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ABSTRACT

A two-layer quasigeostrophic model in a channel is used to study the influence of lateral displacements
of regions of different sign mean potential vorticity gradient (IL,) on the growth rate and structure of
linearly unstable waves. The mean state is very idealized, with a region of positive I1, in the upper layer and
aregion of negative 1, in the lower layer; elsewhere I, is zero. The growth rate and structure of the model’s
unstable waves are quite sensitive to the amount of overlap between the two regions. For large amounts of
overlap (more than several internal deformation radii), the channel modes described by Phillips’ model are
recovered. The growth rate decreases abruptly as the amount of overlap decreases below the internal
deformation radius. However, unstable modes are also found for cases in which the two nonzero 11, regions
are separated far apart. In these cases, the wavenumber of the unstable waves decreases such that the aspect
ratio of the wave remains O(1). The waves are characterized by a large-scale barotropic component that has
maximum amplitude near one boundary but extends all the way across the channel to the opposite bound-
ary. Near the boundaries, the wave is of mixed barotropic—baroclinic structure with cross-front scales on the
order of the internal deformation radius. The perturbation heat flux is concentrated near the nonzero 11,
regions, but the perturbation momentum flux extends all the way across the channel. The perturbation
fluxes act to reduce the isopycnal slopes near the channel boundaries and to transmit zonal momentum from
the region of II, > 0 to the region on the opposite side of the channel where II, < 0. These nonzero
perturbation momentum fluxes are found even for a mean state that has no lateral shear in the velocity field.
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1. Introduction

A necessary condition for the instability of baroclinic
flows is that the lateral gradient of the mean potential
vorticity must change sign somewhere within the fluid
(Charney and Stern 1962; Pedlosky 1964). This result is
derived from consideration of global integrals of the
momentum budget for a mean flow with an assumed
perturbation of wavelike horizontal structure. While
this constraint has proved quite useful for identifying
flows that are likely susceptible to baroclinic instability,
it is not a sufficient condition for instability and does
not consider the locations of the regions with differing
signs of the potential vorticity gradient.

Our interest in the relative positioning of regions of
opposite sign potential vorticity gradient is motivated
by an observational and modeling study of a boundary
current along the northern slope of Alaska (Spall et al.
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2008). The boundary current is composed of low poten-
tial vorticity water that is flowing eastward in a bottom-
intensified jet over sloping topography (Fig. 1). This
structure gives rise to a positive meridional gradient in
potential vorticity at the core of the boundary current
(IT, > 0 near 100-m depth) and a negative gradient in
potential vorticity at the base of the boundary current
(IT, < O near 180-m depth). A similar potential vorticity
profile is found in an idealized numerical model of this
flow. The boundary currents in both the model and the
observations are highly time dependent and analysis of
the energy conversion terms indicates that the source
of the variability is baroclinic instability of the mean
flow. Interestingly, the boundary current in the model
is found to become more stable as the bottom slope
is decreased. This is in opposite sense to what would
be expected for a horizontally homogeneous baro-
clinic flow over a sloping bottom (e.g., Blumsack and
Gierasch 1972), where a bottom slope of this sense sta-
bilizes the flow.

For a vertical wall, or very steep bottom slopes, the
region of positive II,, in a baroclinic boundary current
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FIG. 1. Mean potential vorticity (colors; m~' s~ X 10~'?) overlaid with mean zonal velocity
(cm s™!) from a mooring array along the north slope of Alaska, described further in Spall et

al. (2008).

will be positioned above the region of negative I1,. This
provides a useful framework for the classical assump-
tion that the lateral gradients of potential vorticity are
constant at each depth in the fluid, or within each layer
(Charney 1947; Eady 1949; Phillips 1954). However, for
sufficiently weak bottom slopes, the upper part of the
boundary current can become laterally offset from the
lower part of the boundary current. For a boundary
current of width equal to the internal deformation ra-
dius, this decoupling occurs when the bottom slope is
less than f/N, where f'is the Coriolis parameter and N is
the Brunt-Viiséléd frequency. The topographic stabili-
zation found numerically by Spall et al. (2008) occurs
near this value of bottom slope, and suggests that the
lateral offset of the regions of differing II, resulting
from the sloping bottom may be the mechanism causing
the increased stability.

