FEBRUARY 1991

MICHAEL A. SPALL AND WILLIAM R. HOLLAND

205

A Nested Primitive Equation Model for Oceanic Applications

MICHAEL A. SPALL AND WILLIAM R. HOLLAND

National Center for Atmospheric Research,* Boulder, Colorado

(Manuscript received 13 February 1990, in final form 2 July 1990)

ABSTRACT

An interactive, nested primitive equation model for oceanic applications is introduced. The model has two
components that interact, which we shall call the coarse and the fine grid regions. The fine grid region is nested
entirely within the domain of the coarse grid region. The interaction is achieved by an interpolation of the
coarse grid fields to obtain boundary conditions for the fine grid region and by an averaging of the tendencies
of the prognostic variables on the fine grid to force the coarse grid model. The nested model is applied to two
test problems relevant to oceanic phenomena—a barotropic modon and a baroclinic vortex. In each case, nested
calculations with 3:1 and 5:1 grid ratios perform quite well, and even ratios of 7:1 are able to reproduce the
solution reasonably well while the features are mostly contained within the fine grid region. These results indicate
that the interactive nested model approach introduced here may provide an accurate and cost-effective approach
to problems that have multiple spatial scales and/or open boundary condition requirements.

1. Introduction

The purpose of this paper is to introduce an inter-
active, nested primitive equation model for oceanic
applications. Models have traditionally been nested in
order to increase horizontal resolution in a subregion
of the model domain without incurring the compu-
tational expense of high resolution over the entire
model domain. Nested models fall into two categories,
passive and interactive. Passive models use boundary
conditions for the high resolution region that have been
obtained from a previous low resolution calculation.
This class of models is called passive because the coarse
resolution flow field affects the fine resolution region
by providing boundary conditions for the fine grid do-
main, but there is no mechanism by which the evo-
lution in the fine resolution region can affect the flow
field in the coarse grid (and hence its own boundary
conditions). Interactive models, in addition to provid-
ing boundary conditions for the fine grid region, allow
the evolution within the fine grid to influence the evo-
lution on the coarse grid. Although there are obvious
advantages to the interacting systems, they are neces-
sarily more complicated and computationally more
expensive.

A single expandable grid is an alternative to nested
models and has both advantages and disadvantages
relative to the two model approach. An advantage is
that the conservation properties of single grid systems
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are more easily implemented. An advantage of the two
model approach is that the fine domain solution de-
pends only on its boundary conditions, which may be
carefully examined and documented, and its resolution
is everywhere “fine.” This may improve (or at least
isolate more effectively) reflection properties at the edge
of the fine domain compared to a single expanding
grid. A potential advantage of the nested two model
approach is that there is no constraint to use the same
model physics in each region. ( Although this option is
not used here, there may be certain computational and
interpretive advantages to this approach and construc-
tion of such a model in the future will require knowl-
edge gained from studies such as the present one.)
Although nested models have a wide variety of po-
tential applications, they may be generalized into two
categories. The first type uses the coarse grid to rep-
resent a flow field on large space and time scales which
influences the evolution within the fine grid region
through the boundary conditions. Higher resolution
may be desirable in a subregion of the flow field to
study small scale phenomena such as mesoscale eddies,
instability processes, or interactions with local topog-
raphy. These models may be either passive or inter-
active. Meterological nested models have traditionally
fallen into this category. The second application uses
the fine grid region to model some local process and
the coarse grid region primarily provides boundary
conditions to allow for flow features generated within
the fine grid to propagate outward into the coarse grid.
These models must necessarily be interactive since fea-
tures in the fine grid region must be present in the
coarse domain solution for the proper determination
of fine grid boundary conditions. In this sense, the
nested model provides an alternative approach to the
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open boundary condition problem. Both classes are of
interest and the methods presented in this paper are
potentially of use in both types of applications.

In the past, treatment of the open boundary con-
dition problem for the primitive equations has generally
followed two approaches. In one method the region
near the boundaries is treated as a highly viscous or
sponge layer (Carton 1984; Yoon and Philander 1982).
In this way, waves coming into the boundary region
are strongly damped and the reflection or generation
of spurious waves due to the presence of the boundary
is reduced. A drawback of this technique in the present
context is that it is very difficult to accurately param-
eterize the interaction with the surrounding fluid when
information is being advected into the region. The sec-
ond method uses a local phase speed to determine if
the variables should be specified as an inflow condition
or determined from the interior values as an outflow
condition (Orlanski 1976; Engquist and Majda 1979).
These inflow/outflow techniques generally involve the
use of some type of an advection equation on outflow
to determine the value of the prognostic variables on
the boundary. Problems arise with this approach when
there is no information available about incoming flow
fields and when the calculated phase speed approaches
zero near the boundary.

A summary of interactive models used in meteo-
rology is given by Zhang et al. (1986). Holland and
Vallis (1990) have examined an interactive ocean
model using quasi-geostrophic dynamics in the Cali-
fornia Current region. Interactive models in which the
fine grid region moves to follow a particular feature of
interest have been used in meteorology for many years
(Ley and Elsberry 1976; Kurihara et al. 1979; Falkovich
1986). Passive nested models have been used in both
meteorology (Ross and Orlanski 1982) and oceanog-
raphy (Spall and Robinson 1989). As these previous
studies demonstrate, there are many considerations to
take into account in the design of a nested model, in-
cluding model physics, grid interaction, conservation
properties, computational expense, and model appli-
cations. We have attempted to justify the choices we
have made in our model design but recognize that there
are alternatives that we have not explored. A continuing
evolution of such models is likely.

