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ABSTRACT

The response of a zonal channel to a uniform, switched-on but subsequently steady poleward outflow is
presented. An eastward coastal current with a Kelvin wave’s cross-shore structure is found to be generated
instantly upon initiation of the outflow. The current is essentially in geostrophic balance everywhere except
for the vicinity of the outflow channel mouth, where the streamlines must cross planetary vorticity contours
to feed the current. The adjustment of this region generates a plume that propagates westward at Rossby
wave speeds. The cross-shore structure of the plume varies with longitude, and at any given longitude it
evolves with time. The authors show that the plume evolution can be understood both conceptually and
quantitatively as the westward propagation of the Kelvin current’s meridional spectrum, with each spectral
element propagating at its own Rossby wave group velocity.

1. Introduction

This paper presents the linear quasigeostrophic (QG)
response to a switched-on, steady outflow from a poleward-
facing channel mouth (see Fig. 1). It is a companion paper
for Durland et al. (2008, hereafter DSP), where the results
derived herein are used as a foundation for understanding
the equivalent problem in the framework of the nonlinear
shallow-water equations (SWE) on the 8 plane.

The physical motivation for the overall investigation
lies in the remarkable coincidence between features of
the SWE solutions and observations of eddy variability
in the eastern Indian Ocean, just poleward of Lombok
Strait. The observed eddies have variously been attrib-
uted to baroclinic instability of the South Equatorial
Current (SEC) (Feng and Wijffels 2002), barotropic
instability of the SEC (Yu and Potemra 2006), and eddy
shedding by the branch of the Indonesian Throughflow
(ITF) entering the Indian Ocean as a predominantly
zonal flow through Timor Passage (Nof et al. 2002). DSP
demonstrate that a highly idealized 1'/,-layer model of
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the poleward-flowing branch of the ITF exiting Lombok
Strait produces eddy variability with temporal and spatial
patterns quite similar to those observed, indicating the
presence of a contributory mechanism that has not pre-
viously been considered. A more complete description of
relevant observations, prior modeling work, and the non-
linear model results can be found in DSP.

The linear QG model considered in this paper does
not support eddy generation, but it clearly elucidates
the origins of two important dynamical features that are
also found in the nonlinear SWE solutions: an eastward-
propagating coastal Kelvin wave that sets up rapidly
upon initiation of the outflow and a plume that propa-
gates westward from the outflow at the long Rossby wave
speed. In particular, an approximation to the QG solu-
tion provides a conceptual and quantitative description
of the plume evolution, and DSP use this description to
help explain the nonlinear model’s behavior west of the
outflow mouth where the eddies appear.

The term poleward describes a meridional flow di-
rected away from the equator, whether in the Northern
or Southern Hemisphere. Solutions will be presented
from a Northern Hemisphere (NH) perspective (as in
Fig. 1), but we note that the Southern Hemisphere re-
sponse to a poleward outflow is merely a reflection across
the equator of the NH results, which we will display.
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A northward outflow in the Northern Hemisphere
problem becomes a southward outflow in the equivalent
Southern Hemisphere problem, and westward (east-
ward) propagation in the Northern Hemisphere prob-
lem remains westward (eastward) propagation in the
Southern Hemisphere scenario. The mathematical
model is presented in section 2, solutions in section 3,
and a summary of the results in section 4.

2. Model

The linear, inviscid, nondimensional quasigeostrophic
vorticity equation for shallow-water theory is (Pedlosky
1987)

(V2 = D)oy + B oy =0, (1)

where i is the streamfunction (9,4 = v, d, = —u), x and
y are the eastward and northward Cartesian coordinates,
and u and v are the zonal and meridional components
of velocity. The normalization is (x*, y*) = (x, y)Lg,
= tfo !, and (u*, v*) = (u, v)Lyfy, where asterisks de-
note dimensional variables; f is the Coriolis parameter
and L, the deformation radius at the outflow latitude; the
origin of coordinates is chosen at the center of the out-
flow channel mouth (Fig. 1). The nondimensional B is
equal to BoL/fy, where By is the meridional derivative of
the Coriolis parameter at the outflow latitude.
The initial condition is

P(x,y,t<0)=0, )

and we impose an outflow that is uniform across the
channel mouth, switched on at t = 0, and steady there-
after. Our interest lies in the response of a semi-infinite
basin, but to avoid the necessity of estimating two
transform-inversion integrals, we formulate the prob-
lem in a zonal channel (0 < y < L). Once the discrete
meridional modes are determined, they are summed
numerically to convergence. In each solution presented,
the channel width is chosen so that the boundary aty = L
does not significantly affect the solution during the in-
tegration time.