This example raises the more general issue of how
lateral offsets in regions of nonzero mean potential vor-
ticity gradients influence the structure and growth rate
of baroclinically unstable waves. One can imagine that
such offsets might arise from numerous different flow

configurations, the above topographically modified cur-
rent being just one example. Other examples include
boundary currents on opposite sides of a basin or ridge,
and outflows from a marginal sea or estuary merging
with adjacent currents. Although the model is very ide-
alized, the approach adopted here allows us to isolate
the baroclinic waves from barotropic or mixed instabili-
ties and to isolate the effects of the relative positioning
of the nonzero II, regions.

2. The two-layer QG model

Following Phillips (1954), a two-layer quasigeo-
strophic (QG) approximation is used to represent the
flow. The layer approximation filters out small-scale
modes of instability and reduces the partial differential
equation to a coupled set of ordinary differential equa-
tions. The approach follows the usual linear stability
analysis, as can be found in, for example, Pedlosky
(1987). The nondimensional equation for the perturba-
tion potential vorticity g,, may be written as
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where U, is the mean zonal velocity, I, is the mean
potential vorticity, ¢, is the perturbation streamfunc-
tion, and g, = V?¢,, — F,(—1)"(d, — ¢,) is the pertur-
bation potential vorticity for layer n. The parameter
F, = (Ly/L,)? where L, is the internal deformation
radius and L is a horizontal length scale.

Normal-mode solutions for the perturbations are
sought, such that

$, = Re®,(y)e . )

Substitution of (2) into (1) yields a coupled set of
ordinary differential equations:

(Un - C) [(I)n,yy - kzq)n + (_l)nFn((Dl - (1)2)]
+ 10,0, = 0, 3)

where the subscript y indicates partial differentiation.

The flow is assumed to be confined to a zonal chan-
nel of width L (nondimensionalized by the internal de-
formation radius) with uniform zonal flow within each
layer. The lateral boundary conditions are no normal
flow, so that

¢,=0, y=0, L. )

In general, the mean potential vorticity gradient is
composed of the planetary vorticity gradient, the cur-
vature of the mean flow, and the change in layer thick-
ness. For the deep layer, this change in layer thickness
may include the effect of a sloping bottom. The neglect
of lateral shear in the mean flow eliminates the curva-
ture term, and also eliminates the horizontal shear as a
source of energy for the perturbations, ensuring that
any unstable modes are a result of baroclinic instability
of the mean flow.

The problem statement is completed by specifying
the mean potential vorticity gradient in each layer. The
relative contributions of the planetary vorticity gradi-
ent, bottom slope, and isopycnal slopes do not need to
be specified; it is only the total potential vorticity gra-
dient that enters the equations. To study the effect of
lateral displacements of regions of differing signs of T,
in the simplest context, it is assumed that each layer is
composed of a region of nonzero gradient and a region
of constant II, as indicated in Fig. 2.

For simplicity, the upper-layer velocity is taken to be
one, the deep velocity is set to zero, and the upper- and
lower-layer mean thicknesses are taken to be equal.
The horizontal length scale is nondimensionalized by
the internal deformation radius, so that F; = F, = 1.
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Fi1G. 2. Two-layer QG model configuration. Regions of nonzero
mean potential vorticity gradient overlap by amount 8.

The configuration is completed by specifying the width
of the nonzero 11, region within each layer, indicated by
y; and L — y, in Fig. 2. It will be assumed that the
nonzero II gradient regions in each layer are of the
same width (y; = L — y,) and that the upper-layer
region is adjacent to the southern wall and the lower-
layer region is adjacent to the northern wall. This is not
necessary and, in fact, a number of solutions have been
found for general widths of the potential vorticity gra-
dient regions. However, this configuration yields the
essential results and reduces the number of parameters
that need to be specified.

The matching condition at the interfaces located at y,
and y, is simply that ®,, and its first derivative are con-
tinuous. This is much simpler than the matching condi-
tion required for the more general problem where the
mean flow strength changes abruptly (e.g., Kamenkov-
ich and Pedlosky 1996).