This paper is organized as follows: in section 2, the
governing equations and solution procedure for the
basic model are introduced; the embedding technique
is presented in section 3; the embedded model is applied
to two example problems of interest in section 4; and
the results are discussed and conclusions presented in
section 5.

2. The dynamical equations

The embedded models described in this paper use
primitive equation physics in both the fine and coarse
grid regions. It is assumed that the fluid is hydrostatic

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 21

and that the Boussinesq approximation is valid. Ap-
plication of the conservation of momentum to a fluid
element is used to derive the x, y, and z momentum
equations:

u ow ow  ou 1dp
ot ox ay 9z  poOx
—2Qusing = F,,(u) (1)
W w w1
ot i) ay 0z  pody
+ 2Qu sing = F,,(v) (2)
)
S —er=0 (3)
z

where u, v, and w are the velocities in the zonal, me-
ridional, and vertical directions, respectively; Q is the
rotation rate of the earth, and ¢ is the latitude. F,, is
an as yet undefined parameterization of the viscous
forces in the fluid, p is the pressure, p is the density,
and g is the gravitational acceleration.

Application of the conservation of mass for an in-
compressible fluid in an Eulerian system of reference
with no sources or sinks gives the continuity equation

Veu=0. 4

The conservation of heat may be written for a fluid
without internal heat sources or sinks as

oT oT oT aT

— — — 4+ w— = F(T).
ar T lax TPy T o T D)
An equation of state is used to calculate density from
temperature. The present study has been simplified by
not including the effects of salinity, so that

p=p(T).

(5)

(6)

The solution procedure

The procedure used to solve the momentum equa-
tions is outlined in this study because it plays an im-
portant role in the proper interaction between the
model grids. This method was first introduced by Bryan
and Cox (1967) and has not been modified in this
study. Both the fine and coarse grid models are essen-
tially the GFDL model. For computational efficiency,
the surface pressure is eliminated from the equations
by decomposing the horizontal velocity field into an
internal mode, u, and an external mode, u,

u=u+u (7)
where, for any variable pu,
0
ﬁ=H_’f udz. (8)
-H

Here H is the local depth of the ocean. With this rep-
resentation, the external mode contains all of the ver-
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tically averaged horizontal transport, and the internal
mode contains all of the baroclinic structure. The in-
ternal mode momentum equations then become

ﬁt=u,—ﬁ,

(9)
(10)

The viscous and heat diffusion terms are divided
into a horizontal component ( F,,,;) and a vertical com-
ponent (F,,;). The horizontal subgridscale processes
are parameterized by a Laplacian friction acting on the
velocity components and a Laplacian diffusion acting
on the temperature field. The vertical diffusion terms
can be written as

0, =1, — 7.

(11)
(12)

where y,, is internal mode velocity, u,, is the temper-
ature, and A4,,,, A, are diffusion coefficients for mo-
mentum and heat.

It is useful to define a volume transport stream-
function ¥ by the following relations:

sz(l‘m) = Apzpt,

th(ﬂh) = Ahz#zz

1 o¥
== —— 13
u H 3y (13)
_ Ll o¥
U—E'é;. (14)

Equations (1) and (2) are integrated in the vertical
and cross-differentiated to obtain a prognostic equation
for ¥,

2(L0) 2 (Lom) g
dx \H dx dy \H dy dx dy
The variables are discretized in the horizontal using a
B-grid, following the nomenclature of Arakawa and
Lamb (1977). In this representation, pressure, density,
and transport streamfunction are arranged on grid
points and the internal mode velocities are offset one-
half grid point in each horizontal direction.

3. The nested model

The nested model is actually two separate models
run in parallel. Parallel integration is necessary to
achieve the interaction when more than one grid is
used. The coarse grid model is the primitive equation
model described by Bryan (1969), while the fine grid
model is the regional version of that model developed
by Spall and Robinson (1989) that introduces open
boundaries.

a. Model grids

A schematic of the embedded grids is shown in Fig.
1 for a grid ratio of 3:1. Temperature points are indi-
cated by a plus sign, and internal mode velocity points
are indicated by a dot. Each temperature and velocity
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FIG. 1. Schematic of the nested grids: (a) the total domain showing
the fine grid model within the coarse grid model; (b) a detail of the
overlapping grids for a 3 to 1 ratio of grid sizes.

coarse grid point will coincide with a fine grid point of
like type. With an odd grid ratio, the interfaces between
adjacent coarse grid points will always coincide with
the interfaces of adjacent fine grid points. Although the
embedding approach is not limited by this restriction,
using only odd grid ratios simplifies the interpolation
and interaction between grids. The outermost fine grid
point is where the open boundary conditions are spec-
ified for the fine grid.
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The feedback interfaces (limit of the region where
the fine grid is used to modify the coarse grid) for the
internal mode velocity and temperature and barotropic
vorticity are separated from their dynamic interfaces
(location of the boundary conditions for the fine grid)
as shown in Fig. 1b. We have chosen to place the feed-
back interface as close as possible to the dynamic in-
terface in order to maximize the use of information
about the evolution of the fine grid variables in the
coarse grid solution. For the baroclinic cases presented
here, it was determined that moving the feedback in-
terfaces farther away from the dynamic interfaces re-
sults in poorer simulations because information on the
fine grid between the dynamic interface and the feed-
back interface was not transmitted to the coarse grid.
This degradation was small for the 3:1 case but in-
creased as the coarse grid size increased because more
information was left out of the feedback. The barotro-
pic modon results were not strongly sensitive to this
shift of the feedback interface. These results do not
disagree with the conclusions of Kurihara et al. (1979)
and Zhang et al. (1986) that the feedback interface
should be separated from the dynamical interface.
However, for the oceanic problems and grid ratios used
here, we found that this separation should remain small
in order to maximize the information available from
the fine grid solution. The grid ratios used in the pre-
vious atmospheric studies were relatively modest, 2:1
and 3:1, and would result in only a small neglect of
the feedback between grids.

