with the preparation of a monograph on the climatic aspects of the work, as well as a group of special papers related to cloud structures, air mass formation, etc. Preparations are underway for further studies of air-ocean exchange processes with our research aircraft carrying improved instrumentation. In addition, a strong effort is being made to develop new ways of measuring oceanic parameters of various kinds through retrievable instruments or expendable telemetering equipment based on the aircraft.

Last, but not least, in new techniques, efforts are being made to utilize the ALVIN for studies of vertical transfer processes in the thermocline regions and on continental slopes, where a wide spectrum of processes in benthic boundary layer flows await study.

Atmospheric Physics

A new research program, started in May, has been an experimental study of the generation of exponential-type raindrop size distributions. Such a study is of importance, for raindrop size distributions have been extensively used as aids in understanding the mechanisms that initiate rain in both continental and marine clouds. There is a possibility that in heavy rains extensive coalescence and breakup amongst the drops will cause their distribution to approach a certain form, dependent only on rain intensity. If this be so, the drop distribution should be independent of the mechanism that initiates it. It follows that attempts to understand the generation of heavy rain by studying drop distributions measured at ground or sea level are doomed to failure.

Initial efforts to verify this hypothesis consisted in pouring water under zero pressure from a fire hose mounted about 60 meters above the floor of the large U.S. Navy blimp hangar in South Weymouth, Massachusetts. If drop interaction and breakup is the prime factor in determining the drop distribution then we should find evidence of it in measurements of the drop sizes in the "rain column" at the hangar floor. In short, in only 60 meters of fall, a solid stream of water should be partially transformed into an artificial rain whose drop size distribution has some resemblance to that found in natural rain.

The results to date are encouraging. In the high intensity "rain" the distribution of drops at the small end of the spectrum (< 3 mm diameter) is that of natural rain; at the large end the drops are more numerous. It is felt that many of these large drops would break up if the fall distance exceeded 60 m, and that with increasing distance a natural rain distribution would be approached. This work is being continued.

Studies of Infrared Transmission and Reflection at the Air-Sea Boundary

Attempts to extend an earlier study of the conditions of the formation of marine fogs led to an effort to utilize airborne infrared radiometry (IRR). It was quickly found that for the purpose of determining the boundary conditions for the process of heat
and vapor exchange the main limitation of IRR did not depend on lack of instrumental sophistication, but that the techniques of measuring radiation per se had in fact advanced far beyond our detailed knowledge of expected radiation intensities under different natural conditions.

The task of providing an improved physical background for the interpretation of IRR measurement has reached a point where some definite results are available, and a procedure was developed for minimizing the effect of sea surface reflectivity, as well as for the absorption and emission effects in the air column. A series of laboratory experiments related to the question of the dependence of the temperature difference between the air-sea interface and the bulk water below it, on the exchange process has been completed. The important result to date is the substantiation of the value of a multiple interrogation technique. This technique allows for a simultaneous compensation for reflectivity errors and for air column interference by combining the results of vertical and oblique (60° zenith angle) IRR measurements.

Studies of Convective Motion and of Turbulent Mixing Processes in a Stratified Environment

A study of the relation between heat flux, stirring intensity and stratification in the system, has almost been completed. It has been established that the dynamic interaction between a stirred (turbulent) mixed fluid layer can be resolved into two kinds of effects. One is an entrainment effect, i.e., a tendency to sharpen up the pycnocline edge by mixing fluid into the stirred layer. This effect is essentially independent of the intensity of the stratification, being controlled by a balance between available turbulent energy and the energy requirements of the induced changes in vertical density distribution. The other major effect is an induced irregular motion in the stratified layer below, which allows the establishment of turbulent density flow in the stable layer even without local mean shear flow. The latter effect is strongly dependent upon the stability in the thermocline.

In an effort to prepare for future observational work in the ocean along these lines, a trial dive with ALVIN was made off Chat-
ham. The equipment carried consisted of a temperature gradient measuring device and dye trace release arrangements. Several regions of sequential temperature discontinuities were observed. Efforts to study the possible occurrence of turbulence in such a layer were thwarted by biological activity—a tuna swimming through the dye trace.

The marked correlation observed between minute temperature transitions and the biological activity indicates a promising future avenue for cooperation between biologists and fluid dynamicists in this type of study.

Large-Scale Air-Sea Interaction

Based on data gathered during the 1963 International Indian Ocean Expedition, a study has been made of the cloud formations, winds, air masses, and modification of the air by interactions with the land and sea. The history of the air is traced as the air flows from the source region east of India, over the mountains of India and descends to the west coast. Over the Arabian Sea other air penetrates the air mass flowing from the northwest causing convergence and lines of cumulus clouds. Aircraft winds, temperatures, humidities, and turbulence are used to give detailed descriptions of the mixing process and the merging of the two air masses.

During the Indian Ocean flights, many reels of time-lapse motion pictures of clouds were obtained by aircraft of the Woods Hole Oceanographic Institution, the Research Flight Facility of the U.S. Weather Bureau, and the Royal Air Force. The photographs covered nearly all parts of the northern Indian Ocean from altitudes ranging from 100 feet to 30,000 feet. These films were brought to Woods Hole for study and measurement. The work will be published as one in the series of meteorological monographs of the Indian Ocean.

Boundary Layer Effects Near an Island

The analysis of data from the second Aruba expedition to the Netherlands Antilles in 1965 has been completed. The results show that the stress decreases approximately by a factor of 10 as air moves out from the island over the sea. It increases again, but not to the same extent, as the fetch over water increases and a wave field develops. From balloon observations we have also found, in the lee of the island, vertical motions of large amplitude in the lowest 400 meters. These were probably associated with inertial waves.

Although the island is quite flat, it also exerts a strong influence on the humidity structure at the level of the trade wind inversion which usually is well above 1000 meters elevation.

Claës G. H. Rooth, Acting Chairman
Publications 1966

Ashore and Afloat

Godspeed and farewell were bid to Atlantis on November 9, 1966 as she sailed from Woods Hole wearing the ensign of the Argentine Republic. Rechristened El Austral to commemorate an earlier vessel, but still the sentimental flagship of the Woods Hole fleet, she has been sold to the Argentine Council of Scientific and Technical Investigations. The terms of the sale provide that the Institution shall have the opportunity to repurchase her if she is no longer required for Argentina’s oceanographic research program.

The transfer ceremony was attended by many who had been associated closely with Atlantis during her thirty-six years of service to the Institution, and by representatives from the Argentine Embassy in Washington.

On September 30, 1966, the Naval Ship Systems Command entered into a contract with the Defoe Shipbuilding Company of Bay City, Michigan, for the construction of two new oceanographic research vessels. One of these, to be named Oceana, will be assigned to Woods Hole for operation after delivery in 1968. These vessels, of new design, are somewhat larger than Atlantis II and Chain, 245 feet long compared with about 210 feet. They will be diesel-driven through two cycloidal propellers, one forward and one aft. The Naval Ship Systems Command and the Office of Naval Research afforded both this Institution and the Scripps Institution of Oceanography the opportunity to participate extensively in the design of these vessels, and we expect them to be excellent research vessels.