This configuration is somewhat artificial in that the
different regions of mean potential vorticity gradients
are implicitly defined by changes in either the bottom
slope, the planetary vorticity gradient, or the upper or
lower bounding interface slopes. However, the neglect
of lateral shear in the mean flow allows us to focus on
baroclinic instability as the source of the waves and to
isolate the effects of the relative positions of the mean
potential vorticity gradient regions from other influ-
ences that would arise in a more general problem for-
mulation. Baroclinic conversion is often the dominant
source of energy for growing perturbations even in
cases that do have significant lateral shear, as found for
the observational and modeling study that motivated
this work (Spall et al. 2008).

The governing equations form an eigenvalue prob-
lem for the complex phase speed ¢ and the eigenfunc-
tions ®,,(y). Solutions with a positive imaginary com-
ponent of the phase speed are sought, indicating expo-
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nentially growing waves. The governing equations with
boundary conditions on ® are solved using a finite-
difference approximation for the continuous Egs. (3),
resulting in a matrix problem for the eigenvalues and
eigenfunctions.

3. Results

There are three important horizontal length scales in
the problem. The first is the channel width L, the sec-
ond is the width of the nonzero II, regions, and the
third is the amount of overlap between these two re-
gions, which for the configurations used here, is 8 =
2y; — L. If y; = y, = L, so that the nonzero II, regions
fill the channel, 8 = L and the standard two-layer chan-
nel problem of Phillips (1954) is recovered. If y; = L/2,
the two regions each reach to the middle of the channel,
but there is no overlap. As y; —» 0,6 — —L, and the two
regions of nonzero I, become isolated near the south-
ern and northern boundaries.

The properties of the most unstable waves are sought
as a function of the channel width L and the separation
distance 8. The channel width has been varied from 2 to
30 and 6 has been varied from —L to L for each channel
width. The growth rate of the fastest growing wave is
shown in Fig. 3a as a function of the channel width and
the separation distance. For very narrow channels, the
flow is stable to all perturbations regardless of the sepa-
ration 8. This limit of stable flow for very narrow chan-
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FIG. 3. Properties of the most unstable mode as a
function of the separation distance & and the chan-
nel width L: (a) growth rate, (b) wavenumber, and
(c) phase speed. The white dots mark the location of
the modes described in Figs. 4 and 5. No unstable
modes were found in the white region near 6 = —L.

nels is as expected from the standard channel model of
Phillips (1954).

Unstable modes emerge as the channel becomes
wider and are found for most values of L and 8. The
Phillips model result is reproduced along the line 6 = L,
where the growth rate increases with increasing channel
width, most rapidly for narrow channels. Only for very
narrow regions of nonzero II, is the flow stable (& +
L =~ 4 or y, =~ 2). Somewhat surprisingly, unstable
modes are found even when the nonzero 11, regions are
separated by a very large distance (8 < 0). Although
the growth rate for 8 < 0 is much less than found for the
Phillips model in an equivalent width channel, they are
the only growing waves supported in this configuration.
The growth rate increases abruptly when the two re-
gions begin to overlap (8 = 0), but increases only mar-
ginally once the two regions overlap by more than a few
deformation radii, even for very wide channels.

The wavenumber of the most unstable wave also
shows an abrupt transition near & = 0 (Fig. 3b). For & >
0, the wavenumber is O(1), as expected for the Phillips
model. However, as the two regions become discon-
nected laterally, the wavenumber decreases. The wave-
number becomes very small as the potential vorticity
gradient regions become narrow and far apart, such
that the aspect ratio of the growing waves remains
oQ).

The real part of the phase speed is close to 0.5 for
& > 0, again consistent with the Phillips model (Fig. 3c).
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F1G. 4. Properties of the most unstable mode for § = 0 and channel width L = 20: (a) upper-layer
streamfunction ¢,; (b) baroclinic streamfunction (¢, — ¢,); (c) wave momentum flux in layer 1 (dashed
line) and layer 2 (dotted line), and total momentum flux divergence (solid line); and (d) wave density flux
(dashed line) and wave density flux divergence (solid line). The locations of the upper- and lower-layer
nonzero II, regions are indicated in (a), (b) by the solid white line and in (c), (d) by the asterisks at the

top of the figure.