b. Embedding procedure

The embedding procedure is as follows. Because of
the implicit nature of the boundary conditions on the
transport streamfunction (see Cox 1984), proper in-
teraction between the models requires that the time
step for each model be divided into two parts. The first
half solves for the internal mode velocity and temper-
ature (baroclinic variables) and calculates the tendency
of the barotropic vorticity. The second half uses the
vorticity to solve for the barotropic streamfunction.
For example, suppose we have information on u, v,
¥, and T at time step # on both grids. First we compute
the baroclinic variables #"!, " and 7" ! in the fine
and coarse regions. The fine grid boundary conditions
are explicit and have been obtained from the coarse
grid variables at time step #. The newly calculated ten-
dencies of the baroclinic variables and barotropic vor-
ticity on the coarse grid are replaced with the spatial
average of the corresponding fine grid quantities. For
example, the tendency of the coarse grid temperature
(T,) would be determined by the tendencies of the
coincident fine grid temperatures ( 7y) over the area of
the coarse grid box (A) as

. 1 .
T, = ZL TydA. (16)
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For the 3:1 grid ratio, 7, would be the average over
nine (3 X 3) fine cells, suitably weighted by their areas.

The coarse grid barotropic streamfunction is now
solved over its entire domain using the updated (av-
eraged) tendency of the barotropic vorticity in the re-
gion of the fine grid and the original coarse grid ten-
dencies everywhere ¢lse. The barotropic streamfunction
on the fine grid is then obtained using the fine grid
vorticity tendency with boundary conditions interpo-
lated from the new coarse grid streamfunction.

The authors believe this technique best represents
the net effect of the fine grid evolution on the scale of
the coarse grid. The heating or cooling of a water parcel
(with no surface heat flux) is due to the net horizontal
and vertical advections and diffusions through the sides
of the grid box. By averaging the temperature tendency
instead of temperature, the heating of the coarse grid
parcel is consistent with the net heat flux through the
sides of the coarse grid as represented on the fine grid.
The fluxes across each fine grid interface within the
coarse grid box cancel out and the net contribution is
due to fluxes through the outermost edge of the coarse
grid box. In addition, the net flux out of each side of
the coarse grid box is equal to the net flux across the
side of each neighboring grid box. Similarly, the ac-
celeration of the coarse grid parcel is due to the net
momentum flux through the boundaries, the imbalance
in the geostrophic terms, and the average of horizontal
and vertical diffusion. The contribution due to the im-
balance in the geostrophic terms is an average of the
acceleration at each fine grid point rather than the ac-
celeration that would occur from the average pressure
gradient and Coriolis terms.

Using an interpolation of the coarse grid variables
to obtain the open boundary conditions for the fine
grid model does not conserve fluxes of mass, heat, or
momentum at the interface between the two models.
The fluxes through the interface into the fine grid region-
will not be the same as the flux calculated through the
same interface from the coarse grid variables. Boundary
conditions can, in principle, be developed for this
model that ensure that the net flux through each subset
of fine grid boundaries adds up to the flux through the
corresponding coarse grid interface. So far these con-
servative schemes have not produced stable integra-
tions. Only a few atmospheric nested models conserve
mass and momentum fluxes by making use of the
“box” method first developed by Koss (1971). The
box method was adapted for staggered grids by Sobel
(1976), but the method becomes quite complex due
to handling of the momentum boxes at the interface.
As pointed out by Zhang et al. (1986), it may be nec-
essary to sacrifice exact conservation between the two
grids in order to obtain a smooth, stable solution. For
short time integrations, such as those presented in this
study, it is not believed that exact conservation prop- -
erties are critical. For long time integrations, such as
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global and basin scale climate studies, conservation is
likely to be a more important issue.

There are several reasons for integrating the models
in the above fashion. The entire coarse grid is calculated
at each new time step even though the points coincident
with the fine grid are subsequently modified. This al-
lows for only minor modifications of the coarse grid
model and maintains code properties desirable for vec-
tor processing machines. Using only an odd integer
number of fine grid points per coarse grid spacing re-
sults in a more efficient integration technique for the
feedback between the two model B grids. The explicit
nature of the baroclinic boundary conditions and the
implicit nature of the barotropic boundary conditions
are preserved in the fine grid by solving each time step
in two parts. In the present version of the model, the
coarse grid uses the same time step as the fine grid.
Although numerical stability considerations would al-
low for a larger time step on the coarse grid, we have
chosen not to implement this option because, given
that the coarse grid contributes little to the overall
computational expense, it would add an additional
level of complexity for very little gain.