With the given normalization, the nondimensional out-
flow velocity is equal to the deformation-radius Rossby
number (Ro = V;/fyL,) of the outflow. The boundary con-
ditions for 9,4 are then

_ [RoX(x)H(t), y=0
owi={ ¢ NG
where
L x] <wi2
X(x) = { 0, x| >wi2 *)
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FIG. 1. Poleward outflow in a Northern Hemisphere setting.

and H(r) is the unit step function.

A determination of the proper boundary conditions
for ¢ involves some subtle details that are presented in
the appendix. For mathematical simplicity, we use the
boundary conditions

¢=Ro X(x) H(t) at y=0, 5)
=0 aty=1L, (6)
where
X 0, x< —w/2
X(x)= J dEX(E)={ x+w2, —wR<x<wl2 (7)
- w, wi2 < x.

As described in the appendix, these boundary condi-
tions involve imposing an incoming Kelvin wave from
x = oo, with amplitude Roe “wony = L. When L >> 1,
the appropriate condition for our study, this additional
radiation condition has a negligible effect on the solu-
tion. Due to the steadiness of the forcing for ¢ > 0, the
“Kelvin waves” associated with the problem might
more appropriately be called “Kelvin currents.” In this
and the next section, however, our concern with direc-
tion of radiation leads us to retain the Kelvin wave
terminology, with the understanding that the frequency
vanishes after the initial Kelvin waves are set up.

3. Solutions

A Fourier sine transform in y and a Fourier transform
in x are applied to (1), using the conventions

I o
¢, (x, 1) = %L dy ¢ sinl,y, (x,v,t) = ; ¢, sinl,y,
(8)

0

dk(b_nx eikx’
)

1
T .

&, (k1) = Z_J:c dx, e ™, ¢, (x,0)= J
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where

L="".
In the following text, the inverse y transform in (8) will
be represented as an infinite sum, to distinguish it from a
truly finite sum that will be introduced later. In practice,
of course, we truncate the summation at a suitably large
value of n.

The summation in (8) is not uniformly convergent
along the part of the boundary where ¢ # 0, so in ap-
plying the transform to the d,, term in (1) we integrate
by parts, converting the boundary conditionaty = 0to a
forcing term. Taking the time derivative of the bound-
ary term converts the step function in (5) to a delta
function, and the transformed equation becomes

2 I

(10)

0, +io,d, = ZROW?‘S@, (11)
where
oalk) = K J:[;ﬁkJr 1 (12)
and
ST sin(k w/2)' (13)

i k?

The right-hand side of (11) is nonzero only at t = 0, so
the solution is just the homogeneous solution. Inte-
grating (11) from ¢t = —7 to t = +7, taking the limit as
7 — 0 and considering the quiescent initial condition,
yields the value of the multiplicative constant. The so-
lution to (11) for ¢t = 0 is then
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a. The t = 0 solution

A Taylor series expansion of the exponential in (14)
shows that there will be an instantaneous, nonzero so-
lution at ¢ = 0. For clarity, we separate it into two parts:

—x_ 2y
., =—Ro 15
and
x_ 12 I, sin(kw/2)
= ——>Ro S 16
Par mlL L+ 1K+ 0+ (1o

The x transform in (15) is easily inverted, and the terms
preceding X comprise the Fourier sine transform of the
meridional structure of the Kelvin waves, so

Ui = D by sinlyy =Ro X(x) (¢ — e ler by,
n=1
(17)

Here i represents the superposition of a Kelvin wave
of amplitude wRo, generated at the outflow and ex-
tending eastward along y = 0, and the artificially im-
posed Kelvin wave of amplitude e “wRo incoming
from x = . Since the Kelvin waves have infinite pro-
pagation speeds in the QG framework, they appear fully
formed as soon as the outflow is switched on, and it is
clear that they will satisfy the boundary conditions for
all time. The inverse transform of (16) and higher-order
terms in the expansion of the exponential in (14) can
only contribute to the interior solution.

