Sea-level Rise on Cape Cod: How Vulnerable Are We?

Rob Thieler U.S. Geological Survey Woods Hole, MA

Outline

Sea-level and coastal processes

- Past sea-level change
- Predictions for the future
- Coastal responses

Assessing coastal vulnerability

- The U.S., mid-Atlantic, and Cape Cod
- Cape Cod National Seashore
- Coastal change and potential adaptation in Falmouth

Source: J.R. Petit, J. Jouzel, et al. Climate and atmospheric history of the past 420 000 years from the Vostok ice core in Antarctica, Nature 399 (3JUne), pp 429-436, 1999.

Global Sea-level Change Over the Past 160,000 Years

(Merritts et al., 1998)

Sea-level Rise on Cape Cod 12,000 yr BP to Present

12,000 yr BP

11,000 yr BP

10,000 yr BP

8,000 yr BP

6,000 yr BP

Present

(Shaw et al., 2002)

Regional Sea-level Trends

2.59 ± 0.12 mm/yr (0.85 ft/century)

2.65 ± 0.1 mm/yr (0.87 ft/century)

3.0 ± 0.32 mm/yr (0.98 ft/century)

(NOAA)

Relative sea-level in Woods Hole has risen ~25-30 cm (10-12 in) over the past 100 years

Past, Current and Projected Sea-level Rise

(Bindoff et al., 2007)

Projected Sea-level Rise

- The observed rate of global sea level rise averaged over the 20th century is 0.10 to 0.24 m
- Sea-level rise is the result of contributions from:
 - Thermal expansion of the oceans
 - Meltwater from ice sheets and glaciers

Concern: IPCC SLR projections may be too conservative

Potential contributions from land-based ice sheets and glaciers to sea-level rise

Antarctica: 91% (~73 m) Greenland: ~8% (~6.5 m) Mountain Glaciers, Other Sources: ~1% (~0.5 m)

Photo: Williams and Ferrigno, 1995

Primary Processes Driving Coastal Change

- Geologic framework
- Coastal geomorphology and slope
- Relative sea-level change
 - global change
 - land subsidence and uplift
- Major storm events
 - tropical storms, hurricanes
 - Nor'easters

- Everyday coastal processes
 - waves, tidal currents, winds
- Sediment budgets
 - sediment sources (headlands, bluffs)
 - sediment sinks (washover, inlets)
- Human activities
 - coastal development and infrastructure
 - coastal engineering structures
 - dredging channels, inlets, canals,
 - beach nourishment
 - river modification (dams, levees)
 - fluid (oil-gas-water) extraction

The Dynamic Equilibrium of Beaches

Sediment supply

Location/shape of beach

Relative sealevel change

Effects of increased sea-level rise and storminess

- Loss of coastal habitats and resources
- Increased coastal erosion
- Loss of recreation resources (beaches, marshes)
- Salt–water intrusion to water wells, septic systems, farm lands
- Elevated storm-surge flood levels
- Greater, more frequent coastal inundation
- Increased risk to people and urban infrastructure

U.S. Climate Change Science Program www.climatescience.gov

Synthesis and Assessment Product (SAP) 4.1 "Coastal Elevations and Sensitivity to Sea-Level Rise" (Leads: EPA, USGS, NOAA)

Topics:

1. Sea-level rise, state-of-the-science, knowledge gaps

2. Factors that influence shoreline change

3. Methods of predicting future shoreline change

Assessing Potential Coastal Changes

SAP Question 2 focuses on open-ocean coasts Present shoreline physical setting: NY to NC Current understanding of important geologic factors and oceanographic processes Potential impacts and responses to SLR Review and test current models for predicting shoreline and coastal change Shoreline change/erosion rate extrapolation Bruun Rule Inundation of DEM surface Index-ranking based on physical criteria Science strategy plan development

CCSP SAP 4.1 Expert Panel Assessment for the mid-Atlantic

Mapping Relative Coastal Vulnerability to Future Sea-Level Rise

Goals

- Provide initial assessment of SLR vulnerability at national scale
- Quantitative and reproducible
- Modeled after others' efforts to do same for U.S. and Canada
- Similar to Earthquake and Volcano hazards mapping approach

Products

- Fact Sheet
- Open-File Reports ("Preliminary Assessments") for Atlantic, Gulf and Pacific coasts
- Digital data (via web) of data variables, CVI with ArcExplorer; PDF poster versions of Preliminary Assessments
- Project web page http://woodshole.er.usgs.gov/project-pages/cvi/