However, the phase speed is very small for 6 < 0. There
also exists a set of complementary waves with 6 < 0 that
have phase speeds close to 1 and equivalent eigenfunc-
tions with y replaced by L — y.

There are two dominant types of unstable modes,
one for 8 = 0 and another for 8 < 0. Those for 6 = 0,
when the nonzero potential vorticity gradient regions
overlap, are analogous to the full channel modes rep-
resented by the Phillips model. This is demonstrated by
the structure of the most unstable mode for § = 0,
where the two nonzero II, regions just touch at the
midpoint of the channel. The streamfunction in the up-
per and lower layers is shown in Fig. 4 for this mode in
a channel of width L = 20, indicated in Fig. 3 by the
uppermost white dot. The eigenfunctions in the two
layers are mirror images in y, with the largest ampli-
tudes in the region of nonzero II, but also with signif-
icant perturbations extending into the zero gradient re-
gions. The waves are composed of both barotropic and
baroclinic components. The aspect ratio of the waves
kIl = O(1).

The wave momentum flux (uv) is shown in Fig. 4c as

a function of latitude for each layer, where u = —¢, and
v = ¢, are the perturbation horizontal velocities and
() represents the average over a zonal wavelength. The
momentum fluxes in each layer are also mirror images
of each other and are directed toward the north in both
layers. The sum of the eddy flux divergences is given by
the solid line. It is everywhere positive in the region
where I, > 0 in layer 1 and everywhere negative in the
region where II, < 0in layer 2. This is as expected from
the analysis of Held (1975), where it was shown that, in
a two-layer QG fluid with an amplifying wave, the total
barotropic momentum flux divergence will take the
same sign as the weighted sums of the mean potential
vorticity gradient provided that the gradient is of the
same sign in each layer. In the case of eigenfunctions
that are symmetric across the interface between non-
zero PV gradients, this makes for a smooth and consis-
tent matching of momentum fluxes with zero flux di-
vergence at the midpoint of the channel. The theory of
Held states that the momentum flux divergence must
be zero in regions where the mean PV gradient is zero
in both layers. The effect of the momentum flux diver-
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FiG. 5. Properties of the most unstable mode for 8 = —16 and channel width L = 20, indicated by the
lower white dot on Fig. 3: (a) upper-layer streamfunction 5,; (b) baroclinic streamfunction (¢, — ¢,); (c)
wave momentum flux in layer 1 (dashed line) and layer 2 (dotted line), and total momentum flux
divergence (solid line); and (d) wave density flux (dashed line) and wave density flux divergence (solid
line). The locations of the upper- and lower-layer nonzero I, regions are indicated in (a), (b) by the solid
white lines and in (c), (d) by the asterisks at the top of the figure.

gence is to decelerate the mean flow in the region
where II, > 0 and to accelerate the flow in the region
where I, < 0.

It is interesting that there exists a nonzero meridional
flux, and meridional flux divergence, of zonal momen-
tum even though the mean zonal flow in each layer is
uniform. The momentum flux divergence extends well
away from the interface where the two potential vor-
ticity gradient regions touch, so that the lateral scale of
the eddy momentum flux is set by the channel width
and not the internal deformation radius. The eddy po-
tential vorticity flux is downgradient, such that low po-
tential vorticity is fluxed northward. Because it is the
potential vorticity flux, and not the momentum flux,
that governs the growing waves, this downgradient flux
of potential vorticity results in a momentum flux diver-
gence even in a flow that has no lateral gradients in the
mean zonal velocity. The result of such growing waves
is to introduce mean velocity gradients by extracting
zonal momentum from the southern region, where
I1, > 0, and depositing this momentum in the northern
region where II, < 0.

The meridional density flux (v(¢; — ¢,)) is shown in

Fig. 4d as a function of latitude. The flux is everywhere
northward, with a peak centered at the midpoint of the
channel. The width of the region with significant eddy
density flux is on the order of the internal deformation
radius. The flux divergence is positive where II, > 0
and negative where II, < 0. This is equivalent to a
northward heat flux that will tend to reduce the isopyc-
nal slope within a few internal deformation radii of the
center of the channel. As & is increased, so that the
regions of nonzero II, begin to overlap, the width of
this region of northward heat flux increases, smoothly
approaching the half-wavelength sinusoidal profile of
the fastest growing wave in the Phillips model as 6 — L.

