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Abstract 

 Two logically valid models are used to compare the gastropod (snail) larvae of 

Atlantic and Pacific equatorial oceans with birds of North America.  One model is this:  if 

there is an environment that supports many species, then there are many species that are 

supported by one or more environments.  This model says that the many species are 

supported by one environment in the ocean but are supported both by one environment 

and each species by its own environment among birds on land.  A second model is this:  

if one environment is suited to many species then the many species are suited (adapted) 

to the one environment – this of course can be reversed, if species are suited to 

environment then environment is suited to species; so environment and species are suited 

to each other.  This model is applicable to gastropod larvae of the ocean and the birds of 

North America. 

 A set theory model is applied to the 32 species of seals (and sea lions) of the 

world.  A set theory model is this:  a bijective relation between each species and its 

environment or locale is such that there is a one-to-one correspondence between each 

species and its unique area or environment; whereas a surjective relation allows overlap 

of several species occupying the same area in a non one-to-one correspondence.  There 

are 19 bijective seal species and 13 surjective seal species.  Bijective cases are the North 

American birds interpreted as each being supported by and suited to its own area or 

environment.  Surjective cases are many gastropod larvae supported by or suited to one 

ocean environment. 

i. 



 

Introduction 

 Both logically valid models and set theory models would seem to be desirable in 

understanding nature.  Each should assist the other.  Each can accomplish an ultimate aim 

but in quite different ways.  Both are needed. 

 To be specific, there will be presented one logically valid model that relates one 

entity to many entities.  This is in the equatorial Atlantic and Pacific oceans, where the 

environment supports many species of gastropod (snail) larvae.  But this is a versatile 

model and, on land, will show a one-to-one correspondence when each bird species is 

supported by its own unique area of occurrence in North America.  Then there is a second 

logical valid model which will develop a different approach to land and sea – the 

approach that the environment and its species are suited to each other. 

 There will be a different sort of emphasis in making as broad-scale a coverage as 

possible.  Not only the tropical Atlantic and Pacific oceans, not just North America, but 

additionally the whole world will be encompassed.  For the seals and seal lions of the 

world will be dealt with, their species and habitats throughout the world. 

 The seals and sea lions will usher in a set theory model, and this model will be 

used to reassess critically how well the logically valid models match the bird and 

gastropod larvae data. 

 
Two Logically Valid Models 

 One logically valid model has a complex if-then structure.  Two if-then structures, 

each a part, are connected as a whole in an overall if-then structure.  This is one model.  

A second model has one if-then structure and the reversal of this if-then structure.  An if- 
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then structure is an implication.  So in the first model there are two implications 

connected as an overall implication.  In the second model one implication is reversed, so 

there is a second implication. 

 Then the question is:  what dictates using these two models?  For the first model 

the relation supporting will dictate its use.  The overall implication is:  if there is an 

environment that supports many species, then these species are supported by some 

environment or other.  We see that nature is held together by the confronting, effective 

relation of supporting.  And so the environment may be viewed as supporting, producing 

many species, wherein the relation of supporting in itself is separate from the 

environment and the species.  For the second model the attribute being suited to, being 

adapted to, will dictate the model’s use – if an environment is suited to a species, then the 

species is suited to the environment.  Here, nature only contains the benign suited to.  

And the environment may be viewed as having, possessing the attribute of being suited 

to, being adapted to, many species as a part of the composition of the environment.  Thus 

there is a great difference between the relation supporting and the attribute being suited 

to. 

 The oceanic world will be found to be built, in part at least, on one interpretation 

of supporting and on one interpretation of being suited to.  The terrestrial world will be 

seen to be built on quite different interpretations of supporting and being suited to.  For 

the purpose of the logical models is to become the reality of nature by bending to the 

brute facts of nature, the brute facts of the oceanic and terrestrial worlds. 
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The Relation of Supporting 

 The relation of supporting is the core ingredient in the following logically valid 

model, A. 

 If there is one environment that supports many species, then the many 

 species are supported by one or more environments. 

With (∃x), there is an x such that; Ex, x is the same as an environment; (y), for every y; 

Sy, y is in a species; Sxy, x supports y; with ⋅ for and, and ⊃ between an if structure and a 

then structure; A is represented as follows (Quine, 1972, p. 138): 

 (∃x) [Ex ⋅ (y) (Sy ⊃ Sxy)] ⊃ (y) [Sy ⊃ (∃x) (Ex ⋅ Sxy)], A) 

which is at length : there is an x such that x is the same as an environment, and for every 

y, if y is in a species, then x supports y – if all this is the case, then for every y, if y is in a 

species, then there is an x such that x is the same as an environment and x is supported by 

y.  Here a realistic approach is that the variable x is the whole of an environment, that x 

and environment are not two but are one.  Also y is a component, a constituent, a piece of 

a species (of each individual of the species); thus y is in a species.  Instead of the usual 

linguistic approach, wherein ‘y is a species’ is a linguistic identity, what the identity is 

driving at is an external unity – thus y is in a species in the real, external world. 

 Looking ahead, how will A be applied?  The answer is that A to the left will 

portray gastropod larvae of the tropical ocean, wherein this environment supports many 

species and A to the right will portray the situation synonymously wherein these species 

are supported by this environment.  To the left (∃x) comes before (y), Ex comes before  
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Sy, and x comes before y in Sxy so that the asymmetric x supports y is gotten in a regular 

manner.  But to the right (y) and Sy are before (∃x) and Ex and so y is before x; but Sxy 

has x before y, so that the asymmetry is gotten as x is supported by y (Copi, 1979,  

p. 119). 

 Looking ahead still, model A can be applied to the birds of North America.  To 

the left the North American environment supports all bird species, but to the right there 

are two options that are possible.  All bird species are supported by the one North 

American environment, or instead each bird species is supported by its own unique area 

of occurrence, its own environment.  This is the interpretation of A, for the part (∃x)  

(Ex ⋅ Sxy) means merely that one bird species y is supported by some environment, same 

or different from one bird species to the next. 

 This last is an important aspect of model A.  In the ocean we go from one 

environment to many species back to one environment, a single sequence.  On the land 

we go similarly from one environment to many species and back to one environment, a 

similar single sequence.  But also on land we go from one environment to many species 

to many environments, a second unique sequence.  The first sequence, a, and the second 

sequence, b, may be considered aspects in sets, the set {a} for the ocean – but the set  

{a, b} for the land.  The set of these, {{a}, {a, b}} describes the asymmetry of an 

ordered pair – ocean first, land second : (a, b) = {{a}, {a, b}} (Suppes, 1972, pp. 32-33). 