A contract was made on November 16, 1966, with the Westcott Construction Company of North Attleboro, Massachusetts, for the construction of a new pier. This new facility, when completed in the late fall of 1967, will provide 740 linear feet of dock face for berthing our vessels. It will extend out from the existing dock about 220 feet, and will be a truncated triangle with an outer face of 80 feet. The pier will have an area of some 40,000 square feet.

A new boat-basin for our small craft will be constructed off the Eel Pond channel on the eastern side of the Laboratory of Oceanography.
Upon completion of the pier, work will begin on a new waterfront facilities building to house the groups supporting the operation of the ships and the mechanical shops.

The modernization of our vessel support capabilities is being undertaken with the support of the National Science Foundation.

A ten-year lease was taken on an industrial-type warehouse in Falmouth Center in September. The building contains some sixteen thousand square feet of covered and heated storage area as well as considerable outside area. All of the equipment and materials stored in the Blake Building, as well as the great quantity of miscellaneous gear that had accumulated in the School Street swamp area were moved into the new area. An irritating eyesore was removed from the village and the space released in the Blake Building can be available to satisfy some of the demand for more laboratories.

To alleviate to some degree the housing problems of our staff, and particularly to have accommodations for our students and fellows, a complex of houses and apartments on the main road in Woods Hole was purchased on May 28, 1966. The property is known familiarly as the Winding Lane, and was for many years owned by Mr. Sidney W. Lawrence, a life-long resident of Woods Hole. There are four single-family houses, two duplex-houses, and three dormitory rooms on the property.

In November, the Institution acquired by purchase, Matamek Camp, located near Sept-Iles in the Province of Quebec where the Matamek River flows into the St. Lawrence. The camp consists of some fifty acres of land and several cabins. In the 1920's, it was the site of a conference on cyclic phenomena in nature.

The Matamek River has been almost untouched by man and the area affords an excellent opportunity for basic ecological studies of an unpolluted estuary.

The purchase, which had the approval of the Government of Quebec, was made possible by the Atlantic Foundation and Mr. J. Seward Johnson.
Cruises - 1966

ATLANTIS II

<table>
<thead>
<tr>
<th>CRUISE</th>
<th>DATES</th>
<th>AREA OF OPERATION</th>
<th>DAYS</th>
<th>SCIENTIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>4–24 January</td>
<td>Gulf Stream</td>
<td>21</td>
<td>F. Fuglister</td>
</tr>
<tr>
<td>19</td>
<td>26–29 January</td>
<td>Continental Shelf</td>
<td>4</td>
<td>N. Fofonoff</td>
</tr>
<tr>
<td>20</td>
<td>2 Feb–9 May</td>
<td>Equatorial, Romanche Trench</td>
<td>97</td>
<td>V. Bowen</td>
</tr>
<tr>
<td>21</td>
<td>24–27 May</td>
<td>Off Nantucket</td>
<td>4</td>
<td>J. Beckerle</td>
</tr>
<tr>
<td>22</td>
<td>10 June–4 August</td>
<td>Bermuda—San Juan</td>
<td>56</td>
<td>Beckerle-Payne</td>
</tr>
<tr>
<td>23</td>
<td>5–10 August</td>
<td>Bermuda</td>
<td>6</td>
<td>R. Schetina</td>
</tr>
<tr>
<td>24</td>
<td>15–25 August</td>
<td>Continental Shelf</td>
<td>11</td>
<td>H. Sanders</td>
</tr>
<tr>
<td>25</td>
<td>29 August–1 September</td>
<td>Montauk-Bermuda Line</td>
<td>4</td>
<td>R. Heimiller</td>
</tr>
<tr>
<td>26</td>
<td>14–28 September</td>
<td>Gulf of Maine</td>
<td>15</td>
<td>B. Ketchum</td>
</tr>
<tr>
<td>27</td>
<td>3–9 October</td>
<td>Montauk-Bermuda Line</td>
<td>7</td>
<td>J. Gifford</td>
</tr>
<tr>
<td>28</td>
<td>1–9 November</td>
<td>Gulf Stream</td>
<td>19</td>
<td>L. Worthington</td>
</tr>
<tr>
<td>29</td>
<td>1–9 December</td>
<td>Montauk-Bermuda Line</td>
<td>9</td>
<td>R. Heimiller</td>
</tr>
<tr>
<td>30</td>
<td>15–19 December</td>
<td>North of Gulf Stream</td>
<td>5</td>
<td>R. Scheltema</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>258</td>
<td></td>
</tr>
</tbody>
</table>

CRAWFORD

<table>
<thead>
<tr>
<th>CRUISE</th>
<th>DATES</th>
<th>AREA OF OPERATION</th>
<th>DAYS</th>
<th>SCIENTIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>135</td>
<td>25–29 January</td>
<td>Veatch Canyon</td>
<td>5</td>
<td>R. Conover</td>
</tr>
<tr>
<td>136</td>
<td>2–25 February</td>
<td>Gulf Stream</td>
<td>23</td>
<td>R. Conover</td>
</tr>
<tr>
<td>137</td>
<td>1–4 March</td>
<td>Veatch Canyon</td>
<td>4</td>
<td>R. Conover</td>
</tr>
<tr>
<td>138</td>
<td>10–30 March</td>
<td>Bermuda</td>
<td>21</td>
<td>A. Voorhis</td>
</tr>
<tr>
<td>139</td>
<td>1–9 April</td>
<td>Bromfield Shipyard</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>140</td>
<td>12–27 April</td>
<td>Local Trips</td>
<td>16</td>
<td>R. Heimiller</td>
</tr>
<tr>
<td>141</td>
<td>17–21 May</td>
<td>Montauk-Bermuda Line</td>
<td>5</td>
<td>N. Fofonoff</td>
</tr>
<tr>
<td>142</td>
<td>1–21 June</td>
<td>Gulf Stream</td>
<td>21</td>
<td>B. Warren</td>
</tr>
<tr>
<td>143</td>
<td>23–29 June</td>
<td>Montauk-Bermuda Line</td>
<td>7</td>
<td>R. Heimiller</td>
</tr>
<tr>
<td>144</td>
<td>11–15 July</td>
<td>Gulf Stream</td>
<td>5</td>
<td>D. Menzel</td>
</tr>
<tr>
<td>145</td>
<td>22 July–5 August</td>
<td>Montauk-Bermuda Line</td>
<td>15</td>
<td>P. Foxton</td>
</tr>
<tr>
<td>146</td>
<td>8–13 August</td>
<td>Montauk-Bermuda Line</td>
<td>6</td>
<td>R. Heimiller</td>
</tr>
<tr>
<td>147</td>
<td>17–18 August</td>
<td>Continental Slope</td>
<td>2</td>
<td>H. Jannasch</td>
</tr>
<tr>
<td>148</td>
<td>22–27 August</td>
<td>Gulf of Maine</td>
<td>6</td>
<td>G. Clarke</td>
</tr>
<tr>
<td>149</td>
<td>14–21 September</td>
<td>Montauk-Bermuda Line</td>
<td>8</td>
<td>D. Menzel</td>
</tr>
<tr>
<td>150</td>
<td>11–24 October</td>
<td>Gulf Stream</td>
<td>14</td>
<td>G. Volkmann</td>
</tr>
<tr>
<td>151</td>
<td>9–26 November</td>
<td>Gulf Stream</td>
<td>20</td>
<td>A. Voorhis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>178</td>
<td></td>
</tr>
</tbody>
</table>