4. Model calculations

In this section the nested model is applied to two
test problems. There are many possible applications
that are of interest both from an oceanographic and a
computational point of view. The examples shown here
are not intended to address all of the interesting issues
that may arise in the application of nested models;
rather, they were motivated by their relative simplicity,
knowledge of expected behavior, general relevance to
oceanic phenomena, and previous experience with
open boundary condition simulations. The first test
case is initialized with a barotropic modon (Flierl et
al. 1981) within the fine grid region. The modon then
propagates to the east through the boundary interface
and into the coarse grid region. The second problem
is initialized with an anticyclonic baroclinic vortex
within the fine grid and allowed to evolve until the
vortex has propagated into the coarse grid region. In
both cases, a two-level model is used in the vertical
direction. The first problem is of the type in which a
flow field of interest is contained within the fine grid
region and the coarse grid acts primarily as a means
to obtain open boundary conditions. The second also
starts with information within the fine grid but gen-
erates large scale features which propagate into the
coarse grid and, in time, feed back and provide large
scale forcing for the evolution of the fields within the
fine grid region. In each of these experiments, the
propagation of the features is strongly dependent on
the structure of the features themselves. If the structure
breaks down, the solution will quickly diverge from
the reference case. In this sense, the results will be very
sensitive to errors and thus provide a strong test of the
nesting procedure.
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a. Barotropic modon

For the first application, the nested model is initial-
ized with a barotropic modon within the fine grid. The
model is then run ahead in time until the modon has
passed fully out of the fine grid and into the coarse
grid. An advantage of this test problem is that an an-
alytic solution to the barotropic modon on a quasi-
geostrophic beta plane is known (Flierl et al. 1981).
However, the model will not reproduce this exact so-
lution for several reasons. The model grid is not infinite
in horizontal extent, the model contains full primitive
equation physics, the continuous solution is repre-
sented by a finite number of grid points, and horizontal
dissipation is present (required for numerical stability).
Nevertheless, these differences are expected and found
to be small so that the analytic solution provides a
good benchmark for the model calculations.

The beta-plane analytic expression for the stream-
function of a barotropic modon situated at the origin
at time zero is written in polar coordinates (r, ) as
(Flierl et al. 1981)

k
¥ = HyC sin(a)[%((—k—ra)—) - (1 n kTBc)’] ,

O0<r<a (17)
CI/Z
w(r/(5))
ATV E r>a.
w(of(5)")

(18)
This modon will propagate eastward at a uniform speed

C. The parameters that we used to define the modon
are

¥ = HyCa sin(8)

2Q
a=10X10"cm, B= o cos(0,n),

0,, = 38.5°N, H, =5 X 10° cm,

where Q is the rotation rate of the earth and a, is the
radius of the earth. This give a constant eastward trans-
lation for the modon of C = 8a? = 17.85cm s
Three experiments are carried out with grid ratios
of 3:1, 5:1 and 7:1 between the fine and coarse reso-
lutions, referred to as M3, M5 and M7, respectively.
The model parameters are summarized in Table 1 for
each calculation. The coarse grid domain is approxi-
mately 1540 X 1540 km? and the fine grid domain is
approximately 620 X 620 km?, centered on the initial
modon position. The domain sizes with different ratios
between fine and coarse resolution are not exactly the
same due to changes in the coarse grid spacing and
constraints on interfacing the fine and coarse grids. The
initial position of the modon and the location of the
fine grid region in the coarse grid domain are shown
in Fig. 2. The grid spacing in the fine grid of 5 km
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TABLE 1. Fine and coarse model parameters for modon experiments, diffusion coefficients units cm? ™',
Fine Coarse
Run M,N A,A, (km) Ay M,N AyA, (km) Ay A,
M3 125 5 1X10° 103 15 2.5 X 10° 0
M5 127 5 1x10° 63 25 1.0 X 10° 0
M7 121 5 1 X 10° 45 35 2.0 X 10 0

resolves the modon quite well with 40 grid points across
its diameter. The coarse grid spacings increase from 15
km to 25 km to 35 km in the three experiments. The
first case gives approximately 13 grid points across the
modon, the second 8, and the third less than 6.
McWilliams et al. (1981) found that 15 grid points per
modon diameter were required to reproduce the phase
speed to within 10% of its analytic value in a doubly
periodic beta-plane quasi-geostrophic model. Based on
their results, the first coarse grid should represent-the
modon fairly well, the second marginally, and the third
rather poorly. The horizontal diffusion coefficients have
been increased in the coarse grids to maintain numer-
ical stability.

The transport streamfunctions for the analytic so-
lution and for the fine grid region of experiment M3
are shown in Figs. 3a and 3b for days 10, 20 and 30.
The structure of the modon is maintained quite well
in the model calculation. The main difference is that
the propagation speed is approximately 3% faster in
the model solution than it is for the analytic solution.
There is no visible distortion of the modon as it en-
counters the boundary between the fine and coarse grid
regions, and it leaves behind little evidence of its passage
after it has left the fine grid region. The second and
third experiments (M5 and M7) show similar behavior
in the fine grid region although there are some notice-

FIG. 2. Modon initial condition in the coarse grid;
the fine grid domain is indicated.

able distortions of the modon as it passes through the
grid interface (Fig. 3c and 3d). While the modon is
contained within the fine grid, calculations M5 and
M7 reproduce the modon structure quite well. As the
modons pass through the boundary, their phase speed
decreases slightly and they become distorted. The mo-
don passes completely through the boundary in M5
but not quite all the way through in M7.

