
 1 

A Three-Dimensional Inertial Model for Coastal Upwelling 1 

 2 

Haihong Guo*1,2,3, Michael A. Spall3, Joseph Pedlosky3, Zhaohui Chen1,2 3 

 4 

1Key Laboratory of Physical Oceanography/Institute for Advanced Ocean Science/Frontiers 5 

Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 6 

Qingdao, China 7 

2Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China  8 

3Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, 9 

MA, USA 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

* Corresponding author: Haihong Guo guohaihong@stu.ouc.edu.cn 18 

Physical Oceanography Laboratory, Ocean University of China, 238 Songling Road, Qingdao 19 

266100, China. 20 

  21 



 2 

Abstract 22 

A three-dimensional inertial model that conserves quasigeostrophic potential vorticity is 23 

proposed for wind-driven coastal upwelling. The dominant response to upwelling favorable 24 

winds is a surface intensified baroclinic meridional boundary current with a subsurface 25 

countercurrent. The width of the current scales with the inertial boundary layer thickness and the 26 

depth scales as the ratio of the inertial boundary layer thickness to the baroclinic deformation 27 

radius and thus depends on the stratification, wind stress, Coriolis parameter, and its meridional 28 

variation. In contrast to two-dimensional wind-driven coastal upwelling, the source waters that 29 

feed the Ekman upwelling are provided over the depth scale of this baroclinic current through a 30 

combination of onshore barotropic flow and from alongshore in the narrow boundary current. 31 

Topography forces an additional current whose characteristics depend on the topographic slope 32 

and width. For topography wider than the inertial boundary layer thickness the current is bottom 33 

intensified while for narrow topography the current is wave-like in the vertical and trapped over 34 

the topography within the inertial boundary layer. An idealized primitive equation numerical 35 

model produces a similar baroclinic boundary current whose vertical length scale agrees with the 36 

theoretical scaling for both upwelling and downwelling favorable winds. 37 

  38 
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1 Introduction 39 

Wind-driven upwelling and downwelling are key processes in the coastal ocean circulation 40 

that connect the surface and interior ocean. The onshore/offshore Ekman transport in the surface 41 

layer provides downwelling/upwelling, which is supplied by a combination of offshore/onshore 42 

return flow below the Ekman layer and flow along the boundary. These processes play important 43 

roles not only in the water exchange between the surface Ekman layer and interior but also in the 44 

primary production and chlorophyll redistribution (Hickey, 1998).  45 

The wind-driven coastal upwelling theory has been studied in many works. The upwelling 46 

can bring deep isopycnals to the upper layer, resulting in sloping isopycnals over a horizontal 47 

scale of the baroclinic deformations radius (Charney 1955), which builds an alongshore, 48 

geostrophic flow. Using a two-dimensional, non-dissipative, nonlinear model, Pedlosky (1978) 49 

showed a sharp gradient on scales much less than the Rossby deformation radius was forced by 50 

coastal upwelling, which can be observed to form during the initiation of upwelling (Halpern, 51 

1974). In the time-dependent, two-dimensional model of Choboter et al. (2005), an equatorward 52 

boundary current develops more rapidly in the upper ocean followed by a deeper poleward 53 

undercurrent. There is a near-surface offshore flux of faster alongshore flow and an onshore flux 54 

of slower alongshore flow throughout the interior. Compared to the flat bottom ocean, the cross-55 

shore topography plays an important role in the cross-slope flow and the along-slope baroclinic 56 

flow. The cross-slope flow is slow and surface intensified over steep slopes, while the along-57 

slope velocity has a strong vertical dependence and develops an undercurrent (Choboter et al. 58 

2011), and vice versa for shallow slopes. The partition between onshore flow in a bottom Ekman 59 

layer and onshore flow in the interior depends on the slope Burger number (Lentz and Chapman, 60 

2004). When the Burger number is small (weak stratification) the onshore flow is carried in a 61 



 4 

bottom Ekman layer and the wind stress is balanced by bottom stress. However, when the Burger 62 

number is large (strong stratification or steep slope) the onshore flow is carried in the interior and 63 

the cross-shelf momentum flux divergence balances the wind stress. 64 

However, these studies are two-dimensional in the depth-offshore plane and thus require 65 

that the offshore Ekman transport be balanced by onshore flow below the Ekman layer, either in 66 

the interior or in a viscous bottom boundary layer. However, if the wind-forcing is spatially 67 

variable in the along-coast direction the flow will be three dimensional. This introduces a 68 

potential source to balance the offshore Ekman transport from along the boundary. Using A two-69 

layer model with an idealized continental shelf and slope bottom topography, Allen (1976) 70 

showed that the alongshore and time-dependent behavior the baroclinic and barotropic 71 