GOSNOLD

<table>
<thead>
<tr>
<th>CRUISE</th>
<th>DATES</th>
<th>AREA OF OPERATION</th>
<th>DAYS</th>
<th>SCIENTIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>81-A</td>
<td>4 January</td>
<td>Vineyard Sound</td>
<td>1</td>
<td>S. Knott</td>
</tr>
<tr>
<td>81-B</td>
<td>5 January</td>
<td>Vineyard Sound</td>
<td>1</td>
<td>S. Knott</td>
</tr>
<tr>
<td>81-C</td>
<td>7 January</td>
<td>Vineyard Sound</td>
<td>1</td>
<td>S. Knott</td>
</tr>
<tr>
<td>81-D</td>
<td>12 January</td>
<td>Vineyard Sound</td>
<td>1</td>
<td>S. Knott</td>
</tr>
<tr>
<td>81-E</td>
<td>19 January</td>
<td>Vineyard Sound</td>
<td>1</td>
<td>S. Knott</td>
</tr>
<tr>
<td>82</td>
<td>10–14 February</td>
<td>Continental Shelf</td>
<td>5</td>
<td>P. Stimson</td>
</tr>
<tr>
<td>83</td>
<td>11–14 April</td>
<td>Gulf of Maine</td>
<td>4</td>
<td>R. Conover</td>
</tr>
<tr>
<td>84</td>
<td>18–22 April</td>
<td>Bromfield Shipyard</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>85</td>
<td>25 April–3 May</td>
<td>4 Sub. Canyons</td>
<td>9</td>
<td>R. Pratt</td>
</tr>
<tr>
<td>86</td>
<td>6–10 May</td>
<td>Gulf of Maine</td>
<td>5</td>
<td>R. Conover</td>
</tr>
<tr>
<td>87 LegI</td>
<td>21 May–5 June</td>
<td>Woods Hole to New York</td>
<td>16</td>
<td>E. Uchupi</td>
</tr>
<tr>
<td>87 LegII</td>
<td>18–11 June</td>
<td>Local</td>
<td>4</td>
<td>E. Uchupi</td>
</tr>
<tr>
<td>88</td>
<td>18 June–1 July</td>
<td>Off Cape Cod</td>
<td>14</td>
<td>R. Pratt</td>
</tr>
<tr>
<td>89</td>
<td>29 July</td>
<td>Vineyard Sound</td>
<td>1</td>
<td>D. Bumpus</td>
</tr>
<tr>
<td>90</td>
<td>1–25 August</td>
<td>Continental Slope</td>
<td>25</td>
<td>J. Schlee</td>
</tr>
<tr>
<td>91</td>
<td>8–23 September</td>
<td>Georges Bank—Gulf of Maine</td>
<td>16</td>
<td>E. Uchupi</td>
</tr>
<tr>
<td>92</td>
<td>1–5 October</td>
<td>Continental Shelf—Hudson Canyon</td>
<td>5</td>
<td>E. Uchupi</td>
</tr>
<tr>
<td>93</td>
<td>12 October</td>
<td>Vineyard Sound</td>
<td>1</td>
<td>G. Clarke</td>
</tr>
<tr>
<td>94</td>
<td>13–17 October</td>
<td>Off New York</td>
<td>5</td>
<td>S. Knott</td>
</tr>
<tr>
<td>94-A</td>
<td>27 October</td>
<td>Local</td>
<td>1</td>
<td>K. Emery</td>
</tr>
<tr>
<td>95</td>
<td>1 November–16 December</td>
<td>Gulf of Mexico</td>
<td>46</td>
<td>E. Uchupi</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>162</td>
<td></td>
</tr>
</tbody>
</table>
CHAIN

<table>
<thead>
<tr>
<th>CRUISE</th>
<th>DATES</th>
<th>AREA OF OPERATION</th>
<th>DAYS</th>
<th>SCIENTIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>1 January—4 February</td>
<td>General Ship and Engine</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>56-A</td>
<td>5–8 February</td>
<td>Off Cape Cod</td>
<td>4</td>
<td>P. Stimson</td>
</tr>
<tr>
<td>57</td>
<td>16 February—21 April</td>
<td>San Juan Area</td>
<td>65</td>
<td>E. Bunce</td>
</tr>
<tr>
<td>58</td>
<td>27 April—5 May</td>
<td>Montauk-Bermuda Line</td>
<td>9</td>
<td>H. Sanders</td>
</tr>
<tr>
<td>59</td>
<td>6–15 May</td>
<td>Munro's Shipyard</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>59-A</td>
<td>15–17 May</td>
<td>Off Cape Cod</td>
<td>3</td>
<td>C. Bowin</td>
</tr>
<tr>
<td>60</td>
<td>18 May—30 June</td>
<td>Colombia, Mexico</td>
<td>44</td>
<td>R. Backus</td>
</tr>
<tr>
<td>61</td>
<td>11 July—17 December</td>
<td>Mediterranean—Red Sea</td>
<td>160</td>
<td>Hays-Zarudzki</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>285</td>
<td></td>
</tr>
</tbody>
</table>

