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Abstract  50 

 51 

A two-layer Fofonoff model is used to model source-sink flow on the beta-plane as 52 

an idealized representation of deep abyssal flow generated by input from both northern 53 

and southern oceanic sources on the western boundary of the oceanic basin. The focus of 54 

the study is the manner in which boundary layer flow on the western boundary can be 55 

sustained in the absence of forced westward interior flow, a requirement of Greenspan’s 56 

theorem for largely inertial dynamics. 57 

Depending on the location of the source the circulation can generate the needed 58 

westward interior flow to support an inertial boundary current by either first penetrating 59 

into the interior before joining the boundary current, or it can generate a recirculation in 60 

the layer which has the required westward flow to support the boundary current. 61 

 62 

 63 

 64 

 65 

 66 

 67 

 68 

 69 
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 70 

 71 

 72 

 73 

 74 

1. Introduction 75 

The oceanic meridional overturning circulation is a key component of the Earth’s 76 

climate system and key dynamic elements of the circulation can be masked by graphical 77 

representations of the circulation as a simple overturning flow in latitude and depth 78 

ignoring the 3-dimensional nature of the flow. In particular, the western boundary current 79 

is often thought of as a passive pipe flow connecting sources in the polar regions with 80 

sinks either at the equator in the opposite hemisphere as in the classical model of Stommel 81 

and Aarons (1960). For dynamics that are not fundamentally viscous the existence of such 82 

western boundary currents requires a sustaining interior flow directed westward 83 

(Greenspan, 1962). That presents a problem when there is no external forcing, as in the 84 

thermocline level, wind forced circulation above the abyss.  Indeed, recent observations 85 

(Bower et. al.) suggest the flow does not proceed simply along the western boundary but 86 

intrudes into the interior before turning to feed the western boundary current on its journey 87 

southward. 88 

A simple model of that process has been suggested (Pedlosky, 2018 hitherto P18).  89 

That model uses the simple Fofonoff model Fofonoff (1954) which Bretherton and 90 

Haidvogel (1976) have suggested is the asymptotic dynamical equation for the fluid 91 

whose eddy field has minimized its enstrophy as a consequence of the 2-dimensional 92 
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cascade of enstrophy to small enough scales where dissipation will expunge it. Their 93 

suggestions; that the result of a strong eddy field on the circulation can be modeled by the 94 

Fofonoff model, although they show is not completely accurate, presents a temptingly 95 

simple tool to suggest the resulting mean circulation. In P18 that suggestion was exploited 96 

to demonstrate the excursion of source driven flows in a single layer model of the abyss. 97 

The flow from source on the northwest corner of the basin to sink at its southwest corner 98 

naturally intruded into the interior before turning westward and building the western 99 

boundary current connecting source to sink. 100 

One deficiency of the model in P18 is that it is limited to a single homogeneous layer 101 

of fluid. In order to include vertical variations at least a two-layer model would be 102 

required. In particular, we know that the overturning circulation is forced by sinking in the 103 

North Atlantic of North Atlantic Deep Water  (NADW) while at the same time Antarctic 104 

Bottom Water (AABW) flows northward and greater depths. In the following 105 

development in section 2, the equations for the two-layer Fofonoff model are presented 106 

and discussed while solutions are found in section 3 for sources and sinks at different 107 

levels issuing from the same location and solutions for sources in the north in one layer 108 

and a source in the south in the second layer. A quasi-geostrophic (qg) model is utilized 109 

(Pedlosky 1987). 110 

2. The model 111 

The basic presumption of the Fofonoff model is that solutions of the steady, 112 

frictionless quasi-geostrophic potential vorticity equation can be easily found if the 113 

potential vorticity is a linear function of the geostrophic streamfunction. If Qn  is the 114 

potential vorticity in the nth layer and  ψn  is the geostrophic stream function in that layer, 115 
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then the relation 116 

  Qn = an
2ψn ,       (2.1) 117 

automatically satisfies the quasi-geostrophic potential vorticity equation for steady, 118 

frictionless flow. The index n will refer to each of the two layers with n =1 referring to the 119 

upper layer and n =2 the lower layer. In the standard qg model this implies that 120 