components are governed by forced continental Kelvin waves. Therefore, the region of forced 72 

upward motion of density surfaces may propagate alongshore to locations distant from that of the 73 

wind stress, which results in the set-up of alongshore barotropic currents at locations in the 74 

down-wave direction of the wind stress that forces them. Yoon and Philander (1982) 75 

demonstrated that baroclinic Kelvin waves excited by the onset of winds that adjust the pressure 76 

field arrest the acceleration of the coastal jet and the upwelling. Meanwhile, a coastal 77 

undercurrent is established by the difference between the vertical structure of the waves and the 78 

coastal jet. 79 

We are interested in the magnitude and three-dimensional structure of currents forced by 80 

coastal upwelling and downwelling. In particular, we are interested in what controls the depth 81 

from which the offshore Ekman transport draws fluid from the interior and in the partition 82 

between interior and boundary sources. Motivated by a recent work about the interaction of the 83 

Ekman layer and island boundary (Pedlosky, 2013), the theory is developed for steady, adiabatic, 84 
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inviscid quasigeostrophic fluid over a sloping bottom. Comparisons with an idealized primitive 85 

equation model support the basic conclusions drawn from the steady quasigeostrophic theory. 86 

2 Theory 87 

a. Equations 88 

We consider a non-linear model for the steady-state circulation in a uniformly stratified 89 

ocean, with bottom topography declining in the cross-shore direction from an elevation h* at the 90 

western boundary. The model is adiabatic and inviscid and conserves quasigeostrophic potential 91 

vorticity. In order to most clearly expose the parameter sensitivity and the structure of the 92 

circulation forced by the interaction of the Ekman transport with a boundary, we consider the 93 

nondimensional form of the equations. The vertical coordinate is scaled by the ocean depth far 94 

from the western boundary, H*, and the horizontal length is scaled by L*, which could be chosen 95 

to be the deformation radius. All variables with an asterisk are dimensional, and henceforth those 96 

lacking an asterisk are nondimensional. 97 

The flow is driven by a uniform northward wind stress on a beta-plane, therefore, a nearly 98 

meridionally uniform zonal transport within the Ekman layer is drawn away from the western 99 

boundary. The wind stress is uniform and has no curl so that there is no Ekman pumping in the 100 

interior, allowing us to focus on the interaction between the Ekman layer and western boundary. 101 

It is suggested that the offshore Ekman flux is balanced by the interior geostrophic flow. 102 

Therefore, we set the eastern boundary condition below the Ekman layer as a uniform, barotropic, 103 

geostrophic zonal westward flow far from the western boundary with magnitude104 

* * *
0 0/U f Hτ ρ= , where f0 is the dimensional Coriolis parameter at the meridional center of the 105 

model domain, and 0ρ  is the mean density in the Boussinesq approximation. Although the 106 
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discussion is framed for a western boundary with coastal upwelling, the same approach could be 107 

applied to an eastern boundary with coastal downwelling. 108 

Following Pedlosky (2013), the nondimensional quasigeostrophic potential vorticity is 109 

defined as 110 

2
2

2

1q by
S z

ψψ ∂=∇ + +
∂

 (1) 111 

where *2 */b L Uβ=  and 2 *2 2 *2
0/S N H f L= , β  is the dimensional planetary vorticity gradient 112 

and N is the uniform buoyancy frequency. 113 

The potential vorticity is a constant along streamlines for steady adiabatic, frictionless flow. 114 

Far from the western boundary, the potential vorticity is simply specified by the latitude at which 115 

the flow enters the domain 116 

( )bq by Q
U
ψ ψ= = =  (2) 117 

Since q is conserved following the flow, the potential vorticity is a function of the streamfunction. 118 

This relationship will continue to hold on all streamlines as they approach the western boundary.  119 

The vertical boundary conditions require that the normal component of the velocity at the 120 

surface and the bottom be zero. Following Pedlosky (2013), the vertical velocity required at the 121 

bottom is given by  122 

1( , ) , , 0w h J h J z
S z

ψψ ψ ∂⎛ ⎞= ⋅∇ = = − =⎜ ⎟∂⎝ ⎠
u  (3) 123 

where ( )* * * *
0 /h f h H U L=  is the nondimensional topographic height. Because the flow is 124 

adiabatic, the vertical velocity can also be related to the horizontal advection of the perturbation 125 

density and the stratification, which gives rise to the equality on the right hand side. Consistent 126 

with the quasigeostrophic approximation, this boundary condition is applied at z = 0. Since both 127 
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/ zψ∂ ∂  and h are zero far from the western boundary, if we integrate (3) far from the boundary 128 

to an arbitrary position over the topography, 
1 /h z
s

ψ+ ∂ ∂  must vanish. Therefore, the bottom 129 

boundary condition becomes 130 

, 0Sh z
z
ψ∂ = − =
∂

 (4) 131 

On the upper boundary, 132 

0, 1z
z
ψ∂ = =
∂

 (5) 133 

The topography decays in the zonal direction from 0h  at the western boundary to zero over 134 

a horizontal e-folding length scale λ , 135 

0
xh h e λ−=  (6) 136 

The lateral boundary condition at the western boundary is related to the Ekman flux. The 137 