C 54 Q

<table>
<thead>
<tr>
<th>FLIGHT NO.</th>
<th>DATES</th>
<th>AREA OF OPERATION</th>
<th>DAYS</th>
<th>SCIENTIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21 February</td>
<td>Local Test Flight</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>27 February</td>
<td>Otis to Miami—400 hr.</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>29 March</td>
<td>Test Flight Miami</td>
<td>1</td>
<td>Plane damaged</td>
</tr>
<tr>
<td>4</td>
<td>13 May</td>
<td>Test Flight Miami</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>14 May</td>
<td>Test Flight Miami</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>18 May</td>
<td>Miami to Otis</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>23 May</td>
<td>Local Test Flight</td>
<td>1</td>
<td>P. Saunders</td>
</tr>
<tr>
<td>8</td>
<td>25 May</td>
<td>Local Flight</td>
<td>1</td>
<td>P. Saunders</td>
</tr>
<tr>
<td>9</td>
<td>26 May</td>
<td>Local Flight</td>
<td>1</td>
<td>P. Saunders</td>
</tr>
<tr>
<td>10</td>
<td>27 May</td>
<td>Local Test Flight</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>1 June</td>
<td>Local Flight</td>
<td>1</td>
<td>P. Saunders</td>
</tr>
<tr>
<td>12</td>
<td>9 June</td>
<td>Local Flight</td>
<td>1</td>
<td>P. Saunders</td>
</tr>
<tr>
<td>13</td>
<td>15 June</td>
<td>Local Flight</td>
<td>1</td>
<td>P. Saunders</td>
</tr>
<tr>
<td>14</td>
<td>16 June</td>
<td>Local Flight</td>
<td>1</td>
<td>P. Saunders</td>
</tr>
<tr>
<td>15</td>
<td>21 June</td>
<td>Local Flight</td>
<td>1</td>
<td>P. Saunders</td>
</tr>
<tr>
<td>16</td>
<td>23 June</td>
<td>Local Flight</td>
<td>1</td>
<td>P. Saunders</td>
</tr>
<tr>
<td>17</td>
<td>24 June</td>
<td>Local Flight</td>
<td>1</td>
<td>P. Saunders</td>
</tr>
<tr>
<td>18</td>
<td>14 July</td>
<td>Local Flight</td>
<td>1</td>
<td>P. Saunders</td>
</tr>
<tr>
<td>19</td>
<td>17 August</td>
<td>Local Test Flight</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>18 August</td>
<td>Instrument Check Flight</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>24 August</td>
<td>Local Flight</td>
<td>1</td>
<td>P. Saunders</td>
</tr>
<tr>
<td>22</td>
<td>25 August</td>
<td>Local Flight</td>
<td>1</td>
<td>P. Saunders</td>
</tr>
<tr>
<td>23</td>
<td>26 August</td>
<td>Local Flight</td>
<td>1</td>
<td>P. Saunders</td>
</tr>
<tr>
<td>24</td>
<td>2 September</td>
<td>Local Test Flight</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>25</td>
<td>8 September</td>
<td>Local Test Flight</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>26</td>
<td>9 September</td>
<td>Local Flight</td>
<td>1</td>
<td>C. Parker</td>
</tr>
<tr>
<td>27</td>
<td>16 September</td>
<td>Local Flight</td>
<td>1</td>
<td>C. Parker</td>
</tr>
<tr>
<td>28</td>
<td>19 September</td>
<td>Otis to Bradley—Mains.</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>29</td>
<td>20 September</td>
<td>Local Flight</td>
<td>1</td>
<td>G. Ewing</td>
</tr>
<tr>
<td>30</td>
<td>23 September</td>
<td>Night Proficiency Test</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>31</td>
<td>26 September</td>
<td>Local Flight</td>
<td>1</td>
<td>G. Ewing</td>
</tr>
<tr>
<td>32</td>
<td>27 September</td>
<td>Otis to Brunswick NAS</td>
<td>1</td>
<td>Dr. Eys & party</td>
</tr>
<tr>
<td>33</td>
<td>28 September</td>
<td>Brunswick to Otis</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>34</td>
<td>8 November</td>
<td>Test Flight new No. 3 Engine</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>35</td>
<td>10 November</td>
<td>Local Flight</td>
<td>1</td>
<td>C. Parker</td>
</tr>
<tr>
<td>36</td>
<td>15 November</td>
<td>Otis to Bermuda and return</td>
<td>1</td>
<td>C. Parker</td>
</tr>
<tr>
<td>37</td>
<td>17 November</td>
<td>Otis to Bermuda and return</td>
<td>1</td>
<td>C. Parker</td>
</tr>
<tr>
<td>38</td>
<td>21 November</td>
<td>Otis to Bermuda and return</td>
<td>1</td>
<td>C. Parker</td>
</tr>
<tr>
<td>39</td>
<td>1 December</td>
<td>Otis to Bermuda and return</td>
<td>1</td>
<td>C. Parker</td>
</tr>
<tr>
<td>40</td>
<td>15 December</td>
<td>Otis to Wilmington, Delaware</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>41</td>
<td>30 December</td>
<td>Local Test Flight</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

Aircraft Flights — 1966

HELIO FLIGHTS 1966

March, April and May spent with Dr. Schevill hunting whales.
July, August and September local flights with Kuenzler, Halpern and Sherman. Also a few miscellaneous flights.
Plane taken to Chatham Airport in October for the rest of the year.
Scientific Departments and Supporting Services Personnel

Paul M. Fye Director
Bostwick H. Ketchum Associate Director
Arthur E. Maxwell Associate Director
David D. Scott Assistant Director for Administration
Frederick E. Mangelsdorf Assistant Director for Development and Information

The following were in the employ of the Institution for the twelve-month period ending December 31, 1966:

Department of Applied Oceanography
Andersen, Nellie T. Graham, Russell G.
Andrade, Marie Hartke, Richard A.
Armstrong, Harold Hays, Earl E.
Barstow, Elmer M. Heinmiller, Robert H.
Bartlett, Arthur C. Hinton, Clifford H., Jr.
Baxter, Lincoln II Howland, Myron P., Jr.
Blackhurst, Robert R. Jones, Maxine M.
Broderzon, George de P. Kelly, Alfreda W.
Chute, Edward H. Lyon, Thomas P.
Collins, Clayton W., Jr. Malais, John A.
Davidson, Allan R. Marquet, William M.
English, Jean J. Mason, David H.
Fairhurst, Kenneth D. Mavor, James W., Jr.
Fofonoff, Nicholas P. McCamis, Marvin J.
Freund, William F., Jr. Muzzey, Charlotte A.
Gifford, James E. Omohundro, Frank P.

Department of Biology
*Ashmore, Judith A. Gunning, Anita H.
Bartlett, Martin R. Hampson, George R.
Baylor, Edward R. Hessler, Robert R.
Breivogel, Barbara B. Hulbert, Edward M.
Carey, Francis G. Hülsemann, Kunigunde
*Casiles, Phyllis M. Jannasch, Holger W.
*Clarke, George L. Kanwisher, John W.
Clarer, John P. Konnerth, Andrew, Jr.
Corwin, Nathaniel Laird, John C.
Cradock, James E. Lawson, Thomas J., Jr.
Denton, Edward A. Maddux, William S.
*Fraser, Grace C. Masch, David W.
Freund, Jean D. Mather, Frank J. III
Graham, Linda B. Menzel, David W.
Grice, George D., Jr. Mogardo, Juanita A.
Guillard, Elizabeth D. Rodman, Janet H.
Guillard, Robert R. L. Rogers, M. Dorothy

*Ashmore, Judith A. Ryther, John H.
*Blackman, Francis G. Sanders, Howard L.
*Casiles, Phyllis M. Scheltema, Rudolf S.
*Clark, George L. Schroeder, William C.
*Clarer, John P. Sears, Mary
*Cranwell, Nathan W. Stanley, Helen I.
*Cradock,James E. Teal, John M.
*Denton, Edward A. Turner, Harry J.
*Fraser, Grace C. Vacearo, Ralph P.
*Freund, Jean D. Valois, Frederica W.
*Graham, Linda B. Waterbury, John B.
*Grice, George D., Jr. Watson, Stanley W.
*Guillard, Elizabeth D. Wilson, Esther N.
*Guillard, Robert R. L. Yentsch, Charles S.
*Zullo, Janet
Department of Chemistry and Geology

*Athearn, Nadine N.
Athearn, William D.
Behrendt, Monika
Blumer, Max
Bowen, Vaughan T.
Burke, Barbara A.
Burke, John C.
Byrne, Robert J.
Coppenrath, Agnes I.
Cormack, Douglas
Dale, Barry
Degens, Egon T.
Emery, Kenneth O.
Fitzgerald, William F.
Gordon, Allan G.
Gordon, John E.