 121 

   qn =∇2ψn + (−1)n Fn (ψ1−ψ2 )+βy= an
2ψn , n=1,2     (2.2) 122 

The first term on the after the first equality sign in (2.2) is the relative vorticity, 123 

represented by the  Laplacian of the streamfunction and involves second derivative in x 124 

and y. The coordinate x measures distance in the east-west direction while y measures 125 

distance to the north. The basin is rectangular with a north- south distance L and an east-126 

west length Lxe where xe is non dimensional. The term  βy  in (2.2) represents the 127 

meridionally variable part of the planetary vorticity. 128 

The parameters 
 
Fn =

fo
2

g 'Hn

, where fo  is the constant part of the planetary vorticity, 129 

g '  is the reduced gravity and Hn  is the constant mean thickness of the nth layer. The 130 

parameter an
2  is a positive but different constant for each layer. The positivity of those two 131 

constants ensures that the solutions found will be stable to finite amplitude perturbations 132 

(Arnol’d, 1965). Note that the an
2  while restricted to being positive, are otherwise 133 

arbitrary. In P18 these constants were related to the source strength and we will do 134 

something similar here. First, though, it will be useful to non-dimensionalize the equations. 135 

Using L to scale both x  and y, and So  to scale  the streamfunction in each layer, (2.2) 136 

becomes 137 
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  ∇
2ψn + (−1)n Fn (ψ1−ψ2 )+ (βL

3 / So )y= an
2ψn , n=1,2        (2.3 a,b) 138 

 139 

where now the constants  an
2 = a*n

2 L2  where the asterisk refers to the dimensional form of 140 

the variable. In (2.3 ) we expect the beta term to be important in the dynamics as evidenced 141 

in P18 and that the term on the right hand side specifying the dependence of the potential 142 

vorticity on the streamfunction to be similarly important. We therefor choose a balance the 143 

two terms in the upper layer such that, 144 

  So = βL3 / a1
2 = βL / a*1

2      (2.4) 145 

The parameters measuring the stratification, i.e. the ratio of the basin scale to the 146 

deformation radius are now non-dimensional ,  Fn = fo
2L2 / g 'Hn  , so that the final form of 147 

(2.3) becomes 148 

 

  

∇2ψ1 +F1(ψ1−ψ2 )+a1
2y= a1

2ψ1,

∇2ψ2 +F2 (ψ2−ψ1)+a1
2y= a1

2ψ2,
     (2.5 a,b) 149 

The boundary conditions for (2.5 a,b) will be the vanishing of the streamfunction on the 150 

northern, eastern and southern boundary. Sources of fluid emanating from the northwest 151 

and/or southwest corners of the basin are modeled by specifying constant, non zero values 152 

of   ψn =−Sn  on he western boundary at x = 0. If theSn  are positive they represent a source 153 

flowing southward from the northwest boundary. If a source is negative it models a source 154 

emanating from a southern corner flowing northward. 155 

For large values of the constants an
2  the solutions are of boundary layer type. It is first 156 

useful to determine what the interior solutions,  Ψn , of (2.5 ) are outside the boundary 157 

layers. To find those solutions we merely ignore the relative vorticity, i.e. the Laplacian 158 
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term. We easily obtain, 159 

 160 

                          

  

Ψ1 =
a1
2y a2

2 +F1 +F2⎡
⎣

⎤
⎦

a1
2a2

2 +a1
2F1 +a2

2F2⎡
⎣

⎤
⎦
,

Ψ2 =
a1
2y a1

2 +F1 +F2⎡
⎣

⎤
⎦

a1
2a2

2 +a1
2F1 +a2

2F2⎡
⎣

⎤
⎦
,

   (2.7 a,b) 161 

representing a zonal flow, independent of x and y  in each layer, moving  westward. 162 

The ratio of those velocities in the two layers is just a function of the an
2 and Fn . 163 

Typically, the smaller the ratio a1
2 / a2

2 , the larger the ratio of the interior flow in the 164 

upper layer is to the flow in the lower layer. In P18, in the large an
2  limit, the flow 165 

emerges from the sources in the basin corner and flows to the eastern boundary in the 166 

boundary layers and only then to the western boundary and so it was evident that the 167 

source strength, in that limit, should match the total westward transport in the interior. 168 

That allowed a simple relationship between the source strength and the Fofonoff constant. 169 