 For proof of model A see Appendix I 
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The Attribute of Being Suited To 

 The attribute of being suited to is the core ingredient in the following logically 

valid model called equivalence (see Copi, 1979, p. 40 for basic structure)  (see Appendix 

II for axiomatic proof): 

 If one environment is suited to many species, then many species are suited 

 to the one environment; and if the many species are suited to the one 

 environment, then the one environment is suited to the many species – 

 equivalent to : the one environment is suited to the many species if and only 

 if the many species are suited to the one environment. 

With x the same as the one environment and Sxy as x is suited to y and (y) and Sy as 

before, B is as follows: 

 {[(y) (Sy ⊃ Sxy) ⊃ (y) (Sy ⊃ Syx)] ⋅ [(y) (Sy ⊃ Syx) ⊃ (y) (Sy ⊃ Sxy)]} ≡ 

 [(y) (Sy ⊃ Sxy) ≡ (y) (Sy ⊃ Syx)].  B) 

This is: for every y, (y), if y is in a species, Sy, then environment x is suited to y, Sxy – 

that is, environment x is suited to its species.  This is the first parenthesis.  The first 

parenthesis implies the second.  The second is: for every y, (y), if y is in a species, Sy, 

then y is suited to environment x, Syx – that is, its species are suited to environment x.  So 

far, all this is the first bracket.  One is to see the reversal of x and y in Sxy to y and x in 

Syx, indicating that if x is suited to any species (here) then any species (here) is suited to 

x.  In the second bracket one is to see that if any species (here) is suited to environment x, 

then environment x is suited to any species (here).  There is the putting together of the 

two brackets with the dot, signifying ‘and’ which refers to an element in the objective,  
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external world which holds together the opposing asymmetries indicated by the first and 

second brackets. 

 In the third bracket the environment x is suited to its species if and only if they are 

suited to it (‘≡’ may be ‘equivalent to’, as in the first occurrence, or ‘if and only if’, as in 

the second occurrence).  Both the environment and the species have the attribute of being 

suited to each other.  For B should be: if one environment has the attribute of being suited 

to many species, then the many species have the attribute of being suited to the one 

environment; and if the many species have the attribute of being suited to the one 

environment, then the one environment has the attribute of being suited to the many 

species – equivalent to: the one environment has the attribute of being suited to the many 

species if and only if the many species have the attribute of being suited to the one 

environment.  The asymmetry of the attribute of being suited to species is blocked by the 

asymmetry of the attribute of being suited to environment. 

 This description holds for gastropod larvae.  But the birds of North America have 

a one-to-one correspondence between each species and its own unique environment.  So 

C is the logically valid model for this situation and has the basic structure of B.  The 

bare-bones basic structure for both B and C is [(P ⊃ Q) ⋅ (Q ⊃ P)] ≡ (P ≡ Q), which is 

proved in Appendix II.  C is: 

 [(Sxy ⊃ Syx) ⋅ (Syx ⊃ Sxy)] ≡ (Sxy ≡ Syx), C) 

where: if environment’s x is suited to species’ y, then species y is suited to environment’s 

x; and if species’ y is suited to environment’s x, then environment’s x is suited to species’ 

y – equivalent to: environment’s x is suited to species’ y if and only if species’ y is suited  
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to environment’s x.  The issue of concern is that the environment, a flat, continuous far-

flung piece of material, has the same attribute that the scattered, discontinuous, collected 

bulk material of some bird species has.  The two have a common attribute.  The two 

exemplify the common attribute of being suited to.  Thus they jointly and multiply 

exemplify a single, abstract constituent of nature, the constituent of being suited to 

(Moreland, 2001, p. 74). 

 
The Gastropod Larvae of the 
Atlantic and Pacific Oceans 

 Veliger gastropod (snail) larvae are tiny snail-like forms (Sheltema, 1971; 

Sheltema and Williams, 1983), (Figures 1, 2 and 3).  They are planktonic, existing for as 

long as 55-320 days in a form capable of settlement and metamorphosis if contact with 

land happens (Sheltema, 1971).  They occur over large areas of the Atlantic Ocean or 

Pacific Ocean (Figures 1 and 3).  They are carried passively by equatorial westward 

currents; there are north equatorial and south equatorial currents and a minor eastward 

countercurrent between them in both the Atlantic and Pacific Oceans.  The larvae are 

produced of course by parent sublittoral snails on the shores of the Atlantic continents 

and on Pacific islands.  The tiny larvae (1 mm. or less) occur as a number of species in 

about a dozen families.  A number have been studied in detail; 15 are described in detail 

in the two studies just mentioned.  But many more are present in the samples that span 

the equatorial oceans.  Though they are produced along the shore, they are supported by 

the single equatorial environment of the Atlantic and by the single equatorial 

environment of the Pacific (Sheltema, 1995; Sheltema et al., 1996).  Additionally, the  
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environment of the Atlantic is suited to all larvae species which are suited to the 

environment.  Likewise for the Pacific environment. 

 So the relation of supporting binds together environment and all the gastropod 

larvae species: if there’s one environment and it supports many species, then the many 

species are supported by this environment, (A).  And so, too, the attribute of being suited 

to binds together environment and species in another way: if the environment is suited to 

all the species then all the species are suited to the single environment, …….(B). 

 
The Birds of North America 

 Unlike the gastropod larvae of equatorial oceans, which are not well delineated 

specifically in many cases, the birds of North America are in very well delineated species 

– at least 900 species.  Unlike the larvae, which are all likely to be caught anywhere in 

the equatorial oceanic regions, each bird species seems to be located in its own unique 

area.  Some bird species stay in the same area all the year round, such as the chickadee (7 

species) and breed in the spring and summer (Fig. 4).  Many species migrate south within 

the continent in winter and north to breed in spring and summer, such as the 33 species of 

sparrows (National Geographic, 1999) (Fig. 5).  And some species migrate to South 

America for the winter and return to North America to breed in summer – such as the 

scarlet tanager, the rose-breasted grosbeak, and the golden plover (Lincoln and Hines, 

1950) (Fig. 6).  Thus the North American continent (including Mexico) does more than 

merely support these species; it produces them, in the sense that their breeding occurs 

there – unlike the gastropod larvae in the ocean.  Thence the relation of supporting might 

be strengthened as the relation of producing. 
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 In a correlated way the attribute of being suited to might be strengthened as the 

attribute of being adapted to.  For certainly being able to reproduce in a given area shows 

that the species is adapted to the area – it wouldn’t be there otherwise – and that its area 

is adapted to the species – it couldn’t be there otherwise, could it. 