†Hathaway, John C.
Hayes, Carlyle R.
Hülsemann, Jobst B.
Hunt, Jeannette E.
†Hunt, John M.
†Manheim, Frank T.
McAuliffe, Julianne G.
†Meade, Robert H.
Mott, Norman S.
Noshkin, Victor E., Jr.
Paul, Russell K.
Pratt, Richard M.
*Richards, Heidi
Ross, David A.
Rudrum, Michael

Sass, Jeremy
†Schlee, John S.
Schroeder, Brian W.
Siegel, Alvin
Simmons, Charles F.
Spencer, Derek
Strickland, Charlotte M.
Suprenant, Lolita D.
†Tagg, A. Richard
Tasha, Herman J.
Thompson, Geoffrey
Thorne, Robert L.
†Trumbull, James V. A.
Uchupi, Elazar
Wall, David
Zeigler, John M.

†Member of U.S. Geological Survey assigned for work at the Woods Hole Oceanographic Institution

Department of Geophysics

Allstrom, Frank C.
Backus, Richard H.
Beckerle, John C.
Berggren, William A.
Bergstrom, Stanley W.
Boutin, Paul R.
Bowin, Carl O.
Broadbent, Alice G.
Bunce, Elizabeth T.
Cain, Henry A.
Carter, Jane C.
Chase, Richard L.
Church, William
Doutt, James A.
Dow, William
Dunkle, William M., Jr.
Fuglister, C. Kurt

*Gallagher, Gloria S.
Grant, Carlton W., Jr.
Hays, Helen C.
†Hersey, J. Brackett
†Hess, Frederick R.
Howbert, Martha M.
Knott, Sydney T., Jr.
Mellor, Florence K.
Mizula, Joseph W.
Morhouse, Clayton B.
Nichols, Walter D.
Nowak, Richard T.
Payne, Richard E.
Peterson, Carol J.
Peterson, Jane M.
Phillips, Joseph
Poole, Stanley E.

Ruppert, Gregory N.
*Schevill, William E.
Scott, Carl W., Jr.
Shores, David L.
Stetson, Thomas R.
Stone, Louise D.
Sutcliffe, Thomas O. L.
Vine, Allyn C.
Watkins, William A.
Wing, Asa S.
Witzell, Grace K.
Witzell, Warren E.
Wooding, Frank B.
Young, Earl M., Jr.
Zarudzki, Edward F. K.
Zwilling, Judith B.

Department of Physical Oceanography

Allen, Ethel B.
Bailey, Phyllis T.
Barbour, Rose L.
Barrett, Joseph R., Jr.
Bradshaw, Alvin L.
Bruce, John G., Jr.
Bumpus, Dean F.
Chase, Joseph
Day, C. Godfrey
Densmore, C. Dana
Frank, Winifred H.
Fuglister, Frederick C.

Hammond, Paul D.
Hays, Betty C.
Houston, Leo C.
*Kahler, Yolande A.
Metcalfe, William G.
Miller, Arthur R.
Munns, Robert G.
Parker, Charles E.
Phillips, Helen F.
Reynolds, Carol J.
Schleicher, Karl E.

Schroeder, Elizabeth H.
Soderland, Eloise M.
Stalcup, Marvel C.
Stanley, Robert J.
Volkman, Gordon H.
Voorhis, Arthur D.
Warren, Bruce A.
Webster, T. Ferris
Whitney, Geoffrey G., Jr.
Worthington, L., Valentine
Zemanovic, Marguerite P.

Department of Theoretical Oceanography and Meteorology

Alexander, Robert M.
Blanchard, Duncan C.
Bunker, Andrew F.
Chaffee, Margaret A.
*Ewing, Gifford C.

Frazil, Robert E.
Iselin, Columbus O'D.
†Kraus, Eric B.
Ridolfi, Mary
Ronne, F. Claude

Rooth, Claës G. H.
†Saunders, Peter M.
Spencer, Allard T.
Thayer, Mary C.
*von Arx, William S.

*Part Time Employment
‡On Leave of Absence
Department of Administrative and Service Personnel

Allen, Eugene H.
*Allen, Norman T.
Anders, Wilbur J.
Backus, Jeanne M.
Bard, Wallace R.
Behrens, Henry G.
Benttinen, Dave D.
Branham, Roy L.
Bowman, Richard W.
Burke, John E.
Campbell, Eleanor N.
Carlson, Alfred G.
Carlson, Eric B.
Carlson, Ruth H. E.
Carver, Kenneth W.
Chalmers, Agnes C.
*Chase, Elizabeth L.
Christian, John A.
Clough, Auguste K.
Condon, John W.
Conway, George F.
Cook, Harold R.
Corr, James P.
Crocker, Marion W.
Curt, Donald A.
Cummings, Priscilla J.
Day, Joseph V.
Dean, Mildred
Dimmock, Richard H.
Doty, Jeanne C.
Eastman, Arthur C.
Edmed, Sharon L.
Eldridge, Stanley N.

Fernandes, Alice P.
Fielden, Frederick E.
Fisher, Stanley O.
Fleet, Kenneth F.
Fredericksen, Maurit C.
*Fuglsister, Cecelia B.
Gallagher, William F.
Gaskell, Fred
Gioiosa, Albert A.
Grace, Cynthia C.
Grant, Carlton W., Sr.
*Hahn, Jan
Hall, Arthur B.
Hampton, Carolyn S.
Hatzikon, Kaleroy L.
Henderson, Arthur T.
Hodgson, Sloat F.

¢Hunt, Otis E.
Ingrain, Ruth C.
Innis, Charles S., Jr.
Jenkins, Delmar R.
Johnson, Harold W.
Kostrzewa, John A.
Lane, Egbert B.
LeBlanc, Donald F.
LeBlanc, William A.
MacKillop, Harvey
Mangelsdorf, Frederick E.
Martin, Olive
McGilvray, Mary K.
McHardie, James
Medeiros, Frank
Mitchell, James R.

¢Deceased 24 November 1966

Marine Personnel

Babbitt, Herbert L.
Backus, Cyril
Bailey, Peter H.
Baker, William R.
Bazner, Kenneth E.
Breerton, Richard S.
Brown, Joseph C.
Buckley, Francis E.
Bumber, John Q.
Cabrall, John V.
Cahoon, Geraldine B.
Caranci, Donald H.
Carter, Richard J.
Carver, Ralph C.
Casiles, David F.
Cavanaugh, James J.
Clarkin, William H.
Colburn, Arthur D., Jr.
Copetick, Louis B.
Cornell, Jack W.
Cotter, Jerome M.
Coughlin, Brooks W.
Crocker, John D.