Similarly in this problem the non-dimensional transports in each layer should be related to 170 

the total westward transport in each layer and that nondimensional value would equal Sn  171 

yielding the equalities, 172 

 173 

S1=
a1
2 a2

2+F1+F2⎡
⎣

⎤
⎦

a1
2a2

2+a1
2F1+a2

2F2⎡
⎣

⎤
⎦
,

S2 =
a1
2 a1

2+F1+F2⎡
⎣

⎤
⎦

a1
2a2

2+a1
2F1+a2

2F2⎡
⎣

⎤
⎦
,

    (2.8 a,b) 174 

We can then, in principle, use (2.8 a, b) to solve for the an
2  in terms of the Sn . That is a 175 

difficult and messy task. Instead, I will take the inverse of that by specifying thean
2 (and 176 
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theFn ) which then directly yield the Sn .  177 

The solution to (2.5 a,b) subject to the boundary conditions that the streamfunction 178 

vanish on the northern, southern and eastern boundaries will be found in the form 179 

 180 

  
ψn = ψjn (x)sin jπy

j=1

N
∑  , n=1,2   (2.9) 181 

where N is chosen larger enough (typically N  =100). The problem for the  ψjn  becomes, 182 

 183 

                               

d 2ψ1 j
dx2
−K1 j

2ψ1 j =−F1ψ2 j +2a1
2 (−1) j / jπ,

d 2ψ2 j
dx2
−K2 j

2ψ2 j =−F2ψ1 j +2a1
2 (−1) j / jπ

 (2.10 a,b) 184 

 185 

 186 

where   K
2
jn = j2π2 +Fn +a2n . It is convenient to write the solution in terms of an x 187 

independent portion that balances the final term on the right hand side of (2.10 a,b) plus a 188 

homogeneous solution, viz., 189 
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ψj1 =−
2a1

2 (−1) j

jπ
K 2

2 j +F1
K 2

1 jK
2
2 j−F1F2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
+ Aj

sinhα j x
sinhα j xe

+ Bj

sinhα j x− xe[ ]
sinhα j xe

+Cj

sinhβ j x
sinhβ j xe

+Dj

sinhβ j x− xe[ ]
sinhβ j xe

,

ψj2 =−
2a1

2 (−1) j

jπ
K 2

1 j +F2
K 2

1 jK
2
2 j−F1F2

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
−Aj

(α j
2−K1 j

2 )
F1

sinhα j x
sinhα j xe

−Bj

(α j
2−K1 j

2 )
F1

sinhα j x− xe[ ]
sinhα j xe

−Cj

(β j
2−K1 j

2 )
F1

sinhβ j x
sinhβ j xe

−Dj

(β j
2−K1 j

2 )
F1

sinhβ j x− xe[ ]
sinhβ j xe

,

 (2.11 a,b) 190 

 191 

In the above equation  192 

  

α j
2 =

(K1 j
2 +K2 j

2 )
2

+
1
2
(K1 j

2−K2 j
2 )2 + 4F1F2⎡

⎣
⎤
⎦
1/2
,

β j
2 =

(K1 j
2 +K2 j

2 )
2

−
1
2
(K1 j

2−K2 j
2 )2 + 4F1F2⎡

⎣
⎤
⎦
1/2

                        (2.12 a,b) 193 

In all cases the constants α j
2   and  β j

2  are positive. Satisfying the homogeneous boundary 194 

conditions on the streamfunction in both layers on  x= xe  , and the condition that the 195 

streamfunction matches S1  and S2  on x =0 determines the constants Aj ,Bj ,Cj ,Dj   in 196 

(2.11)  a,b and those relations are given in Appendix A. 197 

To calculate the circulation pattern, a1
2  and a2

2  must be given from which the Source 198 

strengths are calculated using (2.8 a,b). The stratification parameters F1,F2  are also given. 199 

A range of values has been used and typical examples will be discussed in the next 200 

section. For positive values of the sources S1,S2  the flow emanates from the northwest 201 
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corner of the basin and exits through the southwest corner. We can also choose a source 202 

strength to be negative which implies that for that layer the source is at the southwest 203 

corner and the sink at the northwest corner. Recall that the scale for the source strength by 204 

which the nondimensional strengths S1  and S2  must be multiplied is  205 

S0 =
β*L

3

a1
2  . 206 

3. Results 207 

Figure 1 shows a typical case where the source in both layers is in the northwest 208 

corner with the absorbing sink in the southwest corner. The flow predicted by the theory is 209 

typical for such arrangements. Some of the streamfunction values are given to show the 210 

