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Abstract

A simpli®ed box model of the cooling of a salt-strati®ed ocean is analyzed analytically and numerically.
A large isothermal basin of salt water has a layer of fresh water at the surface. Beside this is a small basin,
cooled from above and connected to the large basin by horizontal tubes at the top, middle and bottom. For
small cooling rate, fresh water enters the small basin, is cooled and leaves through the middle tube. For
greater cooling rate, the fresh water leaves the small basin through the middle and bottom tube. If the top
tube is smaller than the deeper tubes and the fresh water layer is su�ciently shallow, ¯ow in the middle tube
reverses at a critical cooling rate. In this case, a mixture of salt and fresh water is cooled and leaves the
bottom tube. Increased cooling produces much greater ¯ow rate; consequentially temperature increases
rather than decreases in the small basin. A relaxation heat ¯ow condition results in multiple equilibria. One
of the stable modes has fresh surface water descending in the small basin and ¯owing out through the
middle and bottom tube. The other has a greater rate of ¯ow of both fresh and salty water (through the
middle tube) into the basin with the ¯ow of mixed salty water out of the bottom tube. Implications for deep
convection in the ocean are discussed. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Although the bulk of ocean water is colder than about 5°C, and this water is injected in the
deep ocean by sinking during wintertime cooling in polar regions, it is well known that the ocean
is notoriously ``®ckle'' in its selection of deep water emplacement locations. Only a small per-
centage of the ocean experiences deep mixed layers that characterize deep convection (Stommel,
1962), and a list of such sites includes localities with areas at most 106 km2 within the Greenland±
Norwegian Sea, the Labrador Sea, the MEDOC regions in the Mediterranean, the Weddell Sea,
and the Ross Sea. The total area that is less than 5� 106 km2. A comparison with the total ocean
area of 361� 106 km2 (Sverdrup et al., 1942) illustrates how very small the deep convection areas
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are. The scarcity of such deep convection regions is due partly to the halocline that exists near the
ocean surface virtually everywhere in polar regions (Sverdrup et al., 1942). Cooling of the fresher,
lower-density surface water in polar regions typically leads to colder surface water and in some
cases to an ice cover that limits further cooling if the cooling is great enough. The maintenance of
the surface halocline throughout the Nordic Seas is maintained by freshwater accumulation
(Aagaard and Carmack, 1989). Convection can penetrate to sizeable depths only if an adequate
increase in density results from cooling of the strati®ed surface (halocline) region that typically is
about 100 m deep. In addition, an increase of salinity of the water that is being cooled is required.
Brine rejection by ice formation can increase the salinity of the surface halocline, but this must be
maintained by wind stress that removes the ice from the region. Another source of salinity in-
crease is the mixing of cooled fresh surface water with salty water at depth, a process that has
received considerable attention recently (Legg and McWilliams, 2000). A ®ne view of mixed layer
deepening and the formation of new Labrador Sea water as a mixture of fresher cold shallow
water with deeper salty water is provided by the recent Labrador Sea deep convection experiment
(Lab Sea Group, 1998). Similar observations with less details were made in the Mediterranean Sea
(MEDOC Group, 1969). The same sort of deep convection is inferred for the Antarctic Ocean,
with the Weddell Sea gyre being the most prominently investigated region (Gordon and Huber,
1990, 1993).

In addition to being located in a small percentage of the area of the ocean, deep convection in
these regions occurs sporadically. Typically deep convection is not found every winter. Usually
there are a few winters of deep convection separated by some winters of only very shallow con-
vection. Many polynia areas in the ice-covered regions also do not appear regularly every winter.

Fig. 1. Vertical cross-section of a model of a small basin with cooling next to a straiti®ed big basin. Two layers with

di�erent salinities in the big basin are maintained by pumping in both fresh and (denser) salty water constantly at top

and bottom, respectively. A skimmer/over¯ow removes both fresh and salty water at depth d below the surface, thus

maintaining a sharp interface.
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The most signi®cant is perhaps the giant polynia that was found in the Weddell Sea in the 1970's
and has not been found since.