Crouse, Porter A.
Davis, Charles A.
Devlin, Gerald X.
Edwards, Richard S.
Halpin, William T.
Hamblett, Dwight F.
Hiller, Emerson H.
Holmes, Edwin M.
Holmes, Roy
Howe, Paul M.
Howland, Paul C.
Jefferson, Albert C.
Janes, George
Jorgensen, Peter A.
Karram, Calvin D.
La Porte, Leonide
Leiby, Jonathan
Lowney, Edwin A.
Martin, John W., Jr.
Matthews, Francis S.
McLaughlin, Barrett J.
McMahon, James H.

Morrison, Kenneth
Motta, Joseph C.
Motta, Joseph F.
Muller, John T.
Orr, Elizabeth D.
Ortolani, Mary
Patterson, John E.
Picard, Eleanor P.
Pimental, John M.
Queenan, Martha L.
Quigley, Ralph W.
Reeves, Stanley A.
Reis, Janice A.
Rennie, Thomas D.
Roberts, Harry A.
Rudden, Robert D., Jr.
Schilling, John L.
Simons, Cecilia M.
Slabaugh, Luther V.
*Solberg, Otto
Souza, Donald P.
Souza, Thomas A.
Stanbrough, Jess H.
Stansfield, Richard
Stimpson, John W.
von Dannenberg, Carl A.
Walker, Jean D.
Watson, L. Hoyt
Weeks, Robert G.
Wessling, Andrew L., Jr.
Williams, Sally A.
Wing, Carleton R.
Woodward, Fred C., Jr.
Woodward, Ruth F.
Wright, Hollis F.

Miner, Arnold W.
Moller, Donald A.
Morse, Joseph C.
Myron, Eugene J.
Ocampo, Conrad H.
Palmieri, Michael, Jr.
Penman, Norman A.
Pennypacker, Thomas R.
Pierce, George E.
Pierce, Samuel F.
Pike, John F.
Porrat, Carlos F.
Ribeiro, Joseph
Roux, Raymond H.
Row, Alfred J.
Seibert, Harry H.
Seifert, Charles T.
Smalley, Walter S.
Sointu, Sulo
Stieres, Ronald K.
Tully, Edward J.
Westberg, Donald R.
Woodward, Jan A.

Retirement

As of the 31st of December, 1966, there were two retirements, George A. Ferris, Property Custodian, and Alfred John, Seaman.
Seminars and Fellowships

Fellows

An integral part of the program since 1932 have been the fellows who are in residence for the three summer months. In 1966, there were one pre-doctoral and fifteen post-doctoral fellows working under the guidance of staff members in all departments.

On a year-round basis, there were six pre-doctoral and five post-doctoral fellows. In addition, the staff has had the advantage of many fruitful discussions with Professor Maurice Rattray, Jr., of the University of Washington, Seattle, who was awarded the Rossby Memorial Fellowship for the Academic Year 1966-1967. He has been in residence since late August.

A fourth student on graduation from Lawrence (Falmouth) High School was awarded a scholarship to enable him to continue studies toward a degree in one of the sciences or in engineering at the college or university of his choice. Thus far, recipients have elected to attend McGill, Tufts and Oberlin universities.

Lectures

The Monday evening lectures, established when the Institution first opened, have continued to provide a forum for the staff and guests from other laboratories to present recent work for discussion. Similar opportunities are afforded at weekly departmental "lunches" of the biologists, geologists and geophysicists.

Seminars

As in previous years, a biweekly interinstitutional seminar series during the academic semesters has made it possible for the New England geophysicists interested in fluid dynamics to keep abreast of the work in this area.

The eighth seminar on Geophysical Fluid Dynamics with the support of the National Science Foundation and under the leadership of Professor Willem V. R. Malkus of the University of California at Los Angeles occupied the thirty-one participants for ten weeks during the summer. The three lecturers, Dr. Louis N. Howard and Dr. George Veronis, both of the Massachusetts Institute of Technology, and Dr. Melvin E. Stern of the University of Rhode Island, introduced the participants to some of the more recent research. The choice of topics not only had a pedagogic function but also indicated a variety of unsolved problems. In this way the nine fellows were guided to questions which might be solved in a preliminary way in a two-month period, but which might also prove challenging for future work on return to their universities. The lectures centered on such topics as "The effects of rotation on wave motions", "Analogy between rotating and stratified fluids", "Problems in galaxy formation", and "Dynamics of disc galaxies".
Grants and Fellowships

The following persons were awarded grants, fellowships or honoraria during 1966:

JOHN A. ALLEN
University of Newcastle-on-Tyne, Northumberland, England

JAMES L. ANDERSON
Stevens Institute of Technology

NANCY BALDWIN
University of Oregon

ROBERT BEARDSLEY
Massachusetts Institute of Technology

PAUL BERDAHL
Rice University

JAMES L. BISCHOFF
University of California, Berkeley

THOMAS CHASE
Oberlin College

STEPHEN CHILDRESS
Courant Institute, New York University

GEORGE M. CRESSWELL
Tiburon Oceanographic Institute

JOHN M. EDMOND
Scripps Institute of Oceanography

RUSSELL L. ELSBERRY
Colorado State University

GEORGE FIELD
University of California, Berkeley

DAVID FINKELSTEIN
Yeshiva University

WILLIAM FITZGERALD
Massachusetts Institute of Technology

LION GARDINER
University of Rhode Island

ANN E. GARGETT
University of Manitoba, Canada

CHRISTOPHER J. R. GARRETT
Trinity College, Cambridge, England

RONALD GIRDLER
University of Newcastle-on-Tyne, Northumberland, England

PETER GOLDREICH
University of California, Los Angeles

ROBERT GOLL
Ohio State University

KLAUS GRASSHOFF
Kiel University, Germany

RAZIEL HAKIM
Queens College, New York

FREDERICK R. HESS
University of New Hampshire

SONJA E. HICKS
Indiana University

LOUIS HOBSON
University of Washington

SUSUMU HONJO
University of Hokkaido, Japan

LOUIS N. HOWARD
Massachusetts Institute of Technology

JAMES H. JUSTICE
University of Maryland

JOSEPH B. KELLER
Courant Institute, New York University

ROBERT KRACHTNAN
Peterborough, New Hampshire

WILLEM V. R. MALKUS
University of California, Los Angeles

RICHARD W. MICHEE
Kitt Peak National Observatory, Tucson, Arizona

BRUCE MORTON
Manchester University, England

ROBIN D. MUECH
Dartmouth College

RICHARD T. NOWAK
Massachusetts Institute of Technology

STEVEN A. ORSZAG
Institute for Advanced Study, Princeton

JOHN M. PARSON
Harvard University

RICHARD E. PAYNE
University of Rhode Island

JOSEPH PEDLOSKY
Massachusetts Institute of Technology

HENRY T. PERKINS
Massachusetts Institute of Technology

OWEN M. PHILLIPS
Johns Hopkins University

MOIZ RASHWALA
Institut d' Astrophysique, Paris

MAURICE RATTRAY, JR.
University of Washington

ALLAN R. ROBINSON
Harvard University

JONATHAN D. ROUGHAEDERG
University of Rochester

PETER E. SACHS
University of Reading, England

WILLIAM C. SASLOW
Cambridge University, England

JAMES E. SCHINDLER
North Dakota State University

JOHANNES SCHMID-BURGK
Heidelberg University, Germany

JOSEPH SILK
Harvard University

SISTER BONAVENTURE
New Rochelle College, New York
CHAIN — The chief scientist's and captain's quarters have been moved forward to permit construction of a library and a science office with facilities for drafting and assembling scientific data.
Treasurer's Report

The accounts for the year 1966 have been audited by Lybrand, Ross Bros. & Montgomery.

