Dilution of the Northern North Atlantic Ocean in Recent Decades

Ruth Curry* and Cecile Mauritzen2

Declining salinities signify that large amounts of fresh water have been added to the northern North Atlantic Ocean since the mid-1960s. We estimate that the Nordic Seas and Subpolar Basins were diluted by an extra 19,000 ± 5000 cubic kilometers of freshwater input between 1965 and 1995. Fully half of that additional fresh water—about 10,000 cubic kilometers—infiltrated the system in the late 1960s at an approximate rate of 2000 cubic kilometers per year. Patterns of freshwater accumulation observed in the Nordic Seas suggest a century time scale to reach freshening thresholds critical to that portion of the Atlantic meridional overturning circulation.

The salinities of water masses originating in the high-latitude North Atlantic Ocean have been cascading downward since the early 1970s (1–4). This region has climatic importance because the Nordic Seas and the Labrador and Irminger basins are sites where cold, dense waters are formed—an integral component of what is often termed the meridional overturning circulation (MOC). The Atlantic MOC involves a northward flow of warm surface waters in exchange for a southward flow of cold, dense waters in the deep ocean along the pathways shown in Fig. 1. This component of circulation transports heat northward and thus contributes to moderating the cold-season climate at high northern latitudes. Excessive amounts of fresh water could alter the ocean density contrasts that drive the northernmost extension of the Atlantic MOC, diminish its northward heat transport, and substantially cool some regions of the North Atlantic (5–10). The MOC's sensitivity to greenhouse warming remains a subject of much scientific debate (10). The observed freshening does not yet appear to have substantially altered the MOC and its northward heat transport (11, 12). But uncertainties regarding the rates of future greenhouse warming and glacial melting limit the predictability of their impact on ocean circulation (8, 10).

What has been missing from the evolving picture thus far is an explicit quantification of how much additional fresh water it took to cause the observed salinity changes, how fast it entered the sub-Arctic ocean circulation, and where that fresh water had been stored. All three factors are important for assessing the present and future impacts of freshening on the Atlantic MOC, and provide the types of information that facilitate climate model validation studies. To address these issues, we reconstructed the history of volumetric changes in ocean temperature, salinity, and density in the Nordic Seas and Subpolar Basins and estimated the magnitude of freshwater storage and net volume flux anomalies required to account for the observed dilution over the past 50 years. We then examined the degree to which density has responded to this freshening, as a means of gaining perspective on its seemingly negligible MOC impact. Finally, we used this perspective to estimate how much additional fresh water might be required to equalize the density contrast that contributes to the exchange of mass and heat between the Nordic Seas and the subpolar North Atlantic.

Extensive amounts of hydrographic data have been collected in the seas between Labrador and northern Europe in the past 50 years. We used these data to construct well-constrained, three-dimensional representations of ocean properties for successive 5-year time frames spanning the years 1953 to 2002 (13). Because salinity is approximately conserved in the ocean, salinity anomaly fields can be used to quantify the volume of additional fresh water that had to be added or removed to account for salinity changes accumulated through the entire water column (13). Mapping this quantity, layer by layer, time frame by time frame, throughout the domain describes the evolution of freshwater storage in space and time. Integrating it over a geographic area provides a history of the volumetric freshwater storage anomaly in cubic kilometers, and differenting this storage anomaly in consecutive time frames implies a rate of change—the net freshwater flux anomaly—in sverdrups (1 Sv = 10⁶ m³ s⁻¹).

Time series of freshwater storage anomaly and net flux anomaly for the Nordic Seas and Subpolar Basins were considered separately and as a whole (Fig. 2) (table S1). From the earliest part of the record through the mid-1960s, salinities increased in the upper 2000 m of all the Subpolar Basins. Its volumetric expression was a net loss in subpolar freshwater storage of ~5000 km³ between 1955 and 1965. By contrast, the net change in the Nordic Seas was comparatively small at that time. Between 1965 and 1990, however, both the Nordic Seas and Subpolar Basins became increasingly freshened. Net freshwater storage increased by ~19,000 km³ of which ~4000 km³ spread into the Nordic Seas and ~15,000 km³ accumulated in the Subpolar Basins. A recovery from the early 1990s peak of freshwater storage in the Subpolar Basins occurred in the mid-1990s, but our volumetric analysis falters for the last time frame (1998 to 2002) because of inadequate data coverage (14). For the Nordic Seas, an approximate balance between import and export of fresh and saline waters resulted in little net volumetric change in the late 1990s.

The most striking event of the time series occurred in the early 1970s. During the late 1960s, a large pulse of fresh water entered the Nordic Seas through Fram Strait and rapidly moved southward along the western boundary in the East Greenland Current. This event has been labeled the Great Salinity Anomaly (GSA) (15), and we can here confirm that the name is appropriate, for it contributed an extra ~10,000 km³ of fresh water to the sub-Arctic seas in the late 1960s and early 1970s, implying a net flux anomaly of ~0.07 Sv during a 5-year period. The GSA was previously thought to be equivalent to ~2000 km³ of excess fresh water (15) and has been attributed to several years of anomalously large sea ice export from the Arctic (16, 17). The Arctic freshwater budget includes inflows from the Pacific (~1600 km³ year⁻¹) and rivers (~3500 km³ year⁻¹) that are mainly balanced by annual exports of fresh water and sea ice through Fram Strait and the Canadian
Archipelago of ~5000 km³ year⁻¹ (16). Thus, volumetric changes in freshwater storage suggest that exports associated with the GSA ran ~40% above normal on average during that 5-year time frame.