The purpose of the present study is to present a model that emphasizes the role of the surface
halocline. We describe in Section 2 a simpli®ed model of convection in a body of salt water with a
layer of fresh water on the top. The results are presented in simple analytic form. For a wide range
of parameters, only the fresh surface water is cooled and sinks, and the deeper salty water remains
passive. In Section 3, we investigate the behavior under the special conditions required for another
mode of ¯ow to emerge with the salty water directly included in the sinking motion. In Section 4,
numerical solutions to the equations illustrate the salty mode. The transition from the fresh water
mode to a salty mode results in a nonlinear relation between cooling rate and temperature. Using
a relaxation rate cooling law from a cold region above the sinking region, multiple equilibria are
found. Water temperature, salinity and density of the water exhibit hysteresis as temperature of
the cold region above the sinking region is decreased and then increased again.

2. The cooling of surface fresh water

A con®ned small basin in a ®eld of gravity cooled from above represents the convecting region.
This basin is connected to a large basin (a model of the large ocean away from the location of
surface cooling) with three tubes, one at the surface, one at mid-depth �D=2�, and the third at
depth D as sketched in Fig. 1. The water in the large basin has salinity S0 and temperature T0

except for a surface layer of fresh water of ®xed depth d < D=2 and temperature T0. Most im-
portantly, we take this large basin to be so large and so well mixed by large-scale circulation, that
d, S0, and T0 remain ®xed irrespective of the ¯ow into and out of the tubes from the small basin. A
laboratory device that could maintain such a state through the use of a skimmer is shown in Fig.
1, but again we emphasize that the intent is to duplicate an ambient salt-strati®ed ocean without
salt-¯ux conditions.

In contrast to the big basin, water properties in the small basin change due to surface cooling
and ¯ow through the tubes. We assume that the upper layer water in the small basin is well mixed
vertically. Since it is cooled from above, this assumption seems justi®ed. In later solutions, salty
water will ¯ow in through the middle tube. This in¯ow is possible only if the cold mixed water in
the small basin is denser than the salt water in the big basin. Thus the water ¯owing into the small
basin would rise to the top as a turbulent plume and then be mixed down by surface convection.
This insures that the water in the small basin remains well mixed.

In response to the surface cooling, the small basin contains a mixed layer of water of depth d,
salinity S, and temperature T0 � T , where d, S, and T are variables that must be determined. The
small basin is cooled from above so that heat ¯ux into the basin is of magnitude _H . Thus the value
of T from this cooling is negative. We neglect heat and salinity transport at the base of this layer.
Consequently, for d < D deep water with salinity S0 and temperature T0 lies below the layer in the
small basin. Since the layer in the small basin is well-mixed and cooled, it is denser than the
surface layer of fresh water in the big basin and we can anticipate that d > d.

The two basins are connected by three tubes at top, mid-depth and bottom with radii much less
than d. The symbol Qi denotes the volume ¯ux from the large basin to the small basin through
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tube i, where i � 1; 2; 3 starting from the top. We assume there is a steady-state ¯ow relation
between Qi and pressure di�erence between large and small basin of the form

Qi � Ci�p0i ÿ pi�; �1�
where pi is pressure in the small basin and p0i is pressure of the large basin. We would have, for
example, Ci � pr4

i =8lL for laminar fully developed pipe ¯ow through a tube of radius ri and
length L for ¯uid with viscosity l. Other cross-section shapes would have di�erent relations whose
details are not important for this study. Here we simply retain C2 � C3 � C to express the hy-
draulic resistance for tubes 2 and 3. For reasons which will become obvious later, we assign
C1 � cC for the hydraulic resistance of tube 1 in which c � �r1=r2�4. Using the Boussinesq ap-
proximation by assuming bS;bS0; jaT j � 1 everywhere, the pressure at tube i is determined by the
hydrostatic relation

pi � q0gg� q0g�1� bS ÿ aT �D iÿ 1

2

� �
; i � 1; 2; 3; �2�

where g is the excess in surface elevation of the water surface in the small basin compared to the
water surface in the large basin, and

p01 � 0;

p0i � q0gd � q0g�1� bS0� iÿ 1

2

� �
D

�
ÿ d
�
; i � 2; 3:

�3�

A linear equation of state has been assumed and q0 is evaluated at temperature T0. The region is
thermally insulated on the sides and bottom. The water in the small basin is cooled steadily from
above. It is thus mixed by convection so that T becomes uniform and negative. The interface
between fresh surface water and deep water descends to a level below the middle tube. The fresh
water enters the small basin through tube 1 and exits through tube 2. Thus heat ¯ow is

_H � q0cpQ2T : �4a�
Assuming small cooling at this stage, so that only the top two tubes are involved, we have