flow direction.  The flow in each layer shown in panels 1a and 1 b enters the basin in the 211 

northwest corner and rather than proceeding directly down the western boundary, flows 212 

into the interior of the basin and then sweeps clockwise to form a anti-cyclonic gyre that 213 

feeds a western boundary current as it then flows southward to the sink. The source-sink 214 

flow generates its own westward interior flow as in P18 to satisfy Greenspan’s theorem 215 

allowing a western boundary current south of the source that gradually increases in 216 

strength. The flow strength and direction differ somewhat from layer to layer and figure 1c 217 

shows the difference, ψ 2 −ψ 1  which is proportional to the deformation of the interface 218 

between the two layers. It is suggestively similar to the circulation observed by Bower et 219 

al.(2009)  insofar as the southward flow is not limited to the western boundary current. 220 

There is a weak western boundary current near the source that increases in strength with 221 

distance from the source southward. Mathematically this occurs because the interior 222 

streamfunction near y =1 is, by construction, close to matching the boundary condition on 223 

x = 0 in each layer leaving little discrepancy to be filled by the western boundary current 224 
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and this is true for both layers by construction.  225 

The situation becomes radically different if the boundary condition in the lower layer 226 

is altered. If the source in the lower layer is in the southwest corner and the boundary 227 

current flows northward then  228 

 229 

 

S1 =
a1
2 a2

2 +F1 +F2⎡
⎣

⎤
⎦

a1
2a2

2 +a1
2F1 +a2

2F2⎡
⎣

⎤
⎦
,

S2 =−
a1
2 a1

2 +F1 +F2⎡
⎣

⎤
⎦

a1
2a2

2 +a1
2F1 +a2

2F2⎡
⎣

⎤
⎦
,
     (3.1a,b) 

230 

 231 

So that the value of the streamfunction on the boundary in lower layer is negative to 232 

indicate flow entering the lower layer in the southwest corner to flow northward. The 233 

solution in this case is shown in Figure 2.The flow in the lower layer is entirely different 234 

in structure. The mass flux in the source now flows northward entirely in the western 235 

boundary current with no excursion for the boundary layer flow into the interior. This is 236 

typical for all parameter values examined. To satisfy Greenspan’s theorem an interior 237 

recirculation in the lower layer has been produced that at all latitudes has, near the 238 

western boundary, a westward component as required. Recall that the governing equations 239 

we are employing are the result of an enstrophy cascade by eddies and it is natural to 240 

consider the recirculation as the physical consequence of the associated eddy field. 241 

Mathematically, our model has produced this difference due to the mismatch between the 242 

interior flow solution (2.7b) and the boundary value (3.1a,b) of the streamfunction.  243 

 244 

3. Discussion 245 
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  The Fofonoff model, as shown by Bretherton and Haidvogel (1976), is suggested as 246 

the governing equations for the mean flow of a turbulent fluid on the beta plane whose 247 

enstrophy has been minimized by the turbulent cascade of entropy to high wave numbers 248 

where it is dissipated. The simplicity of the model allows analytical solutions of complex 249 

flows that would otherwise require complex numerical calculations. In the case we have 250 

examined the equations have been used to model source sink flow on the beta plane as a 251 

simple representation of the deep flow in an eddy rich ocean for parameter values for 252 

which the dynamics of the western boundary current is largely inertial rather than viscous. 253 

The constraint of Greenspan’s theorem manifests itself in a twofold fashion. In one case, 254 

as when both layers have sources in the northwest region of the deep basin, the resulting 255 

flow intrudes into the interior of the basin rather than flowing directly from those sources 256 

to their sinks in the southwest corner of the basin. This is reminiscent of the observations 257 

of floats placed in the North Atlantic Deep Water entering the Grand Banks region that 258 

shows an analogous behavior. When, instead, the lower layer had its source in the 259 

southwest corner and flows northward, the boundary current remains attached to the 260 

western boundary but the model does so by producing a basin-wide clockwise 261 

recirculation that provides the required interior westward flow near the western boundary. 262 

The sources have been placed in all cases on the western boundary to emphasize the 263 

fact that the inertial western boundary current, must for fundamental dynamical reason, be 264 

more than a passive north-south pipe flow. Either the boundary current itself must flow 265 

into the interior to provide the sustaining interior westward flow or, as in the case of the 266 

southern source, a interior recirculation must provide that requirement. Consistent with the 267 

interpretation of the Fofonoff model as the end state of an eddy driven flow we identify 268 
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the recirculation in Figure 2 as eddy driven. 269 