 So the relation of supporting, or producing, binds together environment and 

species: if there’s an environment that supports, produces, many species, then the species 

as a whole are supported, produced, by the environment – and additionally each one of 

these many species is supported, is produced, by its own environment (A).  And so the 

attribute of being suited to, the attribute of being adapted to, binds together environment 

and species in another way: if a given environment’s x is suited to, is adapted to, a given 

species’ y, then the given species’ y is suited to, is adapted to, its own environment’s x, 

and if the given species’ y….., [(Sxy ⊃ Syx) ⋅ (Syx ⊃ Sxy)] ≡ (Sxy ≡ Syx). C) 

 
The Seals and Sea Lions of the World 

 The gastropod larvae of the equatorial oceans are the entrained products of 

sublittoral land producers, their parent snails.  The migrating birds that have been 

considered, when wintering in Central and South America, are the entrained though full 

grown products of the breeding birds in North America.  Additionally, the environments 

that the bird species uniquely occupy are in a real sense producers of the birds.  So there 

are two producers, the areas that have the food and protection for the bird species and the 

species themselves that produce the young.  But the distinction of two sorts of producers 

will be altered in the next section, wherein the environment will not be merely the  
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tropical ocean or the North American continent but instead will be the whole world.  The 

following account is from Nigel Bonner’s Seals and Sea Lions of the World. 

 There are 14 species of seals and sea lions belonging to the Otariidae.  They have 

external ears, use just their fore flippers for swimming, and on land move by short steps 

with their bodies held up from the ground.  There are 18 species of seals belonging to the 

Phocidae.  These have no external ears, use just their hind flippers for swimming and on 

land move by a humping action of their bodies against the ground. 

 They haul out on beaches and cobble shores and even on pack ice in spring and 

summer in the northern hemisphere and in winter in the southern hemisphere.  They give 

birth and nurse their young normally for a few weeks to several months, the female 

returning to the water intermittently in some cases for several days to feed and thus 

restore her ability to produce milk.  During this period they are mated by males each of 

which accumulates a number of females in harem-like groups.  After the young are 

weaned, the beaches and shores are left empty as the seals spend a number of months 

swimming and feeding.  The shore supports and produces each seal species in the sense 

that it is required for birth, and is a sociable and necessary place to bring up the young.  

Only remote shores are like this. 

 Only remote lonely shores compose the environment of the seals – shores free of 

predators but occurring anywhere from polar to tropical isles.  So the lonely, remote 

shore environment is a single scattered entity – scattered throughout the world.  Scattered 

but single.  Its singleness and scatteredness is captured by the following description: 

 



  Logical and Set Theory Models 11. 

If there is a remote shore environment that supports (produces) the 32 seal  

(sea lion) species of the world, then the species are supported (produced) 

each by its own unique remote shore environment. A) 

We can have too: 

 If each unique shore environment is suited (adapted) to each species, then 

 each species is suited (adapted) to its unique shore environment; and if 

 each species is suited (adapted) to its shore environment, then its shore 

 environment is suited (adapted) to it; -- equivalent to: each environment 

 is suited (adapted) to its species if and only if its species is suited to it. C) 

From this we see that the issue of concern is whether or not single species and 

environments can be perfectly paired in fact.  The factual situation is described next. 

 Of the nine fur seals, the northern fur seal, Callorhinus ursinus, had teeming, 

remote rookeries from Alaska to Russia, when first discovered in the mid 1700’s.  In 

spite of relentless seal hunting, large breeding populations are still present today as 

shown in Fig. 7, one as far south as San Miguel I. in California.  Continuing southward 

(Fig. 7), three species have isolated island shore rookeries, Arctocephalus townsendi on 

Guadalupe I., A. galapagoensis on a number of Galapagos Islands, and A. philippii on 

Juan Fernandez Islands.  A. australis is more widespread than the foregoing species but 

does not overlap them; it breeds on islands from Isles de Lobos around Tierra del Fuego, 

including the Falkland Is. and up the west coast of South America to Peru.  All of these 

breeding colonies were reduced drastically by hunting, in some cases to dozens in the  
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nineteenth century.  Subsequently some of the colonies regained their former numbers of 

thousands or 100 thousands of animals. 

 The remaining fur seals are found on remote islands around Antarctica and off the 

South African and Australian coasts (Fig. 8).  Their locations for the most part seem 

separated from each other, though with a small amount of overlap in some places. 

A. pusillus pusillus breeds in 23 colonies along the coast of South Africa and Namibia, 

the four largest not on islands but backed by deserts with no predators.  A. pusillus 

doriferus breeds on islands between Tasmania, Victoria, and New South Wales off 

Australia. 

 The fur seals have an abundant underfur layer in their pelage, which is lacking in 

the sea lions.  The five sea lion species have areas from the North Pacific to Antarctica, 

like the fur seals.  But their areas usually do not overlap in any detailed way, except 

Stellar’s sea-lion, Eumatopias jubatus, which has a distribution that closely overlaps the 

Fur seal Callorhinus ursinus from Alaska to Russia (Fig. 7).  The California sea lion, 

Zalophus californianus, is found from Vancouver Island to the Tres Marias Islands off 

Mexico (not shown) though the breeding range does not extend so far north.  Zalophus 

californianus wollabaeki, a subspecies, is found on the Galapagos Islands and thus does 

overlap completely Arctocephalus galapagoensis.  But there is only small overlap of the 

Australian sea lion Neophosa cinerea found at three places in southwest and west 

Australia (not shown) and the fur seals Arctocephalus pusillus doriferus and A. forsteri, 

the last extending to many islands south of New Zealand from south and southwest 

Australia (shown in Fig. 8).  The southern sea lion Otaria flavesceus overlaps fairly 
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closely the distribution of the fur seal Arctocephalus australis, extending from Isles de 

Lobos around Tierra del Fuego and up the coast of Chile where many islands and 

breeding platforms exist (Fig. 7). 

 The seals belonging to the Phocidae, having no external ears and using the hind 

flippers for swimming, are unlike the Otariidae, which have external ears and swim with 

the fore flippers – are unlike too in having several species in the North Atlantic Ocean 

and Arctic Ocean.  The Bearded seal, Erignathus barbatus, is circum arctic (Fig. 9), 

breeding on pack ice.  The Ringed seal (Phoca hispida) has a circum arctic distribution 

too – complete overlap (Fig. 9.).  These overlap partially the Harp seal (Phoca 

graenlandica, which extends northeastward to the White Sea (Fig. 10) and the Hooded 

seal, Cyrtophora cristata, which is found around Newfoundland from Svalbard to the east 

to the Gulf of St. Lawrence to the west and breeds as shown in Fig. 10.  The Grey seal 

Halichoerus gryptus (not shown) is like the Hooded seal in its western extent but its 

eastern extent takes in the British Isles and the Baltic; so there is only partial overlap.  

The Harbor seal, Phoca vitulina (not shown) is circumpolar and overlaps the Atlantic 

areas of the last two species but extends into the North Pacific, along the west coast of 

U.S.A. and east rim of the Pacific as far as Hokkaido – again partial overlap.  The 

Spotted seal (Phoca largha) and the Ribbon seal (Phoca fasciata) have duplicate 

distributions (complete overlap) from north of Bering Strait down along the Pacific coast 

to Hokkaido or Japan (Fig. 9). 