Ekman layer is extremely thin compare to the total depth and is non-divergent except at the 138 

western boundary. We assume that the Ekman layer lies outside our model domain and acts as a 139 

boundary condition at 0,  1x z= = . Therefore, we use a Dirac function to represent this source at 140 

the western boundary. That is 141 

( 1), 0u U z x
y
ψ δ∂= − = − − =
∂

 (7) 142 

so that the zonal velocity is zero at the western boundary below the surface and of sufficient 143 

strength at the surface to draw fluid from below to balance the offshore Ekman transport. 144 

The full equations for the interior ocean below the Ekman layer are then 145 

2
2

2

1 bq by
S z U

ψψ ψ∂=∇ + + =
∂

 (8a) 146 
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, 0Sh z
z
ψ∂ = − =
∂

 (8b) 147 

0, 1z
z
ψ∂ = =
∂

 (8c) 148 

( 1), 0U z x
y
ψ δ∂ = − =
∂

 (8d) 149 

 150 

b. Solutions 151 

To solve these equations, we first write 152 

Uyψ ϕ= +   (9) 153 

where ϕ  is the perturbation streamfunction representing the adjustment of the interior 154 

geostrophic pressure due to the presence of the boundary and the sink at the corner. Therefore, 155 

ϕ  satisfies 156 

2 2

2 2

1 0b
x S z U
ϕ ϕ ϕ∂ ∂+ − =

∂ ∂
 (10a) 157 

, 0Sh z
z
ϕ∂ = − =
∂

 (10b) 158 

0, 1z
z
ϕ∂ = =
∂

 (10c) 159 

( )0 [ ( 1) 1], 0Uy z xϕ ψ δ= − − − =  (10d) 160 

where 0ψ  is the pressure on the boundary which determines the position of the stagnation point 161 

and we are free to specify as a boundary condition. 162 

Anticipating a boundary layer structure, the alongshore scale is assumed to be much greater 163 

than the cross-shore scale, therefore, in (10a) derivatives in the y-direction have been dropped.  164 

A particular solution of (10a), which satisfies the vertical boundary condition (10b, c) is, 165 



 9 

0
cosh ( 1)
sinh( )

x
p

S m zh e
m m

λϕ − −=  (11a) 166 

1/2 2bm S
U

λ= −  (11b) 167 

This particular solution only satisfies the vertical boundary conditions so homogenous 168 

solutions are needed to match the lateral boundary conditions. 169 

The lateral condition at western boundary, rewritten in terms of perturbation streamfunction, 170 

is then 171 

( )0 0 ( 1), 0p hUy Uy z xψ ϕ ϕ ψ δ− + + = − − =  (12) 172 

It is clear that the homogeneous component contains two independent solutions, the 173 

source/sink solution forced by interaction between the zonal flow and the bottom topography and 174 

the Ekman pumping/sucking at the corner. These solutions will be labeled 0
hϕ  and 1

hϕ , 175 

respectively. 176 

It follows directly that the source/sink solution is 177 

( )1
0

1
2 ( 1) cos( )x n

h
n

Uy e n zαϕ ψ π
+∞

−

=

= − −∑  (13a) 178 

2 2
2 b n
U S

πα = +  (13b) 179 

Note that the source/sink solution has no barotropic component, which is not surprising 180 

because the vertical integral of the first two terms on the left side of (12) is equal to the integral 181 

of the right hand side.  182 

The homogeneous topographic forced solution is 183 

0

0
cos( )x

h n
n
A e n zαϕ π

∞
−

=

=∑  (14) 184 
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Since the source/sink solution has already satisfied the geostrophic lateral boundary 185 

condition, more conditions are required to determine the topographic solution. Consider the 186 

linear meridional momentum equation adjacent to the boundary with a small artificial friction 187 

proportional to the meridional velocity v, where 1ε = , 188 

0 a
v f u v
t

ε∂ + = −
∂

 (15) 189 

For a steady flow, since the homogeneous topographic solution is independent of y and thus 190 

has no zonal geostrophic component, the balance is between friction and the ageostrophic zonal 191 

velocity ua. Since the velocity normal to the boundary must be zero at x = 0, this requires that 192 