The second type of unstable mode is found for con-
figurations in which the nonzero II, regions do not
overlap. The growth rate for these modes is much less
than for the previously discussed modes, but they are
found consistently over 6 and L space, provided that &
< 0 and that the width of the nonzero gradient regions
is greater than a few internal deformation radii. A typi-
cal wave structure is indicated in Fig. 5. The growing
waves are dominated by a large-scale perturbation
propagating along one boundary with a smaller merid-
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ional-scale perturbation located along the opposite
boundary. The zonal wavelength is now much larger
than the internal deformation radius; however, the as-
pect ratio of the dominant wave, k//, remains O(1). This
allows the perturbations to reach from one boundary to
the other, thus connecting the two regions of nonzero
I1,. The bridge across the channel is primarily barotro-
pic, as expected for flows on scales much larger than L.
However, the perturbations supported on the northern
and southern sides of the channel are baroclinic (Fig.
5b). This is as expected for a perturbation induced in a
region with gradients in potential vorticity that are dif-
ferent in the two layers.

The eddy momentum flux is positive throughout the
domain in both layers 1 and 2 (Fig. 5c¢). The flux diver-
gence is positive in the region of I, > 0 and negative in
the region of 11, < 0, again consistent with the results of
Held (1975). The flux divergence is also zero through-
out the region of zero I1,. If the flow supports growing
waves, then the momentum flux must be out of the
southern region and into the northern region, and must
also be constant between the two regions. This requires
a barotropic perturbation that connects the two re-
gions, as is found here. It is curious that the northern
and southern regions have a different meridional wave
structure and, in fact, we have not been able to find any
purely symmetric modes when 6 < 0. This result is
explained in the following section in terms of interact-
ing Rossby waves.

The eddy density flux is peaked near the transition
regions at y; and y,, and drops to zero in the broad
region of zero II,. The flux divergence tends to de-
crease the isopycnal slopes near both transition regions
and increase the isopycnal slopes adjacent to the re-
gions of large-eddy density fluxes.

4. An interpretation in terms of interacting waves

To gain further insight into the mechanism that al-
lows instability when the zones of opposite-signed po-
tential vorticity (pv) gradients are widely separated, we
consider in this section the characteristics of the waves,
each of which is produced by a single zone of nonzero
and oppositely signed pv gradients, and search for val-
ues of k for which the waves share the same phase
speed and have a cross-flow structure that effectively
“reaches” across a very broad channel separating the
two zones. The coalescence of the modes is a common
precondition for instability (e.g., the coalescence of the
two boundary waves in the Eady problem). A general
discussion of the connection between instability and the
coalescence of pv neutral waves can be found in several
studies (e.g., Heifetz et al. 2004).
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Thus we consider two problems. The first is for the
wave riding on the potential vorticity gradient +1 in the
region 0 = y =y, embedded in a region that extends
from 0O to o with a uniform flow in the upper layer U,
= 1. Since our interest is in the case where the channel
is broad and the numerical results indicate that the ap-
propriate value of k will be small and of order L™" we
will proceed with the analysis under the approximation
k < 1. In the region 0 = y =< y, the solution that
satisfies the boundary condition on y = 0 is

¢, = A(1 — a7) sinhay + B(1 + o3) sin(a, ),
®)
¢, = A sinhayy + Bsina,y,

where

_ 2172 _ 172
al[(s 8¢ + 4c?) +(1 2c):| ’ ©

2(1 —c¢) 2(1 —c¢)
B [(5 -8 +4cA)? (1 - 2c)}1/2
“2 = 21—¢  20-0o] -

In the region y = y,, where the pv gradients are zero
(for this wave), the solution can most easily be written
in terms of the barotropic and baroclinic modes,

by, = Cbeik(yiym, 7
bp=Cre 079,
so that in this region,
b=, + bp, @®)
b = ¢, = dr

When k is small with respect to one, the baroclinic
decay scale is the deformation radius, which in our units
yields I = 2" (i.e., order 1 and independent of k). The
decay scale for the barotropic mode is k' and can be of
order L. The eigenvalue problem connecting k and c is
obtained by matching the eigenfunctions and their first
derivatives at y = y,. Note that although the pv gradi-
ent is discontinuous it is always finite so that continuity
of the function and its first derivative follows directly
from (3). After some algebra, we obtain the relation

k = KL(C’ yO)’ (9)

where the function K; is given in the appendix.