 Among the earless Phocidae are seven more species, in three groups.  In the first 

group are two monk seals, one the Hawaiian monk seal (Monachus schauinslandi),  
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breeding on several islands northwest of Hawaii, and the Mediterranean monk seal 

(Monachus monachus) (not shown).  These do not overlap any other seals or each other.  

Both are small in numbers, about 1000 for the Hawaiian and several hundred for the 

Mediterranean monk seals.  In the second group are two elephant seals, which have 

proboscis-like noses.  The northern one, Mirounga angustirostris, occupies islands from 

San Francisco to Baja, California (Fig. 7) and increased from about 20 animals to 

125,000 animals between 1890 and the present to constitute the present range.  This 

range overlaps completely the California sea lion (not shown).  The Southern Elephant 

seal, M. leonins, has breeding areas on all the same islands around Antarctica (Fig. 7) 

that are the breeding areas of the fur seals Arctocephalus gazella and tropicalis, and in 

part of A. forteri and australis.  In the third group (Fig. 7) are the Weddel seal, the 

Crabeater seal, the Leopard seal, and the Ross seal, all hauling out and breeding usually 

on pack ice close to the Antarctic continent.  They overlap only slightly the southern 

elephant seal and the four fur seals just mentioned.  Whether they overlap each other 

much is hard to say. 

 Finally two isolated seals are a species in the Caspian Sea and a species in Lake 

Baikal. 

 From this brief account a summary of overlap of distributions is as follows: 

 Complete overlap:  the northern fur seal and stellar’s sea lion in the north Pacific; 

the California sea lion and the Northern Elephant seal; Zalophus californianus wollebacki 

and Arctocephalus galapagoensis on the Galapagos Islands; the Spotted seal and the 

Ribbon seal in the northwestern Pacific and Bering Straits; the Bearded seal and the  
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Ringed seal in the Arctic ocean; the seal lion Otaria flavescens and the fur seal 

Arctocephalus australis around South America.  Six cases. 

 Partial overlap:  the circum Arctic species overlap partially the three species, the 

Hooded seal, the Grey seal, and the Harp seal.  Moderate overlap occurs among these 

three.  Moderate overlap occurs too between the Southern Elephant seal and the four 

southern fur seals.  Only a vague overlap occurs between all these and the Harbor seal, 

which extends from the North Atlantic to the North Pacific.  Seven cases, approximately. 

 There are then 13 cases with some measure of overlap.  Six of them are complete 

overlap, so that there is no one-to-one correspondence between species and area.  Seven 

of these are partial overlap, so that there is no clear correspondence between species and 

area.  The rest, 19 species, many of which are not shown, have a separate unique area for 

each species, so that there is a clear, one-to-one correspondence between each species 

and its area. 

 The distinction is between no overlap and one-to-one correspondence and 

between overlap and no one-to-one correspondence.  This distinction can be reassessed 

through functions of set theory. 

The Set Theory Model:  Functions 
 

 One finds these sorts of statements about functions.  “Consider the function  

f (x) = x3, i.e., f assigns to each real number its cube”.  “Let g assign to each country in the 

world its capital city” (Lipschutz, 1998, pp. 94, 95).  These indicate the broad coverage of 

functions.  More fully what the first says is:  the function of being cubed, of having the 

property of being cubed, is to relate each number to its cube by assigning to each number  
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its cube.  Thus there are in functions both properties and relations.  More fully, what the  

second says is:  the function of being a capital city, of having the property of being a 

capital city, is to relate each country to its capital city by assigning to each country its 

capital city.  There is no property of being a capital city pure and simple.  You can only 

have:  country a has the property of possessing the capital city assigned to country a or 

country a has the capital city assigned to country a.  Taking away property leaves the 

relation of country having capital city.  There is still correspondence between country and 

capital city, between number and cube – and between seal species and its area.  There are 

two sorts of correspondence. 

 One is one-to-one correspondence (no overlap) and this is called bijective – there 

is a bijective function of adaptedness1 (the property of being adapted) that assigns to each 

seal species its area in the case that no other species is assigned to this area, in the case of 

no overlap.  This bijective function is reversible – the function of adaptedness 

(suitedness) assigns to each area its seal species, in the case that the area does not overlap 

any other area.  There are 19 of these species and areas.  There are 19 members of the set, 

the class, of seals and there are 19 members of the set, the class, of areas.  There are then 

two sets.  What determines belonging to, being a member of, one of these sets is having 

the function of adaptedness to just one unique member of the other set.  The reversible 

bijective function of adaptedness (suitedness) determines membership in the set of the 19 

seal species via the set of their areas and the membership in the set of areas via the set of 

the 19 seal species. 

_____________________ 

 1  Adaptedness = being adapted.  The property of adaptedness = the property of  
being adapted.  property = attribute. 
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 What does determine being a member, being just one, of the 19 seal species set?  

Being adapted to its area.  This is the answer to the question. 

 What does determine being a member of the area set?  Being adapted to its seal 

species. 

 Next, the 13 species with overlapping areas do not have a one-to-one 

correspondence.  They have a surjective function of adaptedness that assigns two or more 

of them to the same or partially the same area.  What determines being a member of this 

set of species is, as before, having an area of its own, but not having a unique area – 

because another species has this area, at least in part, as its own too. 

 Having an area as its own, being adapted or suited to its area, can be shown for 

the bijective and surjective species as follows (see Hulburt, 2004; Lipschutz, 1998, p. 99). 

 

 Species 1  ' area 1 

 Species 2  '    area 2 
        .     .                            bijective sets 
 

 Species 19  '   area 19 

  
 Species 1  �  
                          area 1 
 Species 2  	  

 Species 3  � 
                                     area 3 
 Species 4  	            surjective sets 

}
                  .  
                  . 
            Species 12  � 
                          area 12 
 Species 13  	 
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The 19 non-overlapping seals make bijective sets.  The 13 overlapping seals make 

surjective sets. 

 Among birds, sparrows and the three selected species are examples of migrators, a 

large bijective set with one-to-one, reversible assignments of its members to members of 

the area set.  But there are four sets now, the breeding northern pairs of sets and the non-

breeding southern pairs of sets.  Then chickadees, that don’t migrate, compose three sets.  

All this is shown as follows for 33 sparrow species and 7 chickadee species.  It is 

important to note that one-to-one correspondence in the case of seals means no overlap of 

areas of species residence but in the case of birds means no overlap of winter and summer 

areas of each species. 