Coastal Vulnerability Index Ranking System

VARIABLES	VERY LOW	LOW	MODERATE	HIGH	VERY HIGH
	1	2	3	4	5
GEOMORPHOLOGY	Rocky, cliffed coasts Fjords	Medium cliffs Indented coasts	Low cliffs Glacial drift Alluvial plains	Cobble Beaches Estuary Lagoon	Barrier beaches, Sand beaches, Salt marsh, Mud flats, Deltas, Mangroves, Coral reefs
SHORELINE EROSION/ACCRETION (m/yr)	> 2.0	1.0 - 2.0	-1.0 - 1.0	-2.01.0	< -2.0
COASTAL SLOPE (%)	> 1.20 >1.90	1.20 - 0.90 1.90 -1.30	0.90 - 0.60 1.30 - 0.90	0.60 - 0.30 0.90 - 0.60	< 0.30 <0.60
RELATIVE SEA-LEVEL CHANGE (mm/yr)	< 1.8	1.8 - 2.5	2.5 - 3.0	3.0 - 3.4	> 3.4
MEAN WAVE HEIGHT (m)	< 0.55 < 1.10	0.55 - 0.85 1.1 - 2.0	0.85 - 1.05 2.0 -2.25	1.05 - 1.25 2.25 - 2.60	> 1.25 > 2.60
MEAN TIDE RANGE (m)	> 6.0	4.0 - 6.0	2.0 - 4.0	1.0 - 2.0	< 1.0

Atlantic/Gulf Ranges Pacific Ranges

Coastal Vulnerability Index (CVI)

 $CVI = \sqrt{(A^*B^*C^*D^*E^*F)/6}$

6 variables

A. Regional coastal slope
B. Mean wave height
C. Tide range
D. Shoreline change (m/yr)
E. Geomorphology
F. Sea-level rise (mm/yr)

Results

- Yields a numerical value that cannot directly be correlated with a particular physical effect
- Allows a quantitative, yet relative method of comparing areas along the coast
- Highlights regions where the various effects of sea-level rise may be the greatest

Coastal Vulnerability to Sea-level Rise: A Preliminary National Assessment

Geomorphologic Vulnerability for CACO moderate 70°15'W 70°W low Geologic Variables Provinceto Harbor 42°N 42°N ATLANTIC very high OCEAN very high CAPE COD BAY low 1985 41°45'N Elev. (m) very high 41°45'N Cape Cod National Seashore 85 CAPE COD /ulnerability Ranking VERY HIGH HIGH MODERATE 0 LOW NANTUCKET SOUND VERY LOW 1987 12 km = Geomorphology 2 = Shoreline Change 8 mi 2 3 = Coastal Slope 70°W 70°15'W ISES

Shoreline Change Vulnerability for CACO

В

modera

Regional Coastal Slope Vulnerability for CACO

50

Physical Process Variables on CACO

CVI Assessment for CACO

Falmouth Coastal Resources Working Group

- Formed in May 2000
- Charged to:
 - 1) identify key factors that have led to the current condition of the coastal system
 - 2) explore reasons for the current condition
 - provide future scenarios of the coastal zone based on an understanding of physical processes and management approaches
 - 4) conduct community outreach

Why we are concerned...

VIEW OF FALMOUTH HEIGHTS FROM THE SOUND.

Falmouth Heights, 1897

Falmouth Heights, 2000

Falmouth Shoreline Change 1840s to 1994

Falmouth South Shore Erosion Rates

Vision for Falmouth's South Shore (for the next 50-100 years)

- Beaches and dunes wide enough for protection from storms and public access and use.
- Sufficient sand in the coastal system.
- Sustained and enhanced water quality, habitat and fisheries resources.
- A minimum of hard structures (groins, seawalls, etc.).
- Shoreline armoring structures, where present, will not detract from the aesthetics of and access to the shoreline.
- Public infrastructure will be relocated from the immediate coast.
- A proactive approach to shoreline management will be aimed towards prevention of problems and provide a response protocol when shoreline damage occurs.

Achieving the Vision for Falmouth's Coast

- Acquire coastal land for open space.
- Move or change vulnerable public infrastructure.
- Conduct beach nourishment at key "source" locations.
- Remove unnecessary, hazardous, or damaging coastal armoring structures.
- Create effective sand management systems.
- Develop improved regulations to protect coastal systems and beaches.
- Encourage landowners to obtain conservation easements that protect valuable coastal assets such as unarmored bluffs.

Summary

- Sea-level has been rising (at varying rates) for the past several thousand years
- Sea-level rise is an important component of coastal system evolution
- Current IPCC sea-level rise projections may be optimistic
- Future sea-level rise impacts will occur against a backdrop of significant human presence on the coast
- The vulnerability and resilience of Cape Cod to future sea level rise is a complex function of landform type, ecosystem character, and human interactions with the coast