The second wave is produced by the pv gradient in
the lower layer in the region L — y, = y = L. In that
region the solution may be written as

¢ = Rsinhy,(y — L) + Osiny,(y — L),

&, = R(1 — y})sinhy,(y — L) + Q(1 + y3) siny,(y — L),

(10)
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L = 20 for the two boundary waves. The

intersections are values of potentially unstable modes. Intersections discussed in the text occur
at k = 0.1038, ¢ = 0.14748, and k = 1.2149, ¢ = 0.5.

where

2c—1
2c

1+ 4cH?
+

e (11)

- &
- "

There is a perfect symmetry between the two waves
in which the structure is mirrored. That is clear from
Egs. (5), (6), (10), and (11) in which the waves with ¢
less than 0.5 have rapid variation on the right-hand
boundary in the lower layer while waves with phase
speeds greater than 0.5 will interchange the structure
and have rapid variation in the upper layer as c¢ ap-
proaches 1. This will allow us to consider only the in-
terval in ¢ between 0 and 0.5. Larger values of ¢ only
reflect the solution around the midpoint of the channel
with an interchange of layers. Values of ¢ = 0.5 should
be symmetric between the two waves and one of the
purposes of this calculation is to demonstrate why
modes with that speed are not unstable for the broad
channel (i.e., when L > y,).

The dispersion relation for the wave on the right-
hand wall can be written

(1+4cAH"? 2c-1
2c 2

k = Kgl(c, yo). (12)

The symmetry of the problem implies, and direct cal-
culation verifies, that K has exactly the same form as
K, with [a;, a,] = [v1, ¥2]- Note however that the a’s
and vy’s are different functions of c.

We are interested in those values of k and c that
coincide since from those two waves a single mode
could be constructed. Figure 6 shows the plot of k(c) for
the two waves for the case y, = 2 and L = 20. For this
setting of y, the modes were found numerically to be
unstable. The dispersion relation for the left-hand
mode is shown as the dashed line. The mode that lives
on the pv gradient in the zone near y = L is shown by
the solid line. There is clearly an intersection at ¢ = 0.5
as there must be by symmetry. However, there are a
large number of intersections for small values of ¢ and
this is due to the rapid variation of the eigenfunction
near the right-hand boundary as noted above; the spa-
tial scale of the variations goes as ¢ so the oscillation
becomes increasingly rapid for small c¢. The identical
behavior occurs in the range (0.5, 1) where the rapid
variation occurs in the upper layer near the left-hand
wall as ¢ approaches 1.

However, for instability to occur, the two waves gen-
erated at the two separate zones must interact and here
the quantitative information from the eigenvalue prob-
lem is key. The intersection that occurs near ¢ = 0.5
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FI1G. 7. The eigenfunctions for the two waves sharing the same wavenumber k£ = 0.1038 and

¢ = 0.1047. (left) The eigenfunction for the mode on the pv gradient near y = 0, for (top)
upper and (bottom) lower layer. (right) The wave on the pv gradient near y = L. The asterisks
show the extent of each of the regions on nonzero pv gradient.

yields an O(1) value of k for each wave. Since the so-
lutions in the region y, =y =< L — y, decay with either
k or I, at least one of these must be small so that the
modes can reach across the channel to excite and inter-
act with the other region. Now / is always of order one
and so it is necessary that k£ be small. It is the barotropic
mode that can provide the bridge between the two re-
gions and produce an instability. Indeed, the baroclinic
mode is exponentially small in the intervening region so
the excitation of one region by the other is due only to
the barotropic mode for large L.