 

 Species 1, breeding '         area 1, breeding 

 Species 1, non-breeding  '     area 1, non-breeding 

 Species 2, breeding '          area 2, breeding                                    

 Species 2, non-breeding  '      area 2, non-breeding                           bijective  
                           .         sets 
                           . 
                           . 
                           . 
 Species 33, breeding '            area 33, breeding 

 Species 33, non-breeding  '      area 33, non-breeding 
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 Species 1, breeding  � 
                                       area 1 
 Species 1, non-breeding  	 
 
 Species 2, breeding  � 
   area 2 
 Species 2, non-breeding   	                                                        surjective sets 
                 . 
                 . 
                 . 
                            . 
 Species 7, breeding  � 
                         area 7 
 Species 7, non-breeding  	 
 
 Among gastropod larvae all the species of the Atlantic equatorial environment 

form two sets, one with many species and the other with the single membered equatorial 

environment set.  Same for the Pacific.  Both of these pairs of sets are pictured in the 

following way. 

 Species 1  � 

 Species 2   �             Equatorial 
                  .                            Atlantic 
                  . 
                  . 
                  . 
 Species n    	                                                                      surjective sets 
 
 Species 1  �  

 Species 2 �                 Equatorial 
                  .                              Pacific 
                  . 
                  . 
             Species n 	 
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 What would set theory say about the relation of supporting (producing) as 

compared to the property or attribute of being suited to – the property of being adapted 

to, the property of adaptedness to?  Model A left says that the one environment supports 

the many larval species, that one environment supports many bird species, that one 

scattered environment supports 32 seal species.  This is surjective with the set of species 

to the left and the one-membered set environment to the right (as just pictured).  Model A 

right says many species are supported by one environment or many species are supported 

(produced) each by its own environment.  The first option is surjective; the second option 

is bijective, except for the surjective non-migratory birds and the overlapping seals which 

are surjective.  The situation is mixed.  But the bijective, reversible, one-to-one 

corresponding pattern seems to emerge as a somewhat dominating feature in these 

samples from land. 

 Model C endorses the ecological suited-to attribute and is applicable only in 

reversible bijective cases. 

 
The Perfect World Model 

 What would an ideal, perfect world model in the context of the samples of nature 

so far presented be?  Should there be one-to-one correspondences in reversible bijective 

sets of ordered pairs of entities that are described actively by structural elements that 

produce and animate the ecological spectrum and that are also described passively by the 

integration of species traits and externality, not leaving out an overriding salience, an 

overriding assertive asymmetry that dictates, one would think, the changing panorama  
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that confronts us.  For we cannot get away from asymmetry.  Support is asymmetric.  

Produce is asymmetric.  Suited to and adapted to are likewise asymmetric. 

 It is asymmetric that the snail larvae are supported by the equatorial ocean, that 

the bird species of North America are produced each by its own area, that the seal species 

of the world are partially produced each by its fragment of lonely, remote shores of 

northern, tropical, and southern coasts.  Suppose there were only this babel of assertive 

producings and supportings.  But such a chaotic world is not what we deduce. 

 What we deduce is the blocking of assertive asymmetries.  An initial step is the 

switch from support to suited to, from produce to adapted to.  But there is no structural 

guarantee that these more benign asymmetries will get us the real world.  The 

asymmetries must be blocked.  If implication is part of nature, then the asymmetry of 

implication can be blocked by reverse implication.  Next are shown parts of models B 

and C, which have reverse implications.  It will be recalled that Sxy is x is suited to y and 

that Syx is y is suited to x and that Sy is y is in a species.  We have: 

 [(y) (Sy ⊃ Sxy) ⊃ (y) (Sy ⊃ Syx)] ⋅ [(y) (Sy ⊃ Syx) ⊃ (y) (Sy ⊃ Sxy)]        B) 

                        (Sxy     ⊃            Syx)       ⋅        (Syx          ⊃         Sxy)                  C) 

                          (P       ⊃               Q)      ⋅            (Q         ⊃           P)                    D) 

 Asymmetry is blocked by reversing the first implication to get the second.  The 

bare-bones structure is given by D.   What is vital is joining implication and reverse 

implication by the dot, meaning the linguistic ‘and’.  In the real external world there must 

be a linkage for the word ‘and’ to refer to.  Such a linkage is abstract, just as sets  
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(species) are abstract, just as symbolic variables are abstract.  Abstract but real.  For the 

models we are presenting are not models of the world; they are the world.   

 The annulment of asymmetry is, of course, a forlorn enterprise in a world that 

departs from a perfect world model.  The crucial and basic flaw of the enterprise comes 

from set theory.  For the entities of the two sets that are bijective (one-to-one) or 

surjective (not one-to-one) are ordered pairs.  Ordered pairs are such that a comes before 

b.  And this order is asymmetrical.  One larval species must be to the left and its 

environment to the right, one bird species left and its area right, seal species left and its 

area to the right, species and areas taken in pairs.  But these are small ordered pairs.  

 Two very different ordered pairs are from model A: in the ocean the environment 

supports many species, so the many species are supported by the environment – this 

sequence is interpreted as a sole aspect in set {a}.  On land model A has two aspects  

where sequence a means the land environment supports many species, so the many 

species are supported by the single land environment, North America or whole world – or 

where sequence b means the land environment supports many species, so the many 

species are supported each by its own environment, about 900 bird species and their areas 

or 32 seal species and their areas.    

 Thus a is a single aspect in the ocean set {a}.  Thus a and b are two aspects, a 

unified aspect from a many aspect in the land set {a, b}.  The ordered pair is the set of 

these, (a, b) = {{a}, {a, b}}.  This is irreversible, left precedes right, the littler set first, 

the bigger set second, the way 1 comes before 2 (see section on relations; see Appendix 

III).  There are two of these pairs, the larvae-bird pair and the larvae-seal pair.  These 
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are two vast pairs.  They bestride the natural world in a way undreamt of by the usual 

presentations of set theory. 

       Larvae                                           Birds 

   One aspect, {a}                          Two aspects, {a, b} 

                  Larvae                                           Seals 

 One aspect, {a}                          Two aspects, {a, b} 
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Appendix I 
 

 The proof of A is as follows. 

  1.  (∃x) [Ex ⋅ (y) (Sy ⊃ Sxy)]  Assum. 

  2.  Sy   Assum. 

  3.  Ex ⋅ (y) (Sy ⊃ Sxy)  1, EI 

  4.  Ex   3, Simp. 

  5.  (y) (Sy ⊃ Sxy)  3, Simp. 

  6.  Sy ⊃ Sxy   5.  UI 

  7.  Sxy   6, 2, MP 

  8.  Ex ⋅ Sxy   4, 7, Conj. 

  9.  (∃x) (Ex ⋅ Sxy)  8, EG 

  10.  Sy ⊃ (∃x) (Ex ⋅ Sxy)  2-9, CP 

  11.  (y) [Sy ⊃ (∃x) (Ex ⋅ Sxy)]  10, UG 

  12.  (∃x) [Ex ⋅ (y) (Sy ⊃ Sxy)] ⊃ (y) [Sy ⊃ (∃x) (Ex ⋅ Sxy)] 1-12, CP 

Line 1 is assumed, that is, if is placed before it and so it is left dangling until line 12.   

