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Abstract 26 

The weakly unstable, two layer model of baroclinic instability is studied in a configuration 27 

in which the flow is perturbed at the inflow section of a channel by a slow and periodic 28 

perturbation. In a parameter regime where the governing equation would be the Lorenz equations 29 

for chaos if the development occurs only in time, the solution behavior becomes considerably 30 

more complex as a function time and downstream coordinate. In the absence of the beta effect it 31 

has earlier been shown that the chaotic behavior along characteristics renders the solution nearly 32 

discontinuous in the slow downstream coordinate of the asymptotic model. The additional 33 

presence of the beta effect, although expunging the chaos for large enough values of the beta 34 

parameter, also provides an additional mechanism for abrupt spatial change.  35 

 36 
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1. Introduction 46 

Starting with the work of Lorenz (1963) the manifestation of chaotic behavior in 47 

unstable baroclinic systems has usually been examined in the context of the development 48 

of the instability in time. Although the Lorenz equations were introduced as a truncated 49 

model of thermal convection they can be derived in a straightforward way in weakly 50 

nonlinear baroclinic flows without arbitrary truncation of a Fourier representation of the 51 

complete solution thus allowing more confident use in similar problems (Pedlosky and 52 

Frenzen, 1981). More recently Pedlosky, 2011, (hereafter P11) examined the 53 

development of baroclinic unstable waves in space and time, as the disturbance moves 54 

downstream from an upstream source of perturbation energy and showed how the Lorenz 55 

dynamics along characteristics could lead to abrupt spatial change in the amplitude of the 56 

developing disturbance. In the parameter regime that would be chaotic, if examined in the 57 

time domain alone, chaotic development along neighboring characteristics of the 58 

dynamics developing in time and downstream coordinate introduces this new and 59 

important feature to the dynamics. Neighboring characteristics with only slightly different 60 

initial data evolving according to the Lorenz model on each characteristic will eventually 61 

have solutions that diverge by order one because of the exquisite sensitivity to initial 62 

conditions that is the nature of chaos. Solutions that diverge by order one on closely 63 

neighboring characteristics imply rapid change of amplitude in the downstream 64 

coordinate. This rapid change in behavior in the downstream coordinate has been called 65 

chaotic shocks (P11) and it is distinguishable from the more common shocks in fluid 66 
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dynamics because the rapid change is not due to intersection of the systems characteristics 67 

but rather due to the chaotic development along parallel characteristics. 68 

One of the simplifications in the analysis in P11 was the neglect of the beta effect. 69 

For narrow currents with large vertical shear the non dimensional parameter measuring 70 

the importance of beta in the quasi-geostrophic potential vorticity equation is  71 

where L is the width of the current, Us
 is the characteristic velocity of the vertical shear 72 

and  is the planetary vorticity gradient. For widths of the order of 100 km and velocities 73 

of the order of a meter/sec this parameter is of the order of 10
-2

. Although small, the 74 

nonlinear dynamics of the unstable wave is very sensitive to the beta effect as has been 75 

shown in an earlier work (Pedlosky, 1981 hereafter P81). The beta effect introduces a 76 

term in the amplitude equations that tends to shield the unstable point at the origin of the 77 

solution phase plane from the solution trajectories and, as a consequence, for even small 78 

values of beta the solution asymptotes to a periodic solution whose amplitude it 79 

determined by one of the two points in the phase plane representing fixed amplitude 80 

solutions (aside from a linear frequency depending on beta). The phase of the oscillation 81 

amplitude is not determined by this quasi-steady solution. This implies that the possibility 82 

exists for the solution developing in space and time that neighboring characteristics carry 83 

amplitudes differing in sign so that rapid variations in the solution amplitude occur. That 84 

is, the possibility that neighboring characteristic solutions may differ in sign even when 85 

the solution is no longer behaving chaotically can introduce rapid, shock-like behavior in 86 

the downstream coordinate. The purpose of this paper is to investigate this possibility 87 

and, in fact, demonstrate the existence of such solutions so that “chaotic shocks” can 88 

occur even when the solution along characteristics is only briefly chaotic. 89 
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Section 2 of the paper derives the governing equations. Section 3 presents 90 

numerical examples of the hypothesized behavior and in the concluding section, section 91 