Only a fraction of the GSA’s fresh water remained in the Nordic Seas. The East Greenland Current provides a direct transport route from the Arctic to the Subpolar Basins, and the ocean circulation at that time sent the majority south of Denmark Strait. A small portion of fresh water did quickly spread across the surface of the western Nordic Seas in the early 1960s (fig. S3), but only subsequently was additional fresh water mixed into the subsurface layers. Salinities in the dense overflow waters from the Nordic Seas to the North Atlantic began to decline only in the early 1970s (4). Similarly, freshening in the Subpolar Basins first spread across the surface layer in the late 1960s. During the 1970s, the bulk of the GSA’s fresh water was vertically mixed downward in the Labrador and Irminger basins and then horizontally circulated at mid-depths around the Subpolar Basins.

Pulses of excess fresh water and ice also appear to have been emitted from the Arctic in the 1980s and 1990s (18), and freshening of the Subpolar Basins and Nordic Seas continued from the GSA period into the early 1990s. Of the estimated 19,000 km³ of anomalous freshwater influx between 1965 and 1995, nearly 80% ended up in the Subpolar Basins, whose geographic area is slightly more than twice that of the Nordic Seas. Normalized for this difference, the subpolar storage anomaly amounted to an equivalent freshwater layer ~3.0 m thick spread evenly over its total area, compared to ~1.8 m for the Nordic Seas.

Although not statistically well quantified in our volumetric analysis (and thus not plotted in Fig. 2), warm, saline influences were clearly building in the eastern Subpolar Basins in our last time frame (1998 to 2002; fig. S3). There were also indications of higher salinities in the Atlantic inflow to the eastern Nordic Seas, but the most striking feature there is the accumulation of fresh water, since the 1980s, in the upper 1000 m (fig. S3, left and middle columns). In the 1990s, freshening spread ubiquitously in this layer across the Nordic Seas. By contrast, fresh water accumulated in the entire water column of the Subpolar Basins (fig. S3, right column), but most conspicuously in the intermediate layers—the depths reached by vertical wintertime mixing in the Labrador Basin.

About 6 Sv—or one-third of the Atlantic MOC—crosses the Greenland-Scotland Ridge, which separates the Nordic Seas from the North Atlantic (19). A pressure gradient between the waters north and south of the ridge causes dense waters from the Nordic Seas to flow southward across the ridge and spill downward into the depths of the Subpolar Basins. These southward-exporting waters, collectively called Nordic Seas Overflow Waters (NSOW), are replaced by warm, salty surface waters flowing northward via the Norwegian Atlantic Current. The rate of dense water export across the Greenland-Scotland Ridge is roughly proportional to the density contrast in the layers (200 to 900 m) that feed the overflows (20). This exchange has been monitored directly for more than a decade: Arrays of instruments have been maintained in key locations south of Denmark Strait (DS) since about 1986 and in the Faroe Bank Channel (FBC) since 1995. During this time, the flow has been measured to be ~3 Sv at each location, with little indication of sustained changes despite steadily declining salinities in the NSOW (11, 21). This reflects the fact that the amount of fresh water thus far accumulated has not had a substantial impact on the density contrast that drives the overflows.

Although immediately adjacent to one another, the Nordic Seas and Subpolar Basins exhibit distinctly independent salinity, temperature, and density trends. Salinity and density evolution are described by a time series of 5-year-average salinity and density values at DS sill depth (~550 m) both upstream and downstream (Fig. 3); a more complete view is obtained from vertical property sections running perpendicular to the sill (fig. S4). Downstream in the Irminger Basin, the upper waters are less dense and are alternately influenced by subtropical warm and saline waters (e.g.,

Fig. 1. Topographic map of Nordic Seas and Subpolar Basins with schematic circulation of surface currents (solid curves) and deep currents (dashed curves) that form a portion of the Atlantic MOC. Colors of curves indicate approximate temperatures. Map inset delineates the boundaries of the Nordic Seas and Subpolar Basins used in the volumetric analysis (dashed black lines).

Fig. 2. Time series of freshwater storage anomaly (symbols, scale on right axis) for Nordic Seas (cyan circles), Subpolar Basins down to 50°N (red squares), and both regions combined (purple squares). The net freshwater flux anomaly (difference in storage anomaly between successive 5-year time frames) is shown as bars with scale on left axis (blue, Nordic Seas component; white, total freshwater flux anomaly including Subpolar Basins component).

Fig. 3. Time series of 5-year-average density (solid lines, circles) and salinity (dashed lines, stars) at the sill depth of Denmark Strait (550 m). The upstream profiles are taken from the Iceland Sea at 68.5°N, 23.5°W; the downstream profiles are in the Irminger Basin at 64.5°N, 31.5°W.
Secondary Evolutionary Escalation Between Brachiopods and Enemies of Other Prey

Michał Kowalewski, Alan P. Hoffmeister, Tomasz K. Baumiller, Richard K. Bambach

The fossil record of predation indicates that attacks on Paleozoic brachiopods were very rare, especially compared to those on post-Paleozoic mollusks, yet stratigraphically and geographically widespread. Drilling frequencies were very low in the early Paleozoic (<1%) and went up slightly in the mid-to-late Paleozoic. Present-day brachiopods revealed frequencies only slightly higher. The persistent rarity of drilling suggests that brachiopods were the secondary casualties of mistaken or opportunistic attacks by the enemies of other taxa. Such sporadic attacks became more frequent as trophic systems escalated and predators diversified. Some evolutionarily persistent biotic interactions may be incidental rather than coevolutionary or escalatory in nature.

Our understanding of the long-term evolutionary dynamics of predator-prey interactions has advanced recently, primarily due to multiple synoptic studies of the post-Paleozoic marine mollusks (1–5). There is growing evidence that predatory (or parasitic) activities [in particular, those recorded by drill holes (6)] were widespread in the Paleozoic as well (7–17),