Line 2 is similarly assumed and its dangling status is resolved in line 10.  In both cases 

the if part of lines 1 or 2 is followed by a then part in lines 12 or 10; this is called 

conditional proof, CP.  Line 3 shows that just one environment suffices for the proof and 

(  x) of line 1 is dropped – a process called existential instantiation, EI.  Line 4 shows that 

from the and-connected parts of line 3 one part, Ex, may be deduced; line 5 shows that 

the other part, (y) (Sy ⊃ Sxy), may be deduced too – this is simplification, Simp..  Line 6 

is universal instantiation, UI, wherein, if Sy ⊃ Sxy of line 5 is true of every y, (y), then (y)  
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is dropped and just one y and its species, Sy, suffices for the proof.  In line 7 Sxy is 

deduced by the argument: if Sy then Sxy of line 6, given Sy of line 2, therefore Sxy of line 

7 – modus ponens, MP.  Line 8 shows that the putting together of Ex and Sxy is deduced 

from Ex of line 4 and Sxy of line 7 – conjunction, Conj.  Line 9 just says that since x is an 

environment, Ex, and environment x supports y, Sxy, then there is one such x – existential 

generalization, EG.  And line 11, universal generalization, UG, makes a contrasting claim 

that for every y if y is in a species then ….. 

 The issue of deduction occurs three times.  The first is simplification.  If both 

parts of line 3 are true the whole is true.  If one or both are false, then the whole is false.  

The outcome from this situation is line 4 and line 5.  And the outcome is arresting, 

because you can’t get false out of line 3 going to line 4 or to line 5.  The reason is that if 

the antecedent parts of line 3 are both true so are the consequent parts (4 and 5) and the 

whole works is true.  But if the antecedent parts are singly false then each yields a false 

consequent (4 or 5) – and false antecedent yielding false consequent is considered true as 

a whole. 

 The second case of deduction is modus ponens, wherein antecedent, Sy and 

consequent, Sxy, are laid out: 

 Sy    ⊃  Sxy 

 True ⊃ True       True 

 True ⊃ False       False 

 False ⊃ True       True 

 False ⊃ False      True 
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The first has both parts true, so it is true as a whole.  The second is flatly the opposite of 

the first, so it is false as a whole.  What shall we do about the third and fourth?  They are 

certainly not the flat opposites of the first, so they are counted as true.  The second in 

conjunction with the antecedent Sy would yield false as a whole, and this conjunction 

implies the consequent Sxy (true = T, false = ⊥): 

  Sy ⊃ Sxy ⋅ Sy : ⊃ Sxy 

  T  ⊃  ⊥   ⋅  T  : ⊃  ⊥ 

                               ⊥     .   T  : ⊃  ⊥  

                    ⊥  ⊃   ⊥ 

                                              T 

The other three in conjunction with the antecedent are: 

  Sy ⊃ Sxy ⋅ Sy : ⊃ Sxy 

 1st         T  ⊃   T   ⋅  T  : ⊃   T 

                                        T 

 3rd  ⊥  ⊃   T   ⋅ ⊥ : ⊃ T 

                                  T   ⋅  ⊥ : ⊃ T 

                 ⊥     ⊃  T 

                                              T 

 4th ⊥  ⊃  ⊥ ⋅  ⊥ : ⊃  ⊥ 

           T  ⋅  ⊥ : ⊃  ⊥ 

                                     ⊥     ⊃   ⊥ 

                                           T 
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Thus the analysis of modus ponens is very important, because modus ponens is 

everywhere.  There is no such thing as stimulus – response; instead we have:  if stimulus 

then response, given stimulus; therefore response.  There is no such thing as cogito ergo 

sum; instead we have: if cogito then sum, given cogito; ergo sum. 

 The third deduction is conjunction: if Ex (line 4), then if Sxy (line 7), then both Ex 

and Sxy (line 8).  Instead of doing a true-false analysis as just done, an elaborate analysis 

in Appendix II step 37 is given. 

 The three deductions, simplifications, modus ponens, and conjunction compose 

the structure of all nature.  Their use in the analysis lines 1-12 is part of nature. 

 

Appendix II.  Equivalence 

 The following derivation of [(P ⊃ Q) ⋅ (Q ⊃ P)] ≡ (P ≡ Q) is from Hilbert and 

Ackerman (1950, p. 27-39), as developed by Copi (1979, p. 266-268).  The derivation is 

from Hilbert and Ackerman’s four axioms and takes 44 steps.  A different derivation is 

from Rosser’s three axioms and takes 89 steps (Hulburt, 2002). 

 The method of derivation is by substitution.  Where one expression is put for 

another expression, the one expression is substituted for the other.  At step 7. P is put for 

Q, and so on. 

 There is one rule of inference, R.1 (where ... = therefore): 

 P ⊃ Q 

 P 

 ... Q 
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 There are two definitions (where ⋅ is and): 

 P ⊃ Q = (def.) ~P v Q , step 11. 

 ~P v [~Q v ~ (~P v ~Q)] = (def.) P ⊃ [Q ⊃ (P ⋅ Q)], step 37. 

 There are several assumed expressions.  These are premises. 

 The method follows fairly closely Copi’s presentation of Hilbert and Ackerman, 

except for rule 1, which is taken from Rosser (1953), p. 65, Theorem 4.20. 

 The Hilbert and Ackerman axiomatic presentation, like that of Rosser, derives all 

the major principles of logic – contraposition, conjunction, simplification, association, 

commutation, distribution, double negation, Dr. Morgan’s laws, equivalence. 

 In following the steps of each proof, sometimes a step initiates something wholly 

new, as in step 17, and sometimes each step depends on the last as in 24.-27., and in 28.-

33.  Just the bracketed part of axiom 4 is used.  

Axioms 

(P v P) ⊃ P   A1 

P ⊃ (P v Q)   A2 

(P v Q) ⊃ (Q v P)  A3 

(P v Q) ⊃ [(R v P) ⊃ (R v Q)]  A4 

Rule 1 

P ⊃ P1 

P1 ⊃ P2 

P2 ⊃ P3 
     . 
     . 
     . 
P ⊃ Pn 
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 Proof of P ⊃ (Q v P), Theorem 1 