The root-mean-square (rms) percentage error ( nor-
malized by the rms of the initial streamfunction field)
over the fine grid region for each of the experiments is
shown in Fig. 4. Over the first 10 days the error in-
creases almost linearly in each case due to the difference
in phase speeds between the model results and the an-
alytic value. On day 10 the modon is beginning to in-
teract strongly with the interface and enter into the
coarse grid. The errors in M3 level off at about 10%
while M5 increases to 15% and M7 increases to over
20% on day 20. After the peak of the modon has passed
through the interface, the rms error begins to decrease
since the whole solution is decreasing in the fine grid.
The highest resolution experiment (M3) levels off after
day 25 at about 2%. The second case (M5) decreases
to 5% but then begins to increase slightly again at the
end of the experiment. The third case (M7) decreases
until day 25 but then rapidly increases to almost 40%
by day 30. It is believed that this increase is due to
contamination of the fine grid solution by westward
propagating Rossby waves that were generated in the
coarse grid after the modon broke down (see next
paragraph). The error again decreases as dissipation
begins to act on these features and they broaden in
scale.

The coarse grid representation for each of the nested
calculations is shown in Figs. 5b, 5¢, and 5d along with
the analytic solution (Fig. 5a) again for days 10, 20,
and 30. For plotting purposes, only part of the coarse
grid region is shown—that part which contains the
modon. The northern, southern, and western bound-
aries in the figure are coincident with the extent of the
fine grid model, while the location of the eastern in-
terface with the fine grid is the middle line indicated
on the figure. On day 10 the modons are still within
the fine grid region, and they are represented well in
each of the experiments. On day 20, the modons have
almost left the fine grid and mostly exist in the coarse
grid region. Experiment M3 still compares well with
the analytic solution while M5 shows some decrease
in amplitude and M7 has weakened considerably and
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FIG. 3. Transport streamfunction in the fine grid region on days 10, 20, and 30: (a) analytic solution, (b) M3, (¢) M5, (d) M7.
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becomes seriously distorted. The modon has passed
fully into the coarse grid by day 30. As one would ex-
pect, M3 is still representing the modon well, M5 is
losing amplitude and beginning to enlarge, and M7
has broken down into complex, multiple circulations.
Since the flow field in M7 no longer even begins to
satisfy the modon relation, these features begin to dis-
perse as westward propagating Rossby waves. This be-
havior in the coarse grid is consistent with previous
numerical experiments with modons carried out by
McWilliams et al. (1981). Because of the interaction
between the grids, these features enter the fine grid re-
gion near the end of the experiment. These results
demonstrate that the feedback from the fine grid to the
coarse grid maintains the modon structure even when
the coarse grid does not have sufficient resolution to
do so on its own. This feedback is necessary in order
for the coarse grid to provide good boundary conditions
to the fine grid.

b. Baroclinic vortex

There is no analytic solution available for the evo-
lution of a baroclinic vortex. As a result, the perfor-

TABLE 2. Fine and coarse model parameters for vortex experiments; diffusion coefficients units cm? s~*.
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mance of the nested model calculations will be eval-
uated against a single grid, high resolution model cal-
culation that we call our “reference solution.” The
nested calculations use grid ratios of 1:1, 3:1, 5:1 and
7:1,called V1, V3, V5 and V7, respectively. The coarse
grid domain is 1800 km by 1800 km while the fine
grid region is approximately 580 km by 580 km. The
numerical parameters are summarized in Table 2. Note
that the reference solution and case V1 are not identical
calculations. Experiment V1 is used to determine what
differences are introduced to the calculation due only
to the nesting technique with no changes in grid res-
olution by comparison with the single grid calculation
using the same resolution. It turns out that this differ-
ence is small and errors in the subsequent calculations
are, in essence, entirely a result of the difference in grid
sizes.

The initial vortex is described by a Gaussian pressure
distribution with maximum geostrophic velocity of 100
cm s~! and a horizontal e-folding scale of 60 km in
the upper layer and no motion in the lower layer. The
velocity field is initialized to be in geostrophic balance
with the Gaussian pressure distribution. Temperature
is derived from pressure through the hydrostatic equa-
tion and the equation of state, Egs. (3) and (6).

The evolution of the ring in the reference calculation
is shown in Figs. 6a (streamfunction) and 6b (tem-
perature ). The whole domain is shown. Because the
streamfunction is more variable in time, it is shown at
20-day intervals while the temperature is shown only
on days 0, 60, and 100. The location of the fine grid
domain to be used in the subsequent nested experi-
ments is indicated in both the streamfunction and
temperature plots. Early in the experiment the tem-
perature field shows only slight adjustments while the
transport streamfunction begins to develop a radiating
barotropic wave pattern. The ring moves steadily to
the southwest as the barotropic wake continues to de-
velop and extend toward the boundaries. On day 40
the wake begins to interact with the solid walls of the
larger, coarse domain and reflects back into the interior.
By day 60 the barotropic circulation is quite compli-
cated as a result of the reflected waves interacting with
the wake pattern. Meanwhile, the baroclinic ring has
moved to the southwest and its maximum temperature
has slowly decreased due to horizontal diffusion. The
streamfunction field (barotropic flow) continues to
disperse until, by day 100, no ring feature is recogniz-

H

Fine Coarse
Run M, N AA, (km) Ay A, M,N AL A, (km) Ay A,
A4 59 10 5% 10° 5 181 10 5% 10° 5
V3 59 10 5% 10° 5 61 30 5% 10° 5
V5 62 10 5% 10° 5 37 50 12.5 X 106 5
V7 58 10 5% 10° S 26 70 25 X 10° 5
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FI1G. 6. Reference calculation for the baroclinic vortex: (a) transport streamfunction at days 0, 20, 40, 60, 80, and 100; (b) temperature
at days 0, 60, and 100. The small interior box shows the fine domain that will be used in subsequent experiments.

able out of the background eddy field. The temperature
field (baroclinic flow) maintains its integrity as it moves
southwest.