Q1 � Q2 � 0 and ÿ _H � q0cpQ1T : �4b�
The small basin contains a layer of fresh water, so we can use (1)±(3) to determine volume ¯ux:

Q1 � ÿcCq0gg; �5a�

Q2 � Cq0g
�
ÿ g� bS0D

2
� aTD

2
ÿ bS0d

�
; �5b�

and since Q1 � Q2 � 0,

g � �bS0 � aT �Dÿ 2bS0d
2c� 2

; �6�

so that
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Q1 � ÿQ2 � ÿ cCq0g��bS0 � aT �Dÿ 2bS0d�
2c� 2

: �7�

Even in the limit of very small cooling, temperature must be lower than size
Tnil � ÿbS0�1ÿ 2d=D�=a for steady ¯ow. For greater intensity of cooling, temperature decreases
and Q1 (>0) increases linearly with departure of temperature from Tnil. Note that for all cases
g < 0 so the surface ¯uid ¯ows from the big basin into the small basin as expected.

Zero ¯ow through tube 3 is required by continuity of the deep ¯uid, so hydrostatic pressure at
both sides of the tube matches in the deep ¯uid. Recall that heat transfer and mixing downward
through the base of the layer is ignored. This dictates that the depth d of the cooled layer is

d � 1

1� c
D
2

�
� bS0dc

aT � bS0

�
: �8�

The cooled layer interface reaches the third tube for d � D, which de®nes a `critical' temper-
ature of

aTc � ÿbS0 1

�
ÿ 2dc

D�1� 2c�
�
: �9�

For colder temperature, the ¯ows through all three tubes must be considered. Since Q2 is negative
for d! Dÿ, we ®rst ask whether this continues, so that the cooled region continues to be ®lled
with only fresh water. Allowing S 6� 0 and using Q1 � Q2 � Q3 � 0, it is readily shown that
g � �3Aÿ 4B�=2�2� c� so that

Q1 � cCq0g
2� c

�
ÿ 3

2
A� 2B

�
; �10�

Q2 � Cq0g
2� c

cÿ 1

2
A

�
ÿ cB

�
; �11�

Q3 � Cq0g
2� c

1� 2c
2

A
�

ÿ cB
�
; �12�

where

A � �bS0 � aT ÿ bS�D �13a�
and

B � bS0d: �13b�
Setting T � Tc it is readily seen that Eqs. (10)±(12) agree with Eq. (7) for two tubes, so that

Q1 � ÿQ2 and ¯ow in the third tube is zero. Thus for T � Tc no salt water ¯ows into the small
basin so that S � 0. The value of the interface elevation is greater than D for greater cooling and
will be not required. Thus the fate of the ¯uid trapped in the con®ned region below the third tube
in the small basin is not of interest.

With values of c P 1, Eq. (10) shows that with S � 0 as T becomes increasingly more negative
starting from Tc, the positive ¯ow Q1 becomes larger. Eq. (11) shows that Q2 which is negative
becomes more so, and Q3 becomes negative starting from zero. Thus, the small basin always stays
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®lled with fresh water. Localized cooling causes the sinking of surface fresh water and only this
cold surface water is exported to the adjacent big basin. In no case is the deep salty water directly
cooled by surface cooling. For c P 1, this trend continues inde®nitely with increased cooling rate.
Such cases are not of further interest.

3. Cooling of deep salty water

Section 2 shows that for c P 1 surface cooling results in colder fresh water and does not involve
the cooling of salt water. Conversely, for c < 1, the salinity is easily seen to become important in
the small basin for the following reason. Eq. (11) shows that Q2 which is negative becomes less so
with more negative T. Note that Q1 and Q3 keep the same signs as in Section 2. Thus, for pro-
gressively more cooling (hence, more negative T), there is a value where Q2 � 0. At this point,
where from (11) A � 2cB=�cÿ 1�, we de®ne a second critical temperature

Tcc � bS0

a
2cd

cÿ 1D

�
ÿ 1

�
; �14�

where the governing equations change because we must include a salinity balance in the small
basin. Note that for c < 1; Tcc < 0 as required and it becomes minus in®nity for c! 1ÿ. Thus a
®nite negative value of temperature is insu�cient to produce this limit for c � 1 and the results are
consistent with those in Section 2.