There is an element of arbitrariness in model that is a weakness. In principle, the beta 270 

term in (2.5 a,b) is determined up to constant that βy  could be replaced by β(y −1)   in 271 

which case the roles of the sources in the north and south could be switched and the 272 

resulting behavior altered so that it is the southern source that leads in interior intrusions 273 

and the northern source in the lower layer that requires the recirculation. Indeed, the beta 274 

term could be replaced by any term of the form β(y − yr )  generating a family of solutions.275 

  I have chosen the current arrangement as being the more suggestively realistic one. In 276 

particular, it has the virtue of emphasizing that the abyssal circulation, i.e. the lower 277 

branch of the overturning circulation is a 3-dimensional flow with all the richness 278 

normally to be expected. When the source in the lower layer is from the south it is 279 

obviously not a model of flow entering the basin from the southern hemisphere since the 280 

qg model does not include cross equatorial dynamics. It is instead an illustration of an 281 

alternative western boundary current driven by a source that does not penetrate into the 282 

interior but is instead sustained by a interior eddy recirculation that provides the needed 283 

western flow in the interior at the western boundary. 284 

 285 

 286 

 287 

 288 

 289 

 290 

 291 
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                                           Appendix A 292 

Coefficients in solution (2.11 a,b) 293 

 294 

  

Dj =
2a1

2 (−1) j

jπ
K1 j

2 +F2
K1 j

2K2 j
2−F1F2

F1 +
(α j

2−K1 j
2 )(K2 j

2 +F1)
K1 j

2K2 j
2−F1F2

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

1
β j

2−α j
2( )

+

+ (−1) j F1S2
(1−(−1) j )
jπ β j

2−α j
2( )

+S1
(α j

2−K1 j
2 ) (1−(−1) j )
jπ β j

2−α j
2( )

 (A.1) 295 

 296 

  
Bj =

−2a1
2 (−1) j

jπ
K2 j

2 +F1
K1 j

2K2 j
2−F1F2

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥
−2S1

(1−(−1) j )
jπ

−Dj ,     (A.2) 297 

  
Aj =

(β j
2−K1 j

2 )
F1

(K2 j
2 +F2 )

K1 j
2K2 j

2−F1F2
+

(K1 j
2 +F2 )

K1 j
2K2 j

2−F1F2

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

1
(β j

2−α j
2 )

             (A.3) 298 

 299 

  
Cj =−Aj +

2a1
2 (−1) j

jπ
K2 j

2 +F1⎡
⎣

⎤
⎦

(K1 j
2K2 j

2−F1F2 )
      (A.4) 300 

 301 

 302 

 303 

 304 
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 333 

 334 

 335 

 336 

Figure Captions 337 

 338 

Figure 1. The circulation with a source in the northwest corner and a sink in  339 

the southwest corner, a1
2 =10π 2,a2

2 = 50π 2,S1 = 0.92773,S2 = 0.21445          340 

F1 =10,F2 =10 .  341 

a)ψ 1  b) ψ 2  and c) ψ 2 −ψ 1  . 342 

 343 

Figure 2.  For the same parameter values as in Figure 1 except that S2  is negative 344 

indicating northward flow of the source on the western boundary. Note that now 345 

the boundary current flows at full strength from the southern source to the north 346 

and is supported at each latitude by an interior flow that is a pure recirculation. 347 

  348 



 18 

Figures 349 

a) 350 
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b) 361 
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c) 368 
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 371 

 Figure 1. The circulation with a source in the northwest corner and a sink in  372 

the southwest corner, a1
2 =10π 2,a2

2 = 50π 2,S1 = 0.92773,S2 = 0.21445  F1 =10,F2 =10 .  373 

a)ψ 1  b) ψ 2  and c) ψ 2 −ψ 1  . 374 
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b) 393 
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c) 404 

 405 

 406 

 407 

 408 

 409 

 410 

 411 

 412 

Figure 2 For the same parameter values as in Figure 1 except that  S2  is negative indicating  413 

northward flow of the source on the western boundary. Note that now the boundary current flows at full 414 

strength from the southern source to the north and is supported at each latitude by an interior flow that is a 415 

pure recirculation. 416 
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