The book value of endowment funds at December 31, 1966, was $4,483,594, of which $1,872,277 represented accumulated net gain from sales of investments. The market value of endowment assets on the same date, including real estate at book amount, and $15,349 in cash was $6,698,169. Endowment fund investments and income received therefrom are summarized on page 72.

Income received on endowment assets was $245,914 for the year ended December 31, 1966, compared with $233,492 the previous year.

Endowment income represented a return on endowment fund investments of 3.7 per cent; at year-end market quotation, 5.5 per cent on book amount and 9.4 per cent on the contributed amount of the endowment fund.

Endowment income was allocated for 1966 operating expenses at the rate of 6 per cent of the contributed amount of endowment funds, or $155,663. The remaining balance amounting to $90,251 was transferred to the income and salary stabilization reserve.

The Institution's 1966 contribution to the Woods Hole Oceanographic Institution Employees' Retirement Trust amounted to $297,043.
Woods Hole Oceanographic Institution
Woods Hole, Massachusetts

We have examined the balance sheet of Woods Hole Oceanographic Institution as at December 31, 1966 and the related statements of changes in funds and of operating expenses and income for the year then ended. Our examination was made in accordance with generally accepted auditing standards, and accordingly included such tests of the accounting records and such other auditing procedures as we considered necessary in the circumstances. It was not practicable to confirm receivables from United States Government departments, but we have satisfied ourselves as to such accounts by means of other auditing procedures.

In our opinion, the accompanying statements (pages 69 and 70, inclusive) present fairly the financial position of Woods Hole Oceanographic Institution at December 31, 1966 and the results of its operations for the year then ended, in conformity with generally accepted accounting principles applied on a basis consistent with that of the preceding year.

The supplemental schedules included in this report (pages 71 and 72, inclusive) although not considered necessary for a fair presentation of the financial position and results of operations, are presented primarily for supplemental analysis purposes. This additional information has been subjected to the audit procedures applied in the examination of the basic financial statements and, in our opinion, is fairly stated in all material respects in relation to the basic financial statements taken as a whole.

Boston, Massachusetts
March 15, 1967

[signed] Lybrand, Ross Bros. & Montgomery
BALANCE SHEET
December 31, 1966

ASSETS

<table>
<thead>
<tr>
<th>Endowment Fund Assets:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Investments:</td>
<td></td>
</tr>
<tr>
<td>Marketable securities, market value $6,623,583</td>
<td>$4,409,008</td>
</tr>
<tr>
<td>Real estate</td>
<td>59,217</td>
</tr>
<tr>
<td>Cash</td>
<td>4,468,245</td>
</tr>
<tr>
<td></td>
<td>15,349</td>
</tr>
<tr>
<td></td>
<td>4,483,594</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plant Fund Assets (note):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory plant and equipment</td>
<td>3,609,587</td>
</tr>
<tr>
<td>Atlantis II, contingent title</td>
<td>4,831,130</td>
</tr>
<tr>
<td>Other vessels, equipment and property</td>
<td>1,345,603</td>
</tr>
<tr>
<td></td>
<td>9,786,320</td>
</tr>
<tr>
<td>Plant funds advanced to current</td>
<td>1,072,327</td>
</tr>
<tr>
<td></td>
<td>10,858,647</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current Fund Assets:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash</td>
<td>776,657</td>
</tr>
<tr>
<td>Marketable securities, at cost</td>
<td>494,004</td>
</tr>
<tr>
<td>Reimbursable research contract costs:</td>
<td></td>
</tr>
<tr>
<td>Billed</td>
<td>798,274</td>
</tr>
<tr>
<td>Unbilled, including December costs of $679,560</td>
<td>725,343</td>
</tr>
<tr>
<td>Supplies, prepaid expenses and deferred charges</td>
<td>110,792</td>
</tr>
<tr>
<td>Plant funds advanced to current</td>
<td>(1,072,327)</td>
</tr>
<tr>
<td></td>
<td>1,822,743</td>
</tr>
<tr>
<td></td>
<td>$17,174,984</td>
</tr>
</tbody>
</table>

LIABILITIES

<table>
<thead>
<tr>
<th>Endowment Funds:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unrestricted as to income</td>
<td>$2,519,420</td>
</tr>
<tr>
<td>Unrestricted as to principal and income</td>
<td>91,897</td>
</tr>
<tr>
<td>Accumulated net gain on sales of investments</td>
<td>1,872,277</td>
</tr>
<tr>
<td></td>
<td>4,483,594</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plant Funds:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Invested in plant</td>
<td>9,786,320</td>
</tr>
<tr>
<td>Unexpended</td>
<td>1,072,327</td>
</tr>
<tr>
<td></td>
<td>10,858,647</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current Liabilities and Reserves:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounts payable and accrued expenses</td>
<td>460,236</td>
</tr>
<tr>
<td>Contribution payable to employees' retirement plan and trust</td>
<td>297,043</td>
</tr>
<tr>
<td>Unexpended balances of gifts and grants for research</td>
<td>161,446</td>
</tr>
<tr>
<td>Reserve</td>
<td>914,018</td>
</tr>
<tr>
<td></td>
<td>1,822,743</td>
</tr>
<tr>
<td></td>
<td>$17,174,984</td>
</tr>
</tbody>
</table>

Note: Depreciation is provided on plant assets, other than vessels ($4,831,000) and the Laboratory of Marine Science ($2,111,000), at annual rates of 2% on buildings and 5% to 35/4% on equipment. The amount provided is credited to general plant and equipment reserve.
Statement of Operating Expenses and Income

Year Ended December 31, 1966

Operating Costs and Provisions

<table>
<thead>
<tr>
<th>Costs</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salaries and wages</td>
<td>$2,484,420</td>
</tr>
<tr>
<td>Vessel operations</td>
<td>1,738,872</td>
</tr>
<tr>
<td>Materials, equipment and services</td>
<td>2,262,016</td>
</tr>
<tr>
<td>Laboratory costs</td>
<td>351,504</td>
</tr>
<tr>
<td>Travel</td>
<td>175,602</td>
</tr>
<tr>
<td>Service departments</td>
<td>278,358</td>
</tr>
<tr>
<td>Computer center</td>
<td>190,561</td>
</tr>
<tr>
<td>Aircraft operations</td>
<td>50,192</td>
</tr>
<tr>
<td>Total Indirect Costs</td>
<td>7,331,563</td>
</tr>
</tbody>
</table>

