Effect of the East Asian Marginal Sea SST variability on the North Pacific atmospheric circulation – East / Japan Sea case study

Hyodae Seo
Woods Hole Oceanographic Institution
East Asian Marginal Seas in the Northwest Pacific

- Sites of strong heat and moisture flux and air-mass modification process.

- Proximate to the North Pacific storm track, the marginal seas may influence the downstream KOE process

→ A unique process not found in the North Atlantic.

- Focus on the EJS located just upstream of the NP storm track
EJS SST and regional weather variability

EJS SSTs important for regional weather and climate

Correlation
EJS SST and precipitation

Do EJS SSTs induce any remote atmospheric influence?

Winter SST climatology

EOF1 42%
area-mean +0.3°C

EOF2 18%
area-mean ~0°C
Hemispheric-scale WRF with two-way nested feedbacks to capture multi-scale-interaction

- Five sets of 6-month (Nov-Apr)
- 40 ensemble simulations
- Climatological SST outside the EJS
- ±SSTA to assess symmetricity

Response: EOF1P(N) minus CTL
Hemispheric-scale WRF with two-way nested feedbacks to capture multi-scale-interaction

- Five sets of 6-month (Nov-Apr)
- 40 ensemble simulations
- Climatological SST outside the EJS
- ±SSTA to assess symmetricity

Response: EOF1P(N) minus CTL
Atmospheric response to extra-tropical SSTA is projected onto dominant modes of model’s intrinsic variability.

- 1st mode: AO
- 2nd mode: AL

The simulated mean σ and storm track (2-8d SLP variance).

- Atmospheric response to extra-tropical SSTA is projected onto dominant modes of model’s intrinsic variability.
- 1st mode: AO
- 2nd mode: AL

Eady growth rate

$$\sigma = 0.31 f \left| \frac{\partial \vec{v}}{\partial z} \right| \frac{1}{N}$$

Dominant modes of internal variability in CTL

- The simulated mean σ and storm track (2-8d SLP variance).
Local atmospheric response is **linear**: Intra-basin SST pattern critical to local weather

Response in time-mean precipitation and wind

A symmetric response with respect to the sign of SSTA
Downstream and remote response is *NOT* linear!

Response in time-mean Z500

(a) EOF1P-CTL Z500

(b) EOF1N-CTL Z500

Anomalous ridge a common downstream response independent of SSTA.
Confirming that the downstream ridge is a nonlinear response

\[
\text{Symmetric} = \frac{1}{2} \times (EOF1P - EOF1N)
\]

\[
\text{Anti-symmetric} = \frac{1}{2} \times [(EOF1P-CTL) + (EOF1N-CTL)]
\]

Symmetric Z500

Anti-symmetric Z500

A downstream ridge response independent of sign of upstream SSTA

Dominant time-scale of 8-90 days with an equivalent barotropic vertical structure
The downstream blocking response is accompanied by the strengthened storm track variability in the upstream

Response of 2-8 day SLP variance

(a) EOF1P-CTL 2-8 day SLP Var
(b) EOF1N-CTL 2-8 day SLP Var

What is the connection between the upstream storm track response and the downstream blocking response?
Intensified storm track activity prior to the onset of GoA blocking

Composite evolution of synoptic & intraseasonal variability against the GoA blocking index

EOF1P-CTL

- Enhanced baroclinic wave activity preceding the blocking ridge.
- The onset of a block is sandwiched by amplified (suppressed) baroclinic wave activity in the north (south).

Nakamura and Wallace (1990)

• Enhanced synoptic SLP

intraseasonal Z500

Onset
Synoptic eddy vorticity flux reinforcing the blocking ridge response

\[\frac{\partial Z}{\partial t} = (f/g) \nabla^2 \left[-\nabla (v\bar{\zeta}') \right] \]

Column-integrated height tendency due to eddy vorticity flux convergence

EOF1P-CTL $\frac{\partial Z}{\partial t}$ and mean Z

EOF1N-CTL $\frac{\partial Z}{\partial t}$ and mean Z

shading: Z_t due to eddy flux contour: time-mean Z response

- Z_t spatially well corresponds to low-frequency blocking circulation.
Summary

Q: What is the characteristic atmospheric response pattern to a small extent/amplitude SSTA and the generating mechanism?

Local response: linear and symmetric wrt sign and pattern of SSTA.
A critical role of the intra-basin SSTA for the regional weather and climate

Anomalous transient eddy vorticity flux
a direct linear baroclinic response → an equivalent barotropic ridge anomaly

Remote response: highly nonlinear independent of SSTA.
East Asian Marginal Seas an important element for the North Pacific climate variability?
Thanks
hseo@whoi.edu

Equilibrium response with an equivalent barotropic structure

- Initial response: short-lived (~5 days) and baroclinic
- A rapid transition (1-2 weeks) to a positive correlation
- A quasi-equilibrium response with an equivalent barotropic structure
- Has a dominant time-scale of 8-90 days ~ blocking
Equilibrium response with an equivalent barotropic structure

Time-series of pattern correlation of Z200 and Z850

- Initial response: short-lived (~5 days) and baroclinic
- A rapid transition (1-2 weeks) to a positive correlation.

(b) Z200 EOF1P-CTL (c) Z500 EOF1P-CTL (d) Z850 EOF1P-CTL