By comparison with the f-plane solution (not shown)
we identify db_g,,x as the transform of evanescent inertia—
gravity waves trapped near the corners of the channel

qg_nx = ERO - In X iw e~ont. (14) mouth. The x transform can be inverted using the resi-
L F+1 mkT+ 1+ 1 due theorem, giving

em,,(x+w/2) _ em,,(xfw/Z)’ x <—w/2

b, = T Rotn ) pomwrnn) _ gmiewy i < x <o (18)
gn L (li + 1)3/2 ’

e—m,,(x+w/2) _ e—m,,(x—w/Z)’ wi2 < X,

where (x,y,6=0) = ¢ (x,) + ¢y(x, y), (20)
where
my =1/ +1. 19) .
Vo= 2 byusinlyy. 1)
The total streamfunction at t = 0 is =
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The function i, has a dipole structure that is antisym-
metric in x, with a peak (trough) trapped near the
western (eastern) corner of the outflow channel mouth,
and it is an essential part of the solution for an f-plane
Kelvin wave exiting a narrow channel mouth and
rounding the corner. Figure 2 shows ik, i, and (¢t = 0)
for two different outflow channel widths. Positive values
of the streamfunction are represented by black contours
and negative values by gray contours. As expected, s,
decays in both x and y and does not contribute to the
boundary value of . It “‘smooths” i« so that, once the
flow exits the channel mouth, it quickly assumes the
characteristic shape of a Kelvin wave rounding a corner,
regardless of the channel width. Within a fraction of a
deformation radius poleward of the channel mouth,
where the streamlines are predominantly oriented north—

-
%mg=m7jw&[

The integral cannot be evaluated using the residue
theorem because of an essential singularity in the ex-
ponential term. The method of stationary phase is typ-
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south, the cross-current Kelvin wave structure is already
evident. The meridional velocity at this latitude decays to
the west on a deformation radius scale, even though the
outflow velocity is uniform across the channel mouth.

On quasigeostrophic time scales, the combined Kelvin—
evanescent gravity wave structure appears instantly and
can be thought of as the initial condition for the prob-
lem. At x > w this structure is in geostrophic balance
and satisfies the governing equation by itself. In the
vicinity of the channel mouth, however, it has a nonzero
. (i.e., meridional velocity) and cannot satisfy (1)
without generating time-dependent motions by shed-
ding Rossby waves.

b. The t > 0 solution

When ¢ > 0 the solution for the y transform is

(22)

near the long Rossby wave front. We therefore solve for
the x derivative of the streamfunction:

ically used to estimate such integrals, but the left-hand Aeth = 2 dyb, sinl,y, (23)
term in square brackets is not slowly varying in the vi- n=1
cinity of the important stationary point k = 0, that is, where
* 1, sin(k w/2) , Bt
ax,1=Ro—J ————————| explik|xt+ 5———||. 24
¢ L) [wk(k2+1§+1) p[ ( K+ 0 +1 =
The x derivative of ¢ is then integrated zonally from a The stationary phase approximation to (24) is
point to the west of the fastest Rossby wave front, where
Y =0.
41, sin(ks w/2) 21 T
9y, = Ro — — cos? kgx — o,(ke)t — — sen Ao, (k) . 25
b=Rop T 2 L{s i) \ T (e = senduera(l)}. (29)

The stationary wavenumbers k; are found by inverting

Bk — (I, + D]

:wﬂ&%:(ﬁ+ﬂ+nz'

(26)

~ =

In the final solution, ¢ is always found as part of the
product

Bt=PByLat =20y t, 27)



JULY 2009 DURLAND ET AL. 1545
w = 0.1 w=1.0
Wk Wy
5 5
4 4
3 3 ﬁ
> 7
2 2 /7
1 1 /
0 — 0
-2 0 2 -2 0 2
Wg Wg
5 5
4 4
3 3
>
2 2
1 {7 1
0 0
-2 0 2 -2 0 2
Y(t=0) = wy+v Y(t=0) =yt
5 5
4 4
3 3
>
2 2
1 1
0 0
-2 0 2 -2 0 2
X X

