## Dynamical response of the Arctic surface winds to sea ice variability

Hyodae Seo and Jiayan Yang Woods Hole Oceanographic Institution

Frontal Scale Air-Sea Interaction Workshop NCAR, August 5-7, 2013 Atmospheric boundary layer and the Arctic sea ice

- Sea ice variations modulate the structure of the Arctic ABL.
  - Diabatic heating anomalies by motions in sea ice, formation in leads, ponds, and polynyas, and across the ice margins.
  - Aircraft measurements by Overland (1985) showing a factor of 4 increase in wind stress during unstable condition
  - Yet another interesting region to study ABL-SST (ice) coupling!
- Sparse observations of surface wind and energy balance over the sea ice.
  - A source of uncertainties in ice-ocean modeling (Hunk and Holland, 2007).
  - Need accurate description of surface winds for a range of ice conditions.
- Sea ice concentration (SIC) from the passive microwave radiometers
  - The most extensively and continuously observed climate variable.
  - Boundary conditions for weather forecast models and ocean models.
  - Different retrieval algorithms lead to diversity in SIC estimates.

### Diversity in SIC estimates in autumn (September to November)



Three SIC datasets used in this study:

- I) NT: NASA-TEAM algorithm, 25km, Swift and Cavalieri (1985)
- 2) **BT**: NASA Bootstrap algorithm, 25 km, Comiso (1986)
- 3) EU: EUMET-SAT hybrid algorithm, 12.5 km, Tinboe et al. (2011)

# Goals of this study

- I. Assess impact of uncertainty in SIC estimates on the model's skill
- 2. Investigate thermodynamic effect of sea ice on the ABL.
- 3. Examine response in two surface winds (W10 and Wg)

### Polar WRF simulation

- Polar WRF: Hines and Bromwich (2008)
  - WRF optimized for the polar regions
  - Modified surface layer model for improved surface energy balance
- Experiments
  - Three one-year (Nov-Oct) runs
    - separated by II years
    - 1986-1987 : North Pole Station #28
    - 1997-1998 : SHEBA
    - 2008-2009 : R/V Mirai
  - Each period forced with NT, BT, EU



- ABL evolution over different SIC conditions
  - NP#28: Consolidated pack ice
  - SHEBA: Multi-year thick ice
  - MIRAI : Marginal ice zone

#### Polar WRF domain, in situ datasets overlaid with STD of SON SIC

### SHEBA Ice Station: Striking sensitivity of ABL over multi-year ice



- SIC: BT>EU>NT
- 20-40% difference

between NT and BT.



- T2, TSK-T2 reflect the SIC evolutions.
  - BT ABL is cold, stable and dry.
  - NT ABL is warm, unstable and humid.
  - EU ABL lies between NT and BT
- $\stackrel{\supseteq}{\underset{}}$  Spread in T2: ~5K.
  - Conflicting TSK-T2 with different SIC data
- $\Box$  Better T2/Q2 with NT, better TSK-T2 with BT.
- ABL thermodynamic fields show striking sensitivity (spread) to sea ice.
  - SLP and W10 sensitivity not as striking.



### Pan-Arctic response pattern

Focusing on NT - BT in September 2009

Large change in ABL compared to the mean values

| East Si | berian Sea | Mean                | Difference          |
|---------|------------|---------------------|---------------------|
|         | Т2         | -5 °C               | +5 °C               |
| · F     | PBLH       | 450 m               | 100 m               |
| Т       | CWP        | 60 gm <sup>-2</sup> | 10 gm <sup>-2</sup> |

SIC uncertainty is a decisive factor for hindcast skill!

• SIC difference and ABL sensitivity on the comparable basin-scales

Arctic-basin averaged vertical profiles difference (NT-BT)



Hashizume et al. (2002)

Contrasting responses in two near-surface winds: WI0 and Wg



10

5

WI0 NT Mean















- Stronger WI0 with reduced SIC
  - Most dramatic changes in the interior Arctic

•>10% change of the mean.

• Reduced Wg along the ice margins!

• Significant changes compared to the mean Wg

• No significant changes in the interior Arctic.

## Influence of SIC on WI0 and Wg

as measured from the coupling coefficient (as in Chelton et al. 2001)

#### Binned scatter plots of WI0 and Wg against the SIC difference (NT - BT)



• SIC-WI0:

(I) A Significant negative relationship

(2) A hint for increasing trend in WI0 response

### • SIC-Wg:

(I) No significantrelationship to SIC, eithera weak positive or nocorrelation.

(2) No obvious trend in relationship.

Increasing uncertainties in September SIC estimates!



## Wg response across the ice margins

• A simple marine boundary layer model of *Lindzen and Nigam (1987):* steady flow, no advection, linear friction,

$$\rho_o\left(\nabla \cdot \vec{u}\right) = -\left(\nabla^2 P\right) \varepsilon / \left(\varepsilon^2 + f^2\right)$$

• Div. /Conv. of surface wind is linearly proportional to SIC-induced Laplacian of SLP

$$w(z) = \frac{1}{\rho_o} (\frac{\varepsilon z}{\varepsilon^2 + f^2}) \nabla^2 P$$

• SIC-induced vertical velocity (w) is proportional to  $\nabla^2 P$ .

•  $\nabla^2$  would be effective in highlighting smallscale response,

e.g., along the sea ice margins.

# Conclusion (I)

- The satellite-based sea ice datasets feature enhanced uncertainties
  - both in the interior Arctic and the sea ice margins
  - during the onset of freezing (and the day-to-day variations near the ice margins)
  - A hint for increasing trend in SIC uncertainties in autumn.
  - These are the factors that lower the skill of Polar WRF.

# Conclusion (2)

- Two "familiar" SST-ABL mechanisms also hold for the Arctic with sea ice.
- Why not!
- Ice margins and melt ponds represent large spatial variations in TSK
  - A striking thermodynamic response in ABL on the Arctic basin
- Two ABL response mechanisms appears to act on different spatial scales:
- Effect #1:Vertical stability mechanism
  - Overland (1985), Wallace et al. (1989)
  - Pronounced on the broad area of the interior Arctic
  - Comparable basin scales in SIC difference and ABL response
- Effect #2: Pressure-gradient mechanism
  - Lindzen and Nigam (1985), Minobe et al. (2007)
  - Pronounced only across the ice margins.
  - The  $\nabla^2$  operator emphasizes the narrowness of the scale.

# Implications and future direction

- The ocean-ice modeling community often use the wind stress from
  (1) in situ SLP-based Wg:
  - underestimates the effect of large-scale SIC changes on wind (effect #1).
  - (2) coarse resolution atmospheric reanalyses:
    - underestimate the wind variations across the ice margins (effect #2)

Both effects should be taken into account for improved simulation of the ocean circulation and sea ice drift.

- The increasing strength of WI0-SIC coupling over time:
  - What is its role in the long-term Arctic climate?
- On going work
  - Long-term WRF simulations to diagnose effect/trend of ABL-SIC coupling
  - Implementing an interactive ice-ocean model to evaluate coupling effect

# Thanks!

Seo, H. and J. Yang, Dynamical response of the Arctic atmospheric boundary layer process to uncertainties in sea ice concentration. *JGR-Atmos.*, Revised.



We are grateful for the support from the WHOI Arctic Research Initiative.