4, the implication of the results is discussed. 92 

2. Formulation 93 

We start with the two-layer model in a channel of width L governed by the quasi-94 

geostrophic potential vorticity equations, viz: for n =1,2 95 

, (2.1 a ,b) 96 

The equations are non dimensional. Lengths have been scaled by L, velocities by a 97 

characteristic velocity, U, of the initial basic flow and time by L/U. The layers are of 98 

equal depth D so the rotational Froude number  where g’ is the reduced 99 

gravity. The nondimensional parameter  while the dissipation parameter r 100 

=  where f  is the Coriolis parameter and  is the kinematic viscosity. 101 

The symbol J(a,b)  is defined as  where subscripts denote differentiation. The 102 

coordinate x is in the downstream direction while y measures distance across the stream. 103 

It is convenient to write the equations in terms of the barotropic and baroclinic 104 

stream functions, , respectively. In the problem to be 105 

considered, the basic state consists of a uniform flow in each layer with a barotropic and 106 

baroclinic component so that the associated stream functions are 107 

       (2.2 a,b) 108 
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where the functions are the barotropic and baroclinic perturbation streamfunctions. 109 

They satisfy the nonlinear equations, 110 

     111 

  112 

  (2.3a) 113 

     114 

  (2.3b) 115 

The beta parameter will be considered a small (but important) perturbation to the 116 

dynamics. The critical curve for instability is therefor given at lowest order as a relation 117 

between Fc , the critical value of F, and the wavenumber with components k and l in the x 118 

and y directions, (  ),  and is independent of  i.e. 119 

    (2.4) 120 

For small values of r the minimum occurs at very long wavelengths and this 121 

informs our choice of scaling for the problem’s variables. We make the following 122 

assumptions: 123 

i) The basic flow is only slightly supercritical with respect to F so that 124 

  , 125 

ii) The beta parameter and dissipation are also small,  , 126 
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iii) The solution will be a function of “fast” and “slow” space and time variables. 127 

The fast variables correspond to the advection of the marginally stable wave by the 128 

barotropic mean flow as suggested by the linear problem. The slow variables describe the 129 

slow evolution of the slightly unstable wave. With these presumptions in mind we 130 

introduce a new fast space coordinate, , a new slow space coordinate, X, a new fast time 131 

coordinate , and a slow time coordinate T, each defined by, 132 

    (2.5 a,b) 133 

and we will consider the perturbation stream function to be functions of  and T 134 

such that, for example, 135 

  136 

for     (2.6 a.b) 137 

So, for example. the baroclinic perturbation potential vorticity becomes, 138 

                      (2.7) 139 

with similar representations throughout (2.3 a,b) 140 

 141 

The perturbations streamfunctions will be expanded in an asymptotic series in the small 142 

amplitude, , of the perturbation,  143 
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     (2.8a,b) 144 

 145 

Inserting these transformations into (2.3a,b) leads in a straight-forward way to a set of 146 

lengthy equations and only the pertinent results, easily checked, will be presented in this 147 

paper. 148 

At the lowest order in  we obtain the results consistent with linear theory, 149 

 150 

    (2.9 a,b,c,d) 151 

where * denotes the complex conjugate of the preceding expression. 152 

At the next order in  we obtain an expression for the baroclinic perturbation, 153 

 154 

   (2.10) 155 

where the final term in (2.10) is the baroclinic correction to the mean flow and is a 156 

function of only the slow x and slow time variables as well as y. Note that the beta term 157 

enters as a term proportional to the frequency of the long Rossby wave. 158 

With the above expressions it is now possible to calculate the nonlinear interaction 159 

terms, i.e. the Jacobians at next order and obtain as the governing equation for   160 