FIG. 2. Solution to the linear quasigeostrophic model at t = 0, contours of /wRo. Black
contours: i > 0; gray contours: ¢y < 0. (left column) Solutions for w = 0.1; (right column)
solutions for w = 1.0; (bottom row) total streamfunction (¢x + ) at t = 0.

where o is the cutoff frequency for the / = 0 Rossby
wave at the reference latitude. At the latitude of Lombok
Strait, 1 yr is roughly equivalent to B¢ = 85.5 for the first
baroclinic mode. In the left column of Fig. 3, the sta-
tionary phase approximation to the total streamfunction
is shown at three successive values of B¢, up to a maxi-
mum of 85.5.

In the series of snapshots we see a plumelike feature
emanating from the western edge of the Kelvin wave

structure where the nonzero Bd,¢ term can only be
balanced by time dependence. We refer to this feature
as the B plume and we see that the western front of the
plume propagates westward at roughly the long Rossby
wave speed. To lowest order there is no mass transport
(A¢ = 0 across the plume), although there is a west-
ward propagation of streamfunction anomaly. Moving
from west to east within a single snapshot, we see that
the plume becomes narrower, the peak value of the
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Quasigeostrophic eqn.
stationary phase approx.
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Shallow water eqgns.
numetical soln., =0.002

pt=4.3 pt=4.3 pt=4.3
5
|
4 :
3 I
> |
2 I
|
1 I
|
0 |
-60 -40 -20 0
pt=42.8
5
|
|
4 |
|
3 |
> Q!
2 (ﬁ\\
1
0
-60 -40 -20 0
pt=85.5
5
|
|
4 |
|
3
>
2
1 1 = 1
0 0 0
-60 -40 -20 0 -60 -40 -20 0 -60 -40 -20 0
X X X

FIG. 3. Comparison of B-plume propagation in three approximations: (left column) contours
of quasigeostrophic streamfunction, stationary-phase approximation; (middle column) con-
tours of quasigeostrophic streamfunction, long-wave approximation; (right column) contours
of shallow-water equations’ layer-thickness deviation, numerical solution for g = 0.002

(6p = 59.4°). Dashed lines locate transects at x = —5.5.

streamfunction within the plume gets larger, and the
locus of the streamfunction peak gets closer to the
boundary. Comparing the second and third rows, we see
that this progression also holds at a single meridional
transect as time passes. Subsequent sections will clarify
and quantify these observations.

¢. The long-wave approximation to the
quasigeostrophic solution

It is evident from inspection of the left column of Fig. 3
that aside from the immediate vicinities of the channel

mouth and the western front, 9., < d,, within the § plume
(note that in Fig. 3 the y axes are stretched considerably
relative to the x axes). Ignoring 9.4 relative to 9,
simplifies (1) to

(dyy — D)op + B o = 0. (28)
With the boundary conditions (5)-(6) and the quiescent
initial condition, the transformed solution to (28) is

2 L, —x _;
~Ro— "X eiomt,
L F+1

br, = (29)
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where

—Bk
2+1
that is, the long-wave (k — 0) limit of the Rossby wave
dispersion relation.

The exponential in (29) no longer contains an essen-
tial singularity in k, and the x-transform inversion is
straightforward:

br, = ERo zl" X(x—i— 2Bt )
L F+1 E+1

The terms preceding X[x + Bt/(Z + 1)] comprise the
Fourier sine transform of the Kelvin wave meridional
(cross-shore) structure, and each spectral component can
be viewed as the amplitude of a distinct meridional
mode. For each meridional mode, the x structure of the
y = 0 boundary condition, X(x), propagates westward
nondispersively at the long Rossby wave speed associ-
ated with the appropriate meridional wavenumber, /,,.
There is a discrete distance between distinct meridional-
mode wave fronts and a discrete change in the y structure
of the plume with the passage of each wave front. The
tapered part of X, corresponding to the channel mouth,
merely serves to smooth the transitions. As L. — o, the
discrete spatial and spectral jumps become smaller and
smaller so that the tapered part of X becomes less and
less important. We therefore make the further simplifi-
cation of imagining a delta-function outflow with the
same volume flux as would exit a channel of width w,
thus eliminating the channel mouth taper. The outflow
boundary-value structure is then

Xp(x)=wH(x).