The fine grid region of V3 and the difference between
the nested calculation and the reference calculation are
shown in Fig. 7 at 30-day intervals. The baroclinic ring
begins to interact with the boundary on day 30 and
until this time the nested calculation is essentially the
same as the reference calculation. The difference fields
remain at less than one contour level (8% of the max-
imum ring temperature) until day 40 (not shown).

Eventually the temperature of the ring becomes too
cold and, by day 60, this difference is clearly related to
the inflow portion of the interface. In addition, some
small scale errors are found near the outflow part of
the ring. This behavior may be due to an overspecifi-
cation of the boundary conditions at outflow points
and the inability of the coarse grid to supply properly
matched values. Another 3:1 experiment was carried
out using open boundary conditions that advect vor-
ticity on outflow (Spall and Robinson 1989) but these
small scale errors were found in that calculation also.
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This difference field is characteristic of the central por-
tion of the experiment, days 40-60. The temperature
perturbations are confined largely to the inflow region
of the boundary while the transport streamfunction
differences exist on both this intermediate scale and
also on a much larger scale. The large scale stream-
function errors are probably due to the somewhat poor
representation of the Rossby waves in the coarse grid
and not directly related to the interface boundary con-
dition. For the remainder of the experiment, the tem-
perature errors become positive and exist on the same
scale as the ring. This occurs because the ring propa-
gates too slowly once it is most of the way into the
coarse grid. This is also seen in single grid calculations
at the coarse resolution and is not directly related to
the nesting technique. The streamfunction errors re-
main on quite large scales and, again, are probably due
to the somewhat poor representation of the wake in
the coarse grid.

Temperature and streamfunction maps for calcu-
lations V5 and V7 are not shown because they quali-
tatively follow those of V3. Instead, we will evaluate
the performance of the nested models in the fine grid
region by following the location and value of the max-
imum temperature of the ring. The maximum tem-
perature of the ring for the reference calculation and
each of the nested experiments is shown in Fig. 8a.
After the initial adjustment period, the maximum
temperature in the reference calculation very slowly
decays until almost day 60. At this time the center of
the ring is passing through the grid interface and the
maximum temperature found anywhere in the fine grid
region rapidly decreases due to the fact that the eddy
leaves the region. The nested experiments V3 and V3
follow the reference calculation quite well until day 42,
when the temperature begins to decrease earlier than,
but not as quickly as, that in the reference calculation.
The temperature decrease begins earlier because the
portion of the ring that has moved into the coarse grid
is feeding back onto the fine grid solution. The tem-
perature continues to decrease as the ring passes
through the interface into the coarse grid region. The
temperature does not decrease as much at the end of
these experiments as it did in the reference solution
because the ring, once in the coarse grid, moves to the
southwest more slowly and remains closer to the fine
grid region. Experiment V7 feels the interaction with
the coarse grid sooner, on day 35, but eventually passes
through the boundary at about the same time. Exper-
iment V3 is the warmest at the end of the calculation,
even though its center is the furthest away from the
fine grid, because the horizontal diffusion in the coarse
grid has not decreased the ring amplitude in this ex-
periment as much as it did in the other nested calcu-
lations (see Fig. 10).

The location of the maximum temperature of the
ring in the fine grid (we will call it the ring center) is
shown in Fig. 8b for the reference and each of the nested
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FiG. 8. Value (a) and location (b) of the maximum temperature
for the fine grid vortex experiments.

experiments. The rings are tracked until they pass
through the interface (at 300 km distance). Experiment
V3 follows the track of the reference calculation almost
exactly throughout the entire simulation (in fact, the
path of the reference calculation is obscured by the
path of V3 in our diagram ), while V5 remains within
20 km of the reference track. In Experiment V7, the
vortex does not move far enough to the west when it
is approximately 100 km away from the southern in-
terface and then appears to have trouble passing
through the southern interface (moves westward only)
for the remainder of the experiment.

The percentage rms errors over the fine grid region
for the temperature are shown for each of the experi-
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ments in Fig. 9a. The errors have been normalized by
the rms of the initial temperature field minus the back-
ground temperature. Calculation V1 (the case with two
models but a single grid size, here marked Reference)
maintains an error of less than 1% for the duration of
the experiment, compared to the reference case. Each
of the other experiments show similar patterns to each
other, with the errors increasing faster in the coarser
grid resolutions. An initial growth period occurs over
the first 2 days, caused by the adjustment of the ring
initial condition to the discrete grid. Between days 2
and 15 the errors remain small and almost constant.
This is the period during which the baroclinic ring is