Heat ¯ux can be calculated using (4b) since only the surface tube has in¯ow into the region.
Using this with (10), (13a), (13b), and (14), the heat ¯ow needed to produce this critical tem-
perature is

_H � q2
0ccpCgd��1ÿ c�D� 2cd�b2S2

0

a�1ÿ c�2D
: �15�

So far, the system has had monotonically increasing ¯ow rate with cooling so consequently the
system behaves like many simple convecting ¯ows. For greater cooling rates the behavior of in-
terest begins. For ¯ows with Q2 > 0 there is an in¯ow of salty water into the small basin. We
assume that this completely mixes with the water in the top cooled layer to produce water of
salinity S. Such mixing will be aided by the cooling from above in the small basin. Also, since the
water in the small basin is denser than the salt water ¯owing in through tube 2, the salt water
would rise to the surface as a turbulent plume and thus mix. The mixing would also be enhanced
by cooling from above, so we will continue assuming that the water in the small basin is well
mixed. Thus conservation of salt dictates that

Q2S0 � Q3S � 0; �16�
so that using (11) and (12)

A � 2c�S0 � S�B
�1� 2c�S ÿ �1ÿ c�S0

: �17�

The expressions for volume ¯ux are simply expressed as

6 J.A. Whitehead / Ocean Modelling 000 (2000) 000±000

OCEMOD 21



UNCORRECTED
PROOF

Q1 � E�S ÿ S0�; �18�
Q2 � ÿES; �19�
Q3 � ES0; �20�

where

E � Ccq0gbS0d
��1� 2c�S ÿ �1ÿ c�S0� : �21�

Note that volume ¯ux using (18)±(20) with S � 0 agrees with the critical volume ¯ux from (10)±
(14) with S � 0. Note also that for c < 1 and S � S0, E is negative so Q1 > 0; Q2 > 0; Q3 < 0 for
any nonzero S as required.

Setting (10)±(12) equal to (18)±(20) produces expressions linking S and T. The relation is more
simply seen by de®ning T 0 � T ÿ Tcc. Eq. (17) with (13a) and (13b) then gives

aT 0 � bS 1

�
ÿ 2cd�c� 2�S0

D�1ÿ c���1ÿ c�S0 ÿ �1� 2c�S�
�
: �22�

Converting the portion in square brackets to a fraction, the numerator of the right-hand side is
quadratic in S so that two values of S may exist for the same value of T 0.

As the in¯ow through the mid-depth tube increases, S progressively increases from zero. Eq.
(22) shows that for d=D arbitrarily small T 0 ®rst begins to increase for c < 1. There is a switch
from convection retarded by fresh water in the small basin to convection with considerably less
retardation by the salt and fresh water mixture in the small basin. Consequently, a decrease in T
accompanies a salinity increase. The bulk density of the water in the small basin increases through
salinity increase even though temperature becomes warmer. Heat ¯ow is governed by

ÿ _H � q0CpjQ3jT � q2
0CpCdcgbS2

0T
��1� 2c�S ÿ �1ÿ c�S0� �23�

which gives a linear relation between S and T for ®xed heat ¯ux. We see that as

Fig. 2. Sketch of the relation between T and volume ¯uxes of the three tubes.
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S ! �1ÿ c�S0

1� 2c
; T 0 ! ÿ1 and _H ! ÿ1:

The relation between volume ¯ux and temperature di�erence for c < 1 is easily summarized
visually using the sketch in Fig. 2. Starting with small cooling, temperature is below Tnil and there
is in¯ow through the top tube with an equal amount of out¯ow through the middle tube. For
Tcc < T < Tc there is out¯ow in both middle and bottom tube, but magnitude of ¯ow through the
middle tube decreases with T. For these two cases, ¯ow magnitudes are linear with T. At T � Tcc

the out¯ow in the middle tube becomes zero. For greater cooling, Q2 > 0 so the salty water ¯ows
into the small basin. The temperatures begin to increase and the magnitudes are no longer linear
with T. The curves in Fig. 2 are terminated in question marks as the trajectories are solutions of
complicated polynomials. This motivated the numerical studies presented in the following section.