Oin=— (30)

(1)

(32)

The solution for this boundary structure, which we will
call the “long-wave approximation,” is

2N(Bt/x)
x,v,t)=Row = " sinl,y, 33
by ) =Row . Xy Sisinty ()

where

%,/—(%+1)—15N<% —<’%+1>. (34)

The summation limit, N(Bt/x), reflects the fact that only
a finite number of meridional modes can reach a given
longitude, x, within a finite time, ¢. The slower modes do
not contribute to the solution at this x and ¢. [Note that
the long-wave approximation does not contain the short
Rossby waves, so it is appropriate only for —Bt (L/m)* <
x <0.]

DURLAND ET AL.

1547

The middle column of Fig. 3 shows a time series of
snapshots of the i, plume taken at the same times as
those in the left column (stationary-phase approxima-
tion to the complete QG problem). The westward
propagation is somewhat faster in the long-wave ap-
proximation, which we expect because the approxima-
tion overestimates the group velocity of each meridio-
nal mode. Otherwise, the match is very good.

d. Plume evolution

The long-wave approximation presents an easy way to
conceptualize and to quantify the temporal and spatial
changes in the plume structure that we noticed in the
stationary-phase solutions. We think of the individual
Fourier components of the Kelvin current’s cross-shore
structure as representing the amplitudes of individual
meridional Rossby modes. The Rossby adjustment of the
t = 0 Kelvin current’s western front (where outflow
streamlines cross planetary vorticity contours) consists
of the Rossby modes propagating westward with group
velocities that decrease as the meridional mode number
increases. The spectrum of the plume’s meridional
structure at a given longitude is just a truncated version
of the Kelvin current’s spectrum, and the truncation
limit increases monotonically as time passes and addi-
tional Rossby modes are able to reach that longitude.

When N = 1, the plume has the y structure of the half-
sine wave on the channel width. The passage of the next
mode, N = 2, enhances the half of the plume closest to
y = 0 and detracts from the other half. As time pro-
ceeds, the peak of the plume continues to increase in
amplitude and shift toward y = 0 while the width of the
plume decreases. As N — o, the plume approaches the
meridional structure of the preexisting eastward Kelvin
current with a delta-function westward current along
the boundary. As mentioned previously, the summation
in (8) is not uniformly convergent for x > —w/2, so in
that part of the domain the delta-function feature is just
a mathematical artifact of the sine transform represen-
tation of exp(—y). For x < —w/2, however, the series is
uniformly convergent, and the delta-function feature is
an essential part of the inviscid dynamics. As ¢ — o, the
steady state that emerges consists of the flow exiting the
channel and turning westward toward x = —o0 in a delta-
function boundary current. Superimposed on this nar-
row westward boundary current of semi-infinite length
is an eastward Kelvin current with equal and opposite
volume transport, extending from x = — to x = .

We are not so much interested in the  — o structure
as we are in the plume evolution at shorter times, and
we are particularly interested in how well the simple
long-wave expression (33) predicts this evolution.
Figure 4 shows the y structure of the plume measured at
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FIG. 4. Beta-plume evolution at x = —5.5. Solid lines: stationary
phase (sp) approximation. Dashed lines: long-wave (Iw) approxi-
mation. Ratio of times, #,/t,, €ach approximation takes to evolve
to displayed profile.

sp»

four successively longer times at the transect x = —5.5
(shown in Fig. 3 panels as a dashed line). The solid lines
represent the stationary-phase approximation at the
given values of B¢, and the dashed lines represent the
long-wave approximation, with N chosen in each case to
give the best match with the plume width and peak lo-
cation in the stationary-phase approximation. Using
(34) the t required for the long-wave approximation to
achieve the displayed profile is calculated, and the ratio
of the long-wave approximation ¢ to the stationary-phase
approximation ¢ is presented in each panel. Because of
the discrete nature of the long-wave approximation ev-
olution, this ratio is given as a range, the width of which
depends on the channel width used in (33)-(34). The
qualitative match between the stationary-phase approx-
imation and the long-wave approximation is quite good,
although the long-wave approximation plume evolves
about 11% faster and has a peak amplitude about 23%
greater for the same plume width. The evolutionary
process described above is clearly representative of the
full quasigrostrophic solution—it is just easier to visualize

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 39

in the long-wave approximation owing to the nondis-
persive nature of the individual meridional modes and
the simplicity of (33).