217

propagating to the southwest and is contained mostly
within the fine grid region. At day 15 the ring begins
to feel the grid interface and the errors begin to grow,
most rapidly for V7, followed by V5 and V3. The errors
increase to a maximum near the time the center of the
ring is passing through the interface. The maximum
error for V3 is 18% while V5 and V7 increase to 23%
and 47%, respectively. After the center of the ring has
passed through the interface, the errors decrease rap-
idly, simply reflecting the fact that the rings continue
to leave the fine grid region even after they are mostly
contained in the coarse grid.
The percentage rms errors (normalized by the rms
of the streamfunction in the initial conditions) over
the fine grid for the transport streamfunction are shown
in Fig. 9b. For run V1 (here marked Reference), the
error remains at approximately 1% throughout the ex-
periment. The other three calculations exhibit a smooth
initial growth period over the first half of the experi-
ment and then highly variable errors over the second
half. During the smooth growth period, each of the
calculations shows a sharp increase between days 15
and 25. This is the period when the rapidly developing
barotropic wake is extending into the coarse grid region.
After this increase, the errors decrease slightly before
jumping up very sharply at day 40 (V5 and V7) and
day 60 (V3). This is roughly coincident with the time
at which the barotropic ring passes through the inter-
face. For the remainder of time the errors are highly
variable, as a result of waves reflecting off the solid
boundaries in the coarse domain and propagating back
into the fine grid region. Although these reflections are
also present in the reference calculation, the ability of
the model to accurately resolve the structure and phase
speed of these waves is dependent on the horizontal
resolution in the coarse grid region. The accurate re-
production of these wave reflections will become less
important for increasingly larger coarse grid domains
(basin scale simulations) in which distant dissipation
precludes reflected waves returning to the fine region.
In the coarse grids, the initial structure of the ring
is not as well represented as it was in the fine resolution
grid. However, the early development of the ring and
its associated circulations are quite similar to the ref-
erence case in both the temperature and streamfunction
fields. This is because it is maintained by feedback from
the fine domain. There is little noticeable distortion of
the baroclinic vortex as it encounters the grid interface
but the strength of the ring is quickly reduced as it
continues into the coarse grid in each experiment (not
shown). Because the main focus of this study is the
ability of the model to reproduce the fields in the fine
grid region, a detailed examination of the coarse grid
representation will not be made. It is of interest, how-
ever, to determine how well the ring is represented in
the coarse grid while it is coincident with the fine grid
region. The ability of the fine-to-coarse grid feedback
to maintain the proper ring structure in the coarse grid
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is necessary in order for the interactive system to pro-
vide adequate boundary information for the fine grid
calculation.

The coarse grid evolution of the vortex is summa-
rized for each of the experiments by monitoring the
value of the maximum temperature of the ring (Fig.
10) as a function of time for each of the experiments.
The reference run shows a sharp decrease over the first
2 days and then a gradual reduction as dissipation and
heat diffusion decrease the temperature of the ring.
Each of the nested experiments shows an initial ad-
justment, a period of gradual decay, and finally a more
rapid decrease for the remainder of the experiment.
The initial adjustment in the nested calculations results
in a lower temperature because the peak is not as well
represented by the coarser grids. The gradual decay
occurs while the ring is contained within the fine grid
region and the nested interaction is controlling the ring
evolution in the coarse grid. As the ring begins to cross

the fine-coarse grid interface, the amplitude of the ring

decreases due to a combination of coarser grid reso-
lution and increased diffusion. This is reflected by the
rapid decrease in maximum temperature beginning on
day 42 for experiment V3, day 40 for V5, and day 30
for V7. As the rings move entirely into the coarse grid
(after day 50) their amplitudes are greatly reduced as
a result of the coarse representation and stronger hor-
izontal diffusion. The location of the maximum tem-
perature of the ring (not shown) is reproduced quite
well for each of the experiments while the ring is con-
tained within the fine grid region.

It is also of interest to compare the coarse grid rep-
resentation in a nested calculation with a single grid
calculation that uses the same coarse resolution every-
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where. This gives us an indication of the effectiveness
of the feedback mechanism and the benefits of the
nested model approach. Figure 11a shows the maxi-
mum temperature for the reference calculation, the
nested calculation V3, and a calculation with 30 km
everywhere, V30. The ring amplitude is damped very
quickly in V30 while the nested calculation closely fol-
lows the reference calculation for the first 40 days (while
the ring is within the fine grid). The locations of the
ring centers in these three experiments are shown in
Fig. 11b. Calculation V3 follows the reference quite
well while it is within the fine grid and fairly well for
another 150 km after it enters the coarse grid. Run
V30 follows the correct path for approximately 150
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km but then turns sharply to the west and stalls. It is
clear from these figures that the single grid calculation
at 30 km resolution performs rather poorly when com-
pared to both the fine and coarse grid solutions in the
nested calculation V1.

The issue of how to specify the subgridscale param-
eterizations in the fine and coarse regions is a difficult
one. If possible, it would be desirable to maintain the
same physical assumptions between the model grids
(i.e., the same diffusion coefficients). However, using
a subgridscale parameterization that will yield numer-
ically stable solutions at both fine and coarse grid res-
olutions will probably result in stronger damping of
the fine grid region than would otherwise be needed
or wanted. Hence, there must be a tradeoff between
these physical and numerical considerations. For the
baroclinic vortex experiments discussed in this section,
using the fine grid diffusion coefficients in the coarse
grid results in the growth of unrealistic small scale er-
rors. However, parameters intermediate to the fine and
coarse values used here can be found that will result
in stable solutions with less viscous damping in the
coarse grid region. No attempt has been made to “tune”
the model parameters in order to obtain the least dif-
fusive, computationally stable solution in the coarse
grid.