 161 

 162 
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  (2.11) 163 

 164 

As long as , which is a basic presumption since the dynamics is quasi-165 

geostrophic, the geostrophic velocity in the y direction produced by the mean flow 166 

correction must vanish at y = 0,1 which in turn implies that a solution to (2.11) 167 

proportional to , is appropriate. Hence a solution of the 168 

form  leads to the governing equation for P, 169 

  (2.13)  170 

 171 

Now that the equation for the baroclinic mean flow correction is determined the 172 

governing equation for the evolution of the wave amplitude, A, is determined as a 173 

solvability condition at . After considerable but straightforward algebra we 174 

obtain, 175 

 176 

  (2.14 a,b) 177 

 178 
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A rescaling of the variables, 179 

 (2.15 ) 180 

 181 

 182 

allows the governing equations to be rewritten (after dropping primes from the new 183 

dependent variables) as, 184 

 185 

  (2.16 a,b) 186 

 187 

As a final change of variables we let , yielding, 188 

(2.17 a,b) 189 

 190 
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as our final evolution equations. The amplitude A is complex with real and imaginary 191 

parts so the system of first order pde’s given by (2.17) is fifth order. The characteristics of 192 

each of the 5 equations are the straight lines in the X, T plane  193 

 194 

     (2.18) 195 

where To  is the intersection of the characteristic with the T axis at X = 0. The variable s, 196 

representing distance in X, T space along the characteristics renders (2.17 a,b) as a set of 197 

ordinary differential equations along the characteristics with the operator 198 

.  199 

 200 

In the absence of the beta term, i.e. for b = 0, the resulting 3
rd

 order system is 201 

equivalent to the Lorenz equations as shown in P81 and has chaotic solutions in s for a 202 

certain range of .  203 

3.  Results 204 

The system (2.17) is forced by the boundary condition at X =0 which we choose as, 205 

     (2.19) 206 

where both Tperiod   and a are given along with the parameters . 207 

When b = 0 we recover the results of P11, that is for sufficiently small  the 208 

Lorenz dynamics along the characteristics of the partial differential equations of (2.17) 209 

yield chaotic solutions that diverge from slightly different initial conditions. For the 210 

problem of development in space and time this implies that neighboring characteristics 211 

with slightly different initial conditions from (2.19) will eventually diverge by O(1) 212 
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yielding values of A on at a given time that abruptly change with X. An example is shown 213 

in Figure 1. In panel b of figure 1 the evolution along the characteristic curves is shown 214 

for slightly different initial data corresponding to two closely spaced characteristics. The 215 

divergence of the solutions, a standard feature of the Lorenz model implies extremely 216 

rapid change in X for fixed T. 217 

Figure 2 shows a similar behavior when b is small (0.1) but non-zero. There is still 218 

sufficient divergence of the solutions along neighboring characteristics to lead to rapid 219 

change in X. 220 

When b is increased further (figure 3) to b = 0.5, perhaps the most interesting 221 

behavior takes place. Panel a shows the evolution along two closely spaced 222 

characteristics. After a relatively brief period of chaotic behavior along the 223 

characteristics, the solution along each is captured by one of the two fixed points of the 224 

solution space. The fixed points both have the same value of A
2
 but differ in phase, i.e. 225 

A differs by a sign, that is, A is positive on one characteristic and negative on the other. 226 

This implies that the amplitude itself will abruptly change in value in X. That wild 227 

behavior is exhibited in panel b of the figure. It means that even a brief period of chaotic 228 

behavior that puts the solution on a trajectory to be captured by a different fixed point has 229 

a violent manifestation in space that is rather unexpected. 230 

Further increase in b quenches the chaotic behavior completely as shown in figure 231 