1.  P ⊃ (P v Q) A2 

2.  (P v Q) ⊃ (Q v P) A3 

3.  P ⊃ (Q v P) Rule 1, from 1 and 2 

 From (P v Q) derive (Q v P), Theorem 2 

4.  (P v Q) ⊃ (Q v P) A3 

5.  P v Q  Premiss 

6.  Q v P  R.1, from 4 and 5 

 Proof of P ⊃ P, Theorem 3 

7.  P ⊃ (P v P)  A2; P for Q 

8.  (P v P) ⊃ P  A1 

9.  P ⊃ P  Rule 1, from 7 and 8 

 Proof of P v ~P, Theorem 4 

10.  P ⊃ P  Theorem 3 

11.  ~P v P  Def.; P for Q, from 10 

12.  P v ~P                   Theorem 2; (~P v P) for (P v Q), (P v ~P) for (Q v P); from 11 

 Proof of [P v (Q v R)] ⊃ [Q v (P v R)], Theorem 5 

13.  R ⊃ (P v R)  Theorem 1; R for P, P for Q 

14.  (Q v R) ⊃ [Q v (P v R)]                   A4; Q for R, R for P, and (P v R) for Q; from 13  

15.  [P v (Q v R)] ⊃ {P v [Q v (P v R)]} A4; P for R, (Q v R) for P, 
    [Q v (P v R)] for Q; from 14 
 
16.  {P v [Q v (P v R)]} ⊃ {[Q v (P v R)] v P}     A3; obvious substitutions; from 15 
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17.  P ⊃ (P v R)  A2; R for Q 

18.  (P v R) ⊃ [Q v (P v R)]  Theorem 1; (P v R) for P 

19.  P ⊃ [Q v (P v R)]  Rule 1; 17, 18, 19 

20.  {[Q v (P v R)] v P} ⊃ {[Q v (P v R)] v [Q v (P v R)]}      From 19 by A4, 
                               [Q v (P v R)] for R, Q 
 
21.  {[Q v (P v R)] v P} ⊃ [Q v (P v R)] A1; on right second [Q v (P v R)] eliminated    

in 20 
 
22.  [P v (Q v R)] ⊃ [Q v (P v R)] Rule 1; 15, 16, 21, 22 
 
 Proof of [P v (Q v R)] ⊃ [(P v Q) v R]   Theorem 6 
 
23.  (Q v R) ⊃ (R v Q)  A3, Q for P, R for Q 

24.  [P v (Q v R)] ⊃ [P v (R v Q)]         A4, P for R, (Q v R) for P, (R v Q) for Q; from 23 

25.  [P v (R v Q)] ⊃ [R v (P v Q)] Theorem 5; from 24 

26.  [R v (P v Q)] ⊃ [(P v Q) v R] A3; R for P, (P v Q) for Q; from 25 

27. [P v (Q v R)] ⊃ [(P v Q) v R] Rule 1; 24, 25, 26, 27  

 Proof of [(P v Q) v R] ⊃ [P v (Q v R)], Theorem 7 

28.  [(P v Q) v R] ⊃ [R v (P v Q)] A3, obvious substitutions 

29.  [R v (P v Q)] ⊃ [P v (R v Q)] Theorem 5; from 28 

30.  [P v (R v Q)] ⊃ [(P v R) v Q] Theorem 6; from 29 

31.  [(P v R) v Q] ⊃ [Q v (P v R)] A3; from 30 

32.  [Q v (P v R)] ⊃ [P v (Q v R)] Theorem 5; from 31 

33.  [(P v Q) v R] ⊃ [P v (Q v R)] Rule 1; 28, 29, 30, 31, 32, 33 
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 Proof of P ⊃ [Q ⊃ (P ⋅ Q)]               Theorem 8 

34.  (~P v ~Q) v ~(~P v ~Q)                      Theorem 4; ~P v ~Q for P, ~(~P v ~Q) for ~P 

35.  [(~P v ~Q) v ~(~P v ~Q)] ⊃                  Theorem 7; ~P for P, ~Q for Q, ~(~P v ~Q)  
        {~P v [~Q v ~(~P v ~Q)]}                      for R; from 34 
 
36.  ~P v [~Q v ~(~P v ~Q)]  R.1; from 35 and 34 
 
37.  P ⊃ [Q ⊃ (P ⋅ Q)]  Def.; from 36 

 Proof of (P ⊃ Q) ⋅ (Q ⊃ P) 

38.  (P ⊃ Q) ⊃ [(Q ⊃ P) ⊃ [(P ⊃ Q) ⋅ (Q ⊃ P)]]         37., (P ⊃ Q) for P, (Q ⊃ P) for Q 

39.  P ⊃ Q   Premiss 

40.  (Q ⊃ P) ⊃ [(P ⊃ Q)] ⋅ (Q ⊃ P) R.1; from 38 and 39 

41.  Q ⊃ P   Premiss 

42.  (P ⊃ Q) ⋅ (Q ⊃ P)  R.1; from 40 and 41 

If P then Q is: Q if P.  Also, if Q then P can be: Q only if P.  So (P ⊃ Q) and (Q ⊃ P) 

condense to (Q if P) and (Q only if P), which condenses to (Q if and only if P), which is 

shown as (Q ≡ P), which can be switched to (P ≡ Q).  So if you have 42. then you get  

(P ≡ Q), and if you have (P ≡ Q) then you get 42. – just like 42. - and putting these in 

conjunction you get: 

43.  {[(P ⊃ Q) ⋅ (Q ⊃ P)] ⊃ (P ≡ Q)} ⋅ {(P ≡ Q) ⊃ [(P ⊃ Q) ⋅ (Q ⊃ P)]} 

44.  [(P ⊃ Q) ⋅ (Q ⊃ P)] ≡ (P ≡ Q) 

44. is the basic structure of models B and C, as derived from the Hilbert-Ackerman 

axioms, substitution, definitions, R.1, rule 1, and premisses. 
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Steps 36. to 37. are very important.  The part ~(~P v ~Q) says that the denial of P denied 

or Q denied gives you both P and Q, as shown in 37.  The denial of the initial P or Q is a 

different matter.  One has always the choice of ~P.  So you don’t get P is ~P.  And if you 

don’t don’t get P is ~ ~P, which is P.  So instead of ~P you have P.  Same for Q.  So you 

get from ~P v (~Q…..] to P ⊃ [Q ⊃ …   ].  This is what is happening between steps 10. 

and 11. earlier.  And this is presaged by the first definition. 
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Appendix III.  Set of Sets 

 A collection of sets, a set of sets, may be assembled from the following structures: 

  the set of  {…} 

  all members x such that x: 

  x belongs to set A x E A 

  a set of sets  S 

which together are: 

 {x : x E A for some A belonging to S} 

which is : the set of all members x such that x belongs to set A for some A belonging to S.  

This is related to the uniting or union, U, of all the sets A belonging to S: 

 U{A: A E S}. 