5. Discussion and conclusions

In order to adequately resolve important time and
space scales of oceanic circulation, it is often necessary
to make use of very high resolution in numerical ocean
models. As a consequence, it may be useful and even
necessary either to isolate a local domain by inventing
somewhat ad hoc boundary conditions that parame-
terize the influence of the rest of the ocean on the do-
main of interest (e.g., Robinson and Walstad 1987;
Holland 1986) or to develop a numerical construction
that has variable resolution (e.g., the GFDL ocean cir-
culation model). In the former case, certain charac-
teristics of the flow must be known at the open bound-
ary to properly handle the developing fields in the in-
terior and the propagation of features across the open
boundary, as well as to properly include the influence
of the outer ocean on the domain of interest. In the
latter case, the changing resolution can pose a problem
for the propagation of information across the juncture
of the fine and coarse numerical resolutions, although
certain information from the outer domain can force
the inner one, at least for some space and associated
time scales.

In this paper, we have taken a somewhat different
approach for a primitive equation model. This ap-
proach is to run a pair of calculations simultaneously,
one for the large scale flow (a future example might
be the North Atlantic) and another for the fine scale
flow (say, the Gulf Stream region). The two models
are, in fact, separate models but they interact. The fine
resolution model occupies part of the physical domain
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of the coarser resolution model. The two regions in-
teract through a feedback process that allows the fine
region to develop its fine resolution phenomena while
being forced by the coarse resolution solution only at
its boundaries, which are interior to the coarse model.
Simultaneously, the fine resolution solution is used to
replace, in an averaged sense, the rate of change of the
prognostic variables in the region common to the two
models, so that the coarse model has similar (if some-
what averaged) features in the common part of the
total domain.

The technique appears to work quite well in the cases
examined here. The eddy structures and their devel-
opment in time clearly need the high resolution to be-
have properly. The presence of the larger scale coarse
domain allows the eddy structures to leave the fine
resolution region relatively cleanly, at least for reso-
lution differences of 3:1 and 5:1. This has large con-
sequences for the economy of carrying out these cal-
culations. At a 3:1 resolution difference, the coarse res-
olution part of the calculation is effectively one-ninth
the cost in computer resources per unit area covered
(given that the time step is kept equal in the two cal-
culations). Thus the larger domain could be many
times larger than the fine one, or alternatively, the net
cost of the coarse part of the calculation could be a
small fraction of the total computational cost. Effec-
tively, this could be considered a way to provide nearly
correct boundary conditions to the fine resolution
model.

Two test problems were examined. The first was a
barotropic modon (Flierl et al. 1981) initialized in the
fine domain and allowed to propagate out. The advan-
tage of the modon is that there is an analytic solution
to test against so that the net effect of all numerical
errors (even on the finest resolution numerical exper-
iment) could be examined. The disadvantage of the
modon solution is that it is barotropic and thus does
not test the baroclinic ( variable density) aspects of the
coupled model.

The modon results showed that, except for a smail
overestimate of the phase speed of the modon in all
experiments, its structure and amplitude were quite
well maintained in the fine domain while propagating
there and when crossing the interface into the coarse
region, at least for resolution differences of 3:1 and
5:1. At 7:1, the modon had some difficulty leaving the
fine domain as it began to break up immediately upon
entering the coarse region. Given a 5:1 resolution dif-
ference, the computational cost of the outer, coarse
resolution model run compared to the inner, fine res-
olution one was 25%. Thus, this technique has consid-
erable advantage over other techniques that try to ex-
trapolate information from the interior of a fine reso-
lution regional model to obtain boundary conditions
for the proper exiting of such eddies. (In fact, the au-
thors have not been able to achieve anything like com-
parable success using such extrapolation techniques for
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the modon, which is a highly nonlinear and patholog-
ical eddy.)

The baroclinic vortex case shows quite comparable
results as those for the modon. In general, factors of
3:1 and 5:1 in resolution were quite reasonably well
behaved up until the baroclinic part of the solution
crossed the interface between the two domains. Some
error is found due to the rapidly propagating barotropic
waves that rebound around the complete basin and
reenter the fine domain. As the baroclinic eddy feature
crosses the interface, there is also some underestimate
of the temperature of the inflowing water, leading to a
decrease in the maximum temperature near the
boundary.

The present interaction between the coarse and fine
grid regions does not conserve heat and momentum
at the interface. The importance of flux conservation
is complicated and likely to be related to the model
application, time of integration, grid ratios, and
subgridscale parameterizations. For the results pre-
sented in this study, the model performed quite well
without exact flux conservation. It is not even clear
that a conservative flux form of the fine grid boundary
conditions would result in a better simulation since it
was found that the solution degraded rather quickly as
the eddy feature entered the coarse grid. Enforcing these
coarse grid fluxes on the fine grid solution may actually
propagate the erroneous coarse grid fields more quickly
into the fine grid region. More analysis of the flux con-
servative form of the boundary conditions is needed
before any conclusive comparison can be made, but
the results found in this study indicate that noncon-
servative boundary conditions can be used for both
baroclinic and barotropic problems of interest.

In general, the results shown here suggest that such
coupled models are a very effective way in which to
handle open boundaries of fine resolution numerical
ocean models. At a reasonable cost in computer re-
sources, a larger coarse resolution model may be added,
with proper feedbacks, to properly handle the boundary
conditions of the fine part of the domain. The other
possibility, of using the outer coarse domain solution
to force the fine domain with realistic flows [e.g., large
scale seasonal changes in the circulation (see Holland
and Vallis, 1990)], has not really been tested here, since
only solutions initialized with eddy structures in the
fine domain have been studied. There is no reason,
however, for this coupled model system not to work
equally well, as long as high resolution phenomena are
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not expected to enter or reenter the fine domain from
the coarse one.
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