0v =  even in the limit of vanishing ε . Therefore, the along-shore velocity v is set to zero for 193 

the topographic solutions, from which it follows 194 

0

0, 0ph dd x
dx dx

ϕϕ + = =  (16) 195 

Applying (12) and (14) to (16) yields the homogeneous topographic solution 196 

( )
0 0

2 2 2
0

2 cos( )xn
h

n

h S e n z
n m

αε λϕ π
α π

∞
−

=

= −
+∑  (17a) 197 

1 , 0
2
1, 1

n
n

n
ε

⎧ =⎪= ⎨
⎪ ≥⎩

 (17b) 198 

2. Discussion 199 

Although most of the analysis will be in nondimensional parameter space, it is helpful to 200 

frame the discussion at the outset by identifying the order of magnitude of the nondimensional 201 

numbers derived from typical oceanic parameters. Dimensional parameters representative of the 202 

mid-latitude oceans are: * 1 20.1 kg m s τ − −= , 3 3
0  10 kg mρ −= , 4 1

0 10 s f − −= , * 3  10 mH = , 203 
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* 5  m10L = , 11 -1 -1 10 m s β −= . This results in an onshore barotropic velocity of * 3 110  m sU − −= . 204 

Using these values, the nondimensional numbers scale as 205 

( )2(1), 10 , (1)U O b O S O= = =  (18) 206 

We set the parameters S = 1, U = 1, b = 100, and λ = 5 in the standard calculation. The 207 

sensitivity to these parameters will also be discussed. 208 

a. The boundary pressure 0ψ  209 

A representative solution for the streamfunction is shown in Fig. 1a, b at two depths, one 210 

averaged between z = 0.8 and z = 1.0 and the other near the bottom (z = 0.1). For this choice of 211 

0 5ψ = , the flow is symmetric in the meridional direction about y = 5. Deep in the water column, 212 

the interior flow approaches the western boundary and is diverted northward and southward in a 213 

narrow boundary layer. However, near the surface, the flow develops a narrow boundary current 214 

with increasing strength away from the 0ψ  streamline. The flow in the boundary current is 215 

directed towards the latitude 0ψ  from both the north and south, in the opposite direction to the 216 

deep flow. There is also a component of the flow directed towards the boundary. This provides 217 

the source waters that are drawn into the Ekman layer in the corner. The balance in the potential 218 

vorticity terms is between relative vorticity and stretching vorticity, variations in planetary 219 

vorticity are locally relatively unimportant. 220 

The solution depends on the choice of 0ψ , the pressure on the boundary. A choice of 0 0ψ =  221 

would result in all of the deep onshore transport turning towards the north with a strong 222 

boundary current near the surface, as seen in Fig. 1b for y > 5. It can be most easily understood 223 

by recognizing that the streamfunction holds as a constant line along the reference latitude far 224 

from the ocean interior to the boundary. Therefore, to the north/south of this latitude, the 225 



 12 

pressure at the boundary is smaller/larger than the ocean interior, which builds a 226 

northward/southward flow near the boundary. It can also be understood from the vorticity 227 

balance. Since we assume the ocean interior is frictionless, the vorticity balance of the deep 228 

circulation within the boundary layer is between the relative vorticity and planetary vorticity. 229 

Furthermore, the main component of the relative vorticity is attributable to the meridional 230 

velocity because in the boundary layer the zonal scale is much smaller than the meridional scale. 231 

Therefore, the deep impinging flow moves either northward or southward, which depends on the 232 

boundary condition that we choose at x = 0.  233 

The value of 0ψ  is determined by processes outside the local region of wind forcing. The 234 

boundary pressure is propagated along the boundary by waves (Allen, 1976; Yoon and Philander, 235 

1982). In the case of spatially limited wind stress, the boundary pressure at the upstream (in the 236 

wave phase speed sense) limit of the wind stress would determine 0ψ . In that case the flow in the 237 

boundary current would be from the south towards the latitude where the wind stress ceases, as 238 

in the two-layer solutions of Allen (1976). For example, in Fig. 1, if the wind were set to zero for 239 

y > 5 the solution for y < 5 would be unchanged.  For the cases considered here, with spatially 240 

uniform wind stress in a closed basin, the boundary pressure would be determined by a contour 241 

integral around the whole basin, which would presumably involve distant wind forcing and 242 

dissipation. One can imagine a similar downwelling boundary layer on the eastern boundary that 243 

exports water to the south in a narrow boundary current that closes the circulation with this 244 

western boundary current.  Although the flow direction depends on the boundary constant, the 245 

boundary layer width and vertical scale, the primary quantities of interest here, do not depend on 246 

0ψ . Therefore, in the further analysis, we diagnose the boundary current structure at y = 0 