4. For b = 4, the solution is smooth in X. 232 

4. Discussion 233 

The presence of the planetary beta effect has been earlier shown  (P81) to have a 234 

strong effect on the chaotic behavior of weakly nonlinear, slightly unstable baroclinic 235 
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instability. From a mathematical point of view the beta effect acts in the governing 236 

differential equations as a repulsive mechanism that keeps the solution trajectory from 237 

closely approaching the unstable point at the origin of the solution space that is the 238 

generator of the chaos. This has importance consequences for the model of the 239 

development of the instability as it grows and propagates in the downstream direction. 240 

With the presence of chaotic behavior along characteristics in the downstream and time 241 

slow coordinates, neighboring characteristics have solutions that diverge by order one in 242 

spite of their closeness and this leads to abrupt changes in the space variable of the 243 

system of equations. The introduction of a value of beta large enough expunges the chaos 244 

and smooths the solution in space. However, the presence of beta also can yield abrupt 245 

changes in the solutions dependence on space even when the solutions along the 246 

characteristics are chaotic for only a brief period of time and subsequently captured by 247 

one of the two fixed points differing only by a sign as shown in figure 3. 248 

Of course the abruptness of the solution behavior in space for the solutions of 249 

(2.17 a,b), while of interest for all systems governed by the Lorenz system of equations, 250 

really implies for the weakly nonlinear system in our problem the collapse of the 251 

separation between the slow behavior in time and the expected slow behavior in space. It 252 

is important to remember that for the parameters chosen the evolution in time is still slow 253 

and weak. The implication that the accompanying behavior in space may be qualitatively 254 

different requires further study of the original system without the asymptotic assumptions 255 

which are normally made, and usually so illuminating, but must be extended in future 256 

work.  257 

258 
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Figure Captions 272 

Figure 1 a) The solution as a function of X for A at T = 20,  = 0.5 and b = 0. With real 273 

boundary conditions at X =0  the imaginary part of A remains zero. b) The solution 274 

along two closely spaced characteristics. The chaotic nature of the solution leads to 275 

diverging values of A rendering the solution rapidly varying in X. 276 

 277 

Figure 2 As in figure 1 except that now b is 0.1 and sufficiently small so that the chaotic 278 

behavior is not suppressed along characteristics. Panel a shows the real and 279 

imaginary parts of A which both suffer rapid change in the slow variable X. Panel b 280 

shows again the divergence of solutions on neighboring characteristics. 281 

 282 

Figure 3 Panel a shows the solution along two closely spaced characteristics for b =0.5 for 283 

the same value of  as figure 1. Panel b shows the a sequence of shock-like 284 

changes in X even though the chaos on characteristics is largely quenched 285 

Figure 4 For b = 4, the chaotic behavior is absent and the solution in X is smooth. 286 

 287 

 288 

   289 
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 292 

 293 
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a)294 

 295 

b) 296 

 297 

Figure 1 a) The solution as a function of X for A at T = 20 and b =0. With real boundary conditions at X =0  298 

the imaginary part of A remains zero. b) The solution along two closely spaced characteristics. The chaotic 299 

nature of the solution leads to diverging values of A  rendering the solution rapidly varying in X. 300 
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a) 301 

 302 

b) 303 

 304 

Figure 2 As in figure 1 except that now b is 0.1 and sufficiently small so that the chaotic behavior is not 305 

suppressed along characteristics. Panel a shows the real and imaginary parts of A which both suffer rapid 306 

change in the slow variable X. Panel b shows again the divergence of solutions on neighboring 307 

characteristics 308 
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a) 309 

 310 

 311 

b) 312 

 313 

Figure 3 Panel a shows the solution along two closely spaced characteristics for b =0.5 for the same value 314 

of  as figure 1. Panel b shows the sequence of shock-like changes in X even though the chaos on 315 

characteristics is largely quenched. 316 

 317 
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 326 

Figure 4 For b = 4, the chaotic behavior is absent and the solution in X is smooth. 327 
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