Both the stationary-phase and long-wave solutions
are approximations, and it is not immediately obvious
which of the traces in Fig. 4 is more representative of the
true solution. We therefore compare these solutions
with numerical solutions (another approximation) of
the linearized SWE on the B plane. The equations and
numerical model are described in DSP, and at midlati-
tudes and long time scales we expect a good match
between the SWE and QG solutions.

The right column of Fig. 3 shows snapshots of the
B = 0.002 numerical plume (6, = 59°), taken at the same
times as the QG solutions in the other columns. The
contours are of the layer thickness deviation, and the
agreement with the streamfunction contours of the QG
solutions is quite good. As expected, the numerical
plume evolution near the channel mouth is slower than
that of the long-wave approximation, but the qualitative
match between the numerical and long-wave plumes
appears better than the match between the numerical
and stationary-phase plumes.

Figure 5 is the equivalent of Fig. 4, with the numerical
plume evolution at x = —5.5 represented by the solid
lines, and the long-wave approximation represented by
the dashed lines. The long-wave approximation evolves
roughly 10% faster, but the general agreement is better
than between the long-wave and stationary-phase so-
lutions (Fig. 4). Note that we are referring to the evo-
lution at x = —5.5 (dashed lines in Fig. 3). The western
front of the plume appears to evolve at the same rate in
both the numerical and long-wave solutions (bottom
row, Fig. 3).

The long-wave approximation underestimates the nu-
merical plume’s peak by only a few percent, whereas it
overestimates the stationary-phase solution by about
10%. The stationary-phase approximation involves a
truncation of the transform-inversion integral, and the
approximation technically requires ¢ — . We should not
be surprised then that, while it provides an excellent
qualitative approximation of the solution, the stationary-
phase approximation appears to provide a quantitative
underestimate at the finite times that we are considering.

In DSP we seek to understand numerical solutions to
the SWE. Given the good agreement in Figs. 3 and 5
between the numerical SWE solutions and the long-
wave solutions to the QG equation, we feel confident
that the long-wave approximation captures the essence
of the linear SWE plume development at midlatitudes.

This section has presented the plume evolution as a
function of time at a fixed x, but (34) shows that the same
pattern can be viewed as a function of x at a fixed time.
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FIG. 5. Beta-plume evolution at x = —5.5. Solid lines: numerical

(num) solutions of the linear shallow-water-equation thickness
deviation (8h) with B = 0.005. Dashed lines: long-wave (Iw) ap-
proximation of the linear QG streamfunction (i). Ratio of the
times, f1/thum, that the two approximations take to evolve to the
displayed profiles.

Viewing a snapshot of the plume (e.g., bottom row, Fig.
3), the change in cross-shore structure as we move from
west to east is identical to the evolution with time at a
given longitude. As long as ¢ < % the plume continues to
evolve and is never truly zonal. In DSP we will see that
this situation changes when nonlinearity is introduced.

4. Summary

On QG time scales, the response to a switched-on,
steady poleward outflow is the instantaneous setup of a
Kelvin current carrying 100% of the outflow to the east
of the channel mouth. At ¢t = 0, the western front of the
current is not in geostrophic balance and it adjusts by
shedding Rossby waves in a process that is easily con-
ceptualized. Each of the Fourier-transform components
of the Kelvin current’s offshore structure propagates
westward with its own distinct group velocity. As the
individual wave fronts pass a given meridional transect,
the plume cross-section changes. It starts with a low-
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amplitude peak far offshore and evolves monotonically
with the streamfunction peak becoming larger and mi-
grating toward shore. The “‘long-wave approximation,”
in which the individual Rossby waves are considered
nondispersive, provides a good estimate of the plume’s
meridional structure and amplitude. Although it over-
estimates the evolutionary rate by some 10%, it pro-
vides an easy way to predict the nature of the plume’s
evolution using (33) and (34).