Indirect costs:
- General and administration: 945,212
- Miscellaneous: 137,940

Other charges:
- Provision for working capital and contingencies: 148,329

Income:
- Income for sponsored research (including $2,688,155 gifts and grants expended):
 - For direct costs: 7,472,093
 - For indirect costs: 922,969
 - Fees for use of facilities: 196,400
- **Total Income:** 8,591,462

Endowment income availed of:
- For institution research: 59,472
- For institution indirect costs: 96,191
- Miscellaneous: 15,921

Total Income: $8,763,046

Statement of Changes in Funds

Year Ended December 31, 1966

<table>
<thead>
<tr>
<th>Plant Funds</th>
<th>Unexpended</th>
<th>Reserves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balance beginning of year</td>
<td>$4,330,672</td>
<td>$9,507,975</td>
</tr>
<tr>
<td>Gifts and grants received</td>
<td>7,225</td>
<td>173,070</td>
</tr>
<tr>
<td>Endowment income</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net gain on sales of investments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additions from current year's operations:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provision for depreciation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provision for working capital and contingencies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availed of direct and indirect research costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transferred to endowment funds from:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unexpended balance of gifts from Oceanographic Associates</td>
<td>30,000</td>
<td></td>
</tr>
<tr>
<td>Removals from plant</td>
<td>(266,801)</td>
<td></td>
</tr>
<tr>
<td>Invested in plant</td>
<td>372,076</td>
<td>(219,376)</td>
</tr>
<tr>
<td>Other additions (reductions)</td>
<td>3,000</td>
<td></td>
</tr>
</tbody>
</table>

Total:
- $4,483,584
- $9,780,320
- $799,429
- $292,089
- $161,446
- $896,014
- $217,204

Note:
Unexpended balances consist of amounts received in advance of expenditure, and do not include receipts or expenditures under reimbursement type contracts.
Direct Costs of Research Activity

Year Ended December 31, 1966

<table>
<thead>
<tr>
<th></th>
<th>Salaries and Wages</th>
<th>Vessel Operations</th>
<th>Materials, Equipment and Services</th>
<th>Laboratory Costs</th>
<th>Travel</th>
<th>Service Departments</th>
<th>Computer Center</th>
<th>Aircraft Operations</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Government:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contracts</td>
<td>$1,705,381</td>
<td>$928,580</td>
<td>$1,668,689</td>
<td>$241,249</td>
<td>$109,297</td>
<td>$222,928</td>
<td>$141,884</td>
<td>$49,922</td>
<td>$5,667,830</td>
</tr>
<tr>
<td>Grants</td>
<td>735,384</td>
<td>809,114</td>
<td>513,361</td>
<td>106,442</td>
<td>51,719</td>
<td>49,654</td>
<td>40,387</td>
<td>2,324,001</td>
<td></td>
</tr>
<tr>
<td>Other sponsored research</td>
<td>14,028</td>
<td>1,178</td>
<td>37,752</td>
<td>2,001</td>
<td>11,944</td>
<td>4,772</td>
<td>8,290</td>
<td>297</td>
<td>60,262</td>
</tr>
<tr>
<td>Total direct costs of sponsored research</td>
<td>2,472,793</td>
<td>1,738,872</td>
<td>2,219,742</td>
<td>349,692</td>
<td>172,960</td>
<td>277,354</td>
<td>190,561</td>
<td>50,119</td>
<td>7,472,093</td>
</tr>
<tr>
<td>Institution research</td>
<td>11,627</td>
<td>42,274</td>
<td>1,812</td>
<td>2,642</td>
<td>1,044</td>
<td>73</td>
<td>59,472</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total direct costs of research</td>
<td>$2,484,420</td>
<td>$1,788,872</td>
<td>$2,262,016</td>
<td>$351,564</td>
<td>$175,602</td>
<td>$278,398</td>
<td>$190,561</td>
<td>$50,192</td>
<td>$7,531,565</td>
</tr>
</tbody>
</table>

*Includes grants and fellowships:

- U.S. Government grants: $31,297
- Other sponsored research: 9,020
- Institution research: 36,776

Total: $76,093

General and Administration Expenses

Year Ended December 31, 1966

General Expenses:

- Staff benefits:
 - Contribution to retirement plan: $39,737
 - Social security taxes: 15,074
 - Employee health benefits: 39,024
 - Provision for depreciation (credited to general plant and equipment reserve): 14,122
 - Service departments: 35,627

Administration Expenses:

- Salaries and wages: $482,881
- Insurance, travel, supplies and other: 318,547

Total: $801,428
Summary of Investments

As of December 31, 1966

<table>
<thead>
<tr>
<th>Bonds:</th>
<th>Book Amount</th>
<th>% of Total</th>
<th>Market Quotation</th>
<th>% of Total</th>
<th>Endowment Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>government agencies</td>
<td>$1,129,574</td>
<td>25.3</td>
<td>$1,127,011</td>
<td>16.9</td>
<td>$51,851</td>
</tr>
<tr>
<td>Railroad</td>
<td>403,559</td>
<td>9.0</td>
<td>362,176</td>
<td>5.4</td>
<td>17,793</td>
</tr>
<tr>
<td>Public utility</td>
<td>485,565</td>
<td>10.8</td>
<td>453,230</td>
<td>6.3</td>
<td>16,457</td>
</tr>
<tr>
<td>Industrial</td>
<td>344,519</td>
<td>7.8</td>
<td>307,573</td>
<td>4.6</td>
<td>13,781</td>
</tr>
<tr>
<td>Financial and</td>
<td>329,173</td>
<td>7.6</td>
<td>320,034</td>
<td>4.8</td>
<td>13,294</td>
</tr>
<tr>
<td>investment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total bonds</td>
<td>2,702,370</td>
<td>60.5</td>
<td>2,550,024</td>
<td>38.2</td>
<td>113,176</td>
</tr>
</tbody>
</table>

Stocks:					
Preferred	52,270	1.2	47,525	0.7	2,680
Common:					
Public utility	361,399	8.1	980,713	14.6	33,688
Industrial	890,093	20.0	2,478,921	37.1	72,294
Miscellaneous	397,876	8.9	566,800	8.5	21,082
Total common	1,654,668	37.0	4,026,034	60.2	127,064
stocks					
Total stocks	1,706,658	38.2	4,073,559	60.9	129,744
Total marketable	4,409,008	98.7	6,623,583	99.1	242,920
securities					

| Real Estate | 59,237 | 1.3 | 59,237* | 9.9 | 2,994 |
| Total investments | $4,468,245 | 100.0 | $6,882,820 | 100.0 | $245,814 |

*At book amount.