4. Numerical solutions

Since the calculations in Section 3 become complicated, the solutions were determined nu-
merically. The equations were cast in dimensionless form using the transformations

~Q � Q
Qs
; Qs � cCq0gbS0D

2� c
; ~T � aT

bS0

; ~d � d
D
; ~S � S

S0

;

where subscript s denotes the volume-¯ux scale. The equivalent of Eq. (7) is

~Q1 � ÿ ~Q2 �
2� c
2� 2c

�1� ~T ÿ 2~d� �24�

and Eqs. (10)±(12) transform to

~Q1 � ÿ
3

2
�1� ~T ÿ ~S� � 2~d; �25a�

~Q2 �
1ÿ cÿ1

2
�1� ~T ÿ ~S� ÿ ~d; �25b�

~Q3 �
2� cÿ1

2
�1� ~T ÿ ~S� ÿ ~d: �25c�

The scaled heat and salt balances in the small basin are governed by time-dependent coun-
terparts to (4b) (using ~Q2 and ~Q3) and (16):

d ~T
d~t
� ÿ ~H � ~T � ~Q1C�ÿ ~Q1� � ~Q2C�ÿ ~Q2� � ~Q3C�ÿ ~Q3��; �26a�

d~S
d~t
� ~Q2�~SC�ÿ ~Q2� � C� ~Q2�� � ~Q3�~SC�ÿ ~Q3� � C�ÿ ~Q3��; �26b�

where the timescale is AD=Qs, the heat-¯ux scale is qcpTsQs, and Ts � bS0=a:

8 J.A. Whitehead / Ocean Modelling 000 (2000) 000±000
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Numerical experiments were ®rst conducted by setting a value for ~H �� 1� and integrating
(26a) and (26b) using (25a)±(25c) with time until they converged to a ®xed value as de®ned below.
Each integration was repeated while gradually increasing ~H for a few hundred increments. To
insure that solutions converged with time to single values, the calculations were also conducted
while decreasing ~H over the same range. Su�cient time steps were used so that the di�erence in the
trajectories was less than a line width (about 10ÿ4 of the full range) over a wide range of pa-
rameters �0 < ~H < 2, ~d < 0:5, c < 1:0�. The ¯ow exhibited all the features described in the text up
to Eq. (23) including a transition from shallow to deep ¯ow and the introduction of salt water into
the small basin, but there were no discrete jumps in properties for any of the calculations. A
typical result is shown in Fig. 3.

From results like Fig. 3, it is safe to conclude that there are no multiple valued solutions in this
problem as formulated up to this stage. In contrast, when the above sequence of calculations was
repeated using the heat-¯ux relation

~H � K� ~T � ÿ ~T � �27�
multiple equilibria were found. One can see that why this relation works using Fig. 3, since with
the proper selection of constant K the heat ¯ow curve, which is a straightline, will intersect the
curve in Fig. 3 at three locations.

Eq. (27) increases the number of dimensionless numbers to three, so for simplicity in the initial
calculations, we use the constant K � 1. We found that the solutions converged to multiple values
for small values of ~d; c. Fig. 4 shows trajectories for solutions in the range ÿ1:7 < ~T � < ÿ0:4, with
three di�erent values of ~d and c, �0:05; 0:05�, �0:05; 0:35�, and �0:05; 0:5�. To obtain these curves,

Fig. 3. Relation between heat ¯ux and temperature of the cooled ¯uid for the case with of ~d; c � �0:05; 0:05�. The

solution was obtained numerically by increasing heat ¯ux by small increments over the range shown and then by

decreasing heat ¯ux by small increments over the same range. The results lie almost exactly over each other. The dashed

line illustrates a relaxation condition that produces multiple equilibrium in this model.
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the value of ~T � was slowly decreased downward 350 times, integrating (26a) and (26b) and 150
time steps of size 0.001 between each change in value. Then, the value of ~T � was slowly increased
for the same increments.

The top panel in Fig. 4 shows a typical example of results in a range where there are pro-
nounced multiple equilibria. Many such curves were found for parameters slightly di�erent than
those with ~d; c� 1. As the independent variable ~T �, decreases from a value of ÿ0:4, the tem-
perature and consequently the density decreases almost linearly with ~T �. First two and then, at a
change in slope, three tubes are involved in the convection. At a critical value, salinity jumps to a
®nite size. Simultaneously temperature jumps up by a smaller amount (everything scaled), so that
density jumps down. Then upon further decrease in ~T �, salinity increases and temperature and
density decrease slightly. As the process is reversed, that is as ~T � is increased again from a value of
ÿ1:7, the values repeat themselves except that the trajectory continues beyond the ``jump'' point.
Finally a lower value of ~T � is reached where the curves jump back to the case with ~S � 0. Close to

Fig. 4. Solutions for ~S; ~T ; ~q � 1� ~T ÿ ~S (top to bottom) to Eqs. (24)±(27) for the cases (a) ~d; c � �0:05; 0:05�, (b)

�0:05; 0:35�, and (c) �0:05; 0:50�, respectively.