As noted, 100% of the outflow volume flux is carried
westward by the Kelvin current. Any volume flux asso-
ciated with the westward propagation of streamfunction
anomaly is a second-order effect in the QG formulation.
The Kelvin current also carries 100% of the outflow
energy flux. This can be seen either by integrating aywz
across the plume or by considering the ratio of Rossby
wave group velocity to Kelvin wave group velocity, a
ratio which vanishes in the QG approximation.
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APPENDIX

Boundary Conditions for the Quasigeostrophic
Streamfunction

Prior to ¢ = 0, the quasigeostrophic streamfunction is
zero along y = 0. When ¢ > 0 the streamfunction has a
constant value along (x < —w/2, y = 0) and a different
constant value along (x > w/2, y = 0). In addition to
Rossby waves, the QG model can represent coastal
Kelvin waves with constant phase along a zonal
boundary (i.e., infinite phase speed). These correspond
to the o4 = 0, (d,, — 1)y = 0 solution of the vorticity
equation (1). Because the Rossby waves have finite
group velocities, only the Kelvin waves can instantly set
up the Ay across the channel mouth at y = 0 while
maintaining constant streamfunction values on (x < -w/2,
y = 0) and (x > w/2, y = 0). With the temporal step
function forcing, the Kelvin wave phase will also remain
constant in time after being switched on (i.e., the zero-
frequency limit), thus maintaining the boundary condi-
tions for all time. Consequently, the Rossby waves do
not contribute to the boundary values of the stream-
function at any time.
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In a channel of width L the outflow can produce both
an eastward Kelvin wave with streamfunction value i,
on (x > w/2, y = 0) and a westward Kelvin wave with
streamfunction value ¢, on (x < —w/2, y = L). The
eastward Kelvin wave only contributes to stream-
function boundary values east of the channel mouth,
and the westward Kelvin wave only contributes to
boundary values west of the mouth. When ¢ > 0 the
natural radiation condition of no incoming signal from
x = o leads to a streamfunction value on y = L east of
the channel mouth equal to ¢, e L, due to the eastward
Kelvin wave trapped at the y = 0 boundary. Likewise, no
incoming signal from x = —o gives a streamfunction
value on y = L west of the mouth equal to ¢,,. They = L
streamfunction values east and west of the mouth must
be equal to prevent flow through the poleward boundary:

Yy =dee " (A1)
Likewise, the boundary value on y = 0 west of the
channel mouth is ¢, e L, due to the westward Kelvin
wave trapped at y = L. Using (A1) we see that this value
is equal to ¢, e >~ and the change in streamfunction
value across the channel mouth at y = 0 is

Ap=i(x=w/2,y=0,0>0) — h(x = —w/2,y =0, t>0)
=1 -e?") i (A2)

Integrating the velocity boundary condition (3) across
the channel mouth, we also have

Ay =Row, (A3)
and we find that
Row
= A—e) (A4)

The proper boundary conditions for the stream-
function when ¢ > 0 are then

672L
l/f(x < w/2,y = 0) = m Ro w, (AS)
e 2L
J(jx| <wl2,y=0)= =" Row + Ro (x + w/2),
(A6)
1
tp(x > w/2,y = 0) = m Ro w, (A7)
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-L
Yx,y=L)= ﬁﬁRo w. (A8)

These boundary conditions are mathematically cum-
bersome, and we prefer to fix the streamfunction values
for (y = L) and (x < —w/2, y = 0) at their initial values
for all time. This amounts to imposing a radiation con-
dition that includes a Kelvin wave incoming from x = o,
which is trapped at the y = L boundary and has an
amplitude there of

-L
—e
<41 — e*ZL) Row.
This incoming wave subtracts from the streamfunction
boundary values at all x and cancels the westward
Kelvin wave induced by the outflow. With the added

radiation condition, the boundary conditions for ¢ > 0
are (5)—(6), reproduced here:

¢=Ro X(x) H(t) aty=0,
yp=0 aty=1L,

with y(x) as in (7). While the above radiation condition
seems artificial, it greatly simplifies the mathematics,
and for a channel width greater than a few deformation
radii (L > 1), the effect on the solution is negligible.
The simpler boundary conditions have the added ben-
efit that we can use a Fourier sine transform in y on the
governing equation and the inverse transform will be
uniformly convergent on x < w/2, where the most in-
teresting part of the solution will be found.
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