Figure 7 shows the superposition of the two modes
for the case of small k (i.e., when the barotropic bridge
can link the two regions). On the other hand, for ¢ =
0.5, for which the a’s and the +y’s are equal, k is of order
one and the barotropic mode rapidly decays in the in-
terval between the two zones of nonzero pv gradients
and so the modes have negligible overlap (Fig. 8). This
is consistent with the results of the direct numerical
calculation of the unstable modes, which found no un-
stable modes for ¢ = 0.5 unless the two regions of non-
zero pv gradient overlapped or were contiguous.

For smaller values of y, the allowable values of k are

not small and this is also consistent with our inability to
find unstable modes for regions of nonzero pv gradients
that are too small.

It is interesting to note that the unstable modes are
constructed with wave modes that have widely different
scales. Within the zone of one of the two regions of
nonzero pv gradient the solution always varies rapidly
on the scale of the deformation radius in conformance
(11) when c is small or (6) for ¢ near unity. This is also
consistent with our numerical results that indicate that
the widely spaced zones of nonzero pv gradient must
themselves be broader than a deformation radius to
allow for modes that are locally on that scale.

5. Conclusions

An idealized two-layer quasigeostrophic model has
been used to study the influence of lateral displace-
ments of regions of nonzero mean potential vorticity
gradient on the structure and growth rate of unstable
waves. It has been shown that if the regions in two
different layers overlap by as little as the internal de-
formation radius, modes akin to those produced by the
full channel width model of Phillips (1954) are found.
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FiG. 8. As in Fig. 7, but for the symmetric mode at ¢ = 0.5 that corresponds to k = 1.2149.
The modes have negligible overlap.

As the nonzero pv gradient regions are separated, the
growth rate of the most unstable mode rapidly de-
creases. However, unstable modes are always found as
long as the nonzero pv gradient regions are wider
than a couple internal deformation radii, even if the
two regions are located on opposite sides of a very
wide channel. These waves grow with a time scale of
O(1073 — 107?)L /U, which, for typical ocean param-
eters, is O(lyear). Although these are relatively weak
instabilities, they are the only modes present in the
system and demonstrate the ability of seemingly distant
regions to interact. The perturbations in this case con-
sist of a very long wavelength (on the order of the
channel width) barotropic component that is able to
span the wide channel. The growing wave is of mixed
baroclinic/barotropic structure near the pv gradient re-
gions.

Although very idealized, these results may explain
the previous finding that a baroclinic boundary current
can be stabilized by a weakening of the bottom slope
(Spall et al. 2008) through a lateral shifting of regions of
nonzero pv gradient so that they do not overlap.

However, the more surprising and fundamental re-
sult of the present study is that the horizontal momen-
tum flux carried by the waves can have a nonzero di-
vergence for a basic flow with no horizontal shear. Nor-

mally one thinks of the lateral shear of the current as
being essential for shaping the form of the perturba-
tions to produce a lateral momentum flux. The present
calculation emphasizes the important role of the distri-
bution of the potential vorticity gradients, which can
accomplish the same result. Such distributions can then
induce lateral shear into otherwise uniform currents as
a result of upgradient momentum fluxes.

It is also important to note that unstable modes are
supported even for cases in which the nonzero pv gra-
dient regions are very far apart. Although their growth
rates are relatively small, so that even weak dissipation
may render them stable, the development of a barotro-
pic bridge able to connect distant regions of the flow
may also have broader applications beyond the specific
stability problem explored here.

Acknowledgments. This work was supported by NSF
Grants OPP-0421904, OCE-0423975 (MAS), and OCE-
85108600 (JP).

APPENDIX
The Functions K; and K

The eigenvalue problem is most easily written as a
dispersion relation for k as a function of c. For the wave
riding on the pv gradient in 0 = y < y,, we obtain
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K, =—-N,/D,, (A1)
N, = cosha, y, cosa, yo[aya(af + a3)]

. 1 2 2
+ cosha, y, sinha, y, 5 o052 — a7)
. L, 2
+ sinha; y, cosa, y, 3 a2 +a5) |, (A2)
3
. a 2
D, = sinha, y, cosazyo|:? 2 - aﬂ}
3
. ay 2
+ cosha, y, sma2y0|:7 2+ az)}
X sinha, y, sina, y[l(af + a3)]. (A3)

As explained in the text the function K has the same
form as K, with the substitution (a;, a,) and f(vy;, ¥,)-
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