10 J.A. Whitehead / Ocean Modelling 000 (2000) 000±000
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transition back to the fresh mode there is a steep decline in salinity and increase in temperature
with a less abrupt change in density. We surmise that in that region there must be substantial
balancing of thermal and salinity e�ects.

For the values ~d; c � �0:05; 0:35� the range of hysteresis is much smaller. Salinity and tem-
perature jump by a small amount at the point of transition, and as in the case of (a) density jump
is smaller than the scaled temperature and salinity jumps. For the values of ~d; c � �0:05; 0:50� the
hysteresis has vanished. Salinity becomes nonzero when a critical point is reached, but the values
change from zero continuously so the curve is characterized by a change in slope. Temperature
shows a small change in slope at the same values of ~T �. Density decreases monotonically with ~T �.

The calculations were repeated for numerous other combinations of ~d; c. The ¯ow had multiple
values in the range shown in Fig. 5. We see that in all cases c < 1 for multiple states. This means
that the resistance to ¯ow of the top tube must be more than resistance of the bottom tubes. In
addition, a broader range of tube resistance admits multiple equilibria as the upper layer is made
progressively shallower �~d ! 0�. This means that a very shallow upper layer makes conditions
more favorable for multiple equilibria.

5. Discussion

These are calculations of T±S multiple equilibrium in which the salinity ®eld is simply quiescent
strati®ed water. In contrast to the numerous studies that have been generated for oceanic climate
models (reviewed by Marotzke, 1994, and Whitehead, 1995), or in thermosolutal systems (Turner,
1973; Tsitverblit, 1999), no salt-¯ux boundary condition is needed to accompany the heat ¯ow
boundary conditions. In addition, no complete reversal of the entire circulation cell characterizes
the two opposing ¯ow pattern. Although the ¯ow in the middle tube changes sign, the ¯ow is
always from the top of the small basin to the bottom. In this sense, the two modes are less distinct
from each other than the two modes in the earlier T±S multiple equilibrium models.

Fig. 5. Region in parameter space for multiple equilibria.

J.A. Whitehead / Ocean Modelling 000 (2000) 000±000 11
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The implication for the ocean is that only the large layers of low-salinity water in polar oceans
in conjunction with surface cooling are required to generate multi-equilibrium ¯ows. No other
boundary ¯ux into the ocean such as atmospheric precipitation, wind mixing or river runo� is
needed in addition to atmospheric cooling. The result is consistent with deep convection being
very dependent on the severity of wintertime cooling. During a mild winter only surface fresh
water is cooled. In a severe winter the more saline deep water is cooled instead of relatively fresh
surface water being more strongly cooled. A water mass of intermediate salinity is formed as a
mixture of the saline water under the halocline and the fresher halocline water. This feature is also
found in recent numerical models of thermohaline ¯ows (Klinger and Marotzke, 1999). These
results may therefore have some bearing on the formation of dense water as observed in the ocean
(Gordon and Huber, 1990; Gordon et al., 1993; Lab Sea Group, 1998; MEDOC Group, 1969).

The e�ects depend on the three dimensionless parameters ~d; c, and K. The fact that multiple
equilibrium is found only for c < 1 raises the question of whether this would also hold for more
complex convection problems and whether the ocean would possess a value needed for multiple
equilibria. Neither is answered by existing studies or data as far as we have determined. A more
realistic model of deep ocean convection includes preconditioned currents that cause a doming of
the deeper layers of cold salty water, baroclinic eddies that convey water in the deepened mixed
layer away from the formation region, and an accurate equation of state for seawater, including
pressure e�ects. Whether the surface halocline ¯ows into the region of deep convection with more
or less retardation than intermediate water is poorly understood at present to our knowledge.
Possibly in the Arctic ocean, ¯ow of fresh water under pack ice is retarded by the roughness, but
in such regions, temperature is always close to the freezing point, and convection is dominated by
salinity not temperature. Thus this model only highlights some possibilities that must be answered
by further studies.
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