What does this mean?  Let us say S = {{a, b}. {a}, {a, c}}.  Each set in inner braces is an 

A, and S equals the set in outer braces of these inner sets.  There are three A’s, two with 

two members, a, b and a, c, and one with a single member, a – these members 

corresponding to x in x E A.  But U{A : A E S} has a different meaning from the three sets 

A in S, for U{A : A E S} means the set {a, b, c} and unifies the set of sets that is S.  Thus 

the set of sets, S, brings together directly its sets A.  U brings together these sets in 

another way – by having the common members without repeats (from Lipschutz, 1998,  

p. 117, and Milewsky, 1989, p. 16). 

 On the other hand, the power set expands the number of sets.  The power set is : 

the set of all subsets of a set.  The power set, P (A), of a set having two members, a and b, 

has four subsets: 
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 P (A) = {∅, {a}, {b}, {a, b}} 

∅ is the empty set defined by {x E A : x ≠ x} (Halmos, 1974, p. 8) which has no 

members.  The other three sets are nested in the set of all of them.  Thus they are subsets.  

Two have only single members a in {a} and b in {b}.  Only one subset has both a and b; 

this subset is {a, b}. 

 The power set of two members has 22 = 4 subsets.  The power set of three 

members has 23 = 8 subsets.  This power set is thus the set of eight subsets : 

{∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.  What we see from the array of 

subsets is the prevalence of sets having a single member.  It is perfectly all right for a set 

to have a single member, because it makes no sense for a member to belong to itself but 

does make sense for it to belong to a set even though the set has only itself.  The 

prevalence of sets of one member plus the sets of two members makes possible the set of 

any pair of these sets.  Thus the structure of a set of subsets is the valuable outcome 

paving the way for the set of subsets that is the ordered pair, (a, b) = {{a}, {a, b}} 

(Halmos, 1974, pp. 22-24), Suppes, 1972, pp. 32-33). 

 The content of a member in a single membered set can be anything.  The content 

of member has a vastly greater range in this study than in standard set theory texts. 
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Figure 1.  Gastropod (snail) larvae in the Pacific Ocean. 
 Left: A, Heliacus trochoides; B, Heliacus  variegatus; 
 C, Architectonica perspectiva.  Right: distribution of larvae in the Pacific; 
 1 and 2 = unknown species, 3 = Heliacus variegaues, 4 = Architectonica 
 perspectiva, 5 = Philippia oxytropis, 6 = Philippia radiata, 7 = Heliacus 
 trochoides.  (from Sheltema, R.S., and I.S. Williams, 1983, fig. 3 and fig. 4) 
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Figure 2.  Larval shells, operculs, and protoconchs of some species belonging to the  
 families Muricidae, Ovulidae, Architectonicidae and Neritidae: 
 (a) Thais (?) rustica veliger larva, Eastern Atlantic off West Africa;  
 (b) protoconch of Thais rustica, Port Royal, Jamaica; (c) protoconch of 
 Pedicularia sicula decussate, off coast of Georgia, Western Atlantic; (d) Thais 
 haemastoma larval shell, Western Atlantic east of Bahamas; (e) protoconch of 
 Thais haemastoma, Corpus Christi Bay, Texas; (f) larval shell of Pedicularia 
 sicula, Western Atlantic, Gulf Stream; (g) larval shell of Pedicularis sicula, 
 Eastern Atlantic, off Azores; (h) larval shell of Thais haemastoma, Western 
 Atlantic east of Bahamas; (i) larval shell of Thais haemastoma, Mid- 
 equatorial Atlantic, South Equatorial Current; (j) larval shell of Thais  
 haemastoma, Eastern Atlantic off West Africa; (k) Philippia krebsii larval shell, 
 fully developed, Western North Atlantic; (l) Philippia krebsii larval shell, same as 
 (k); (m) operculum of Philippia krebsii; (n) three larval shells of Smaragdia 
 viridis, northern end of Gulf Stream; (o) operculum of Smaragdia viridis, 
 northern end of Gulf Stream; (p) larval shells of Smaragdia viridis, off West 
 Africa; (q) protoconch of Smaragdia viridis viridemaris, Castle Harbor, Bermuda. 
 Scale – 1mm.  (Sheltema, 1971. p. 292) 
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Figure 3.  Upper figure: tropical Atlantic Ocean.  Filled circles are locations where 
 larvae of the family Architectonicidae were found.  Divided circles are 
 locations where both Architectonicidae and Ranellidae were found in the  
 same sample.  Open circles are locations where larvae of Ranellidae were 
 found.  Triangles are locations of other families of larvae.  Small open circles 
 no larvae.  (From Shetlema, R.S., 1995, fig. 4) 
      Lower figure: tropical Pacific Ocean.  Distribution of larvae belonging to 
 the family Architectonicidae.  (from Sheltema, et al., 1996, fig. 2) 
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Figure 4.  Distribution of chickadees.  Top panel: left, Mexican Chicadee (Poecile 
 sclateri); right, Chestnut-Backed Chicadee (Poecile rufescens).  Next to top 
 panel: left, Mountain Chicadee (Poecile gambeli); right, Gray-Headed 
 Chicadee (Poecile cinctus).  Next to bottom panel: left, Black-Capped Chicadee 
 (Poecile atricapillus); right, Boreal Chicadee (Poecile hudsonicus). 
 Bottom panel:  Carolina Chicadee (Poecile carolinensis).  (National Geographic, 
 1999, pp. 328, 336) 
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Figure 5.  Distribution of sixteen North American sparrows.  Spring-summer breeding 
 areas in the north shown in black.  Wintering areas in the south shown in gray. 
 (National Geographic, 1999, pp. 402, 404, 408, 412, 414, 416) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



    Logical and Set Theory Models 42. 
 
Figure 6.  Migration routes and northern breeding areas and southern wintering areas 
 of the Scarlet Tanager (Piranga olivacea), upper left, of the Rose-Breasted 
 Grosbeak (Pheucticus ludovicianus), upper right, and of the Golden Plover  
 (Pluvialis apricaria).  (Lincoln and Hines, 1950, pp. 44, 46, 54) 
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Figure 7.  Distribution of four Fur seals (1), lower left.  Distribution of the Southern 
 sea lion, lower right.  Locations of the Northern Elephant seal, upper left. 
 The Northern Fur seal and Stellar’s sea lion, upper right.  (Bonner, 1999, 
 pp. 41, 66, 126, 52, 68) 
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Figure 8.  The distribution of the southern fur seals, upper left.  The distribution of the 
 four Antarctic seals, upper right.  The distribution of the Southern Elephant seal, 
 bottom.  (Bonner, 1999, pp. 45, 139, 124) 
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Figure 9.  Distribution of the Ribbon seal and the Spotted seal, to the left, and of the 
 Bearded seal and the Ringed seal, to the right.  (Bonner, 1999, pp. 102, 111, 
 88, 104) 
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Figure 10.  Distribution of the Hooded seal and the Harp seal.  (Bonner, 1999, 
 pp. 90, 108) 
 
 
 
 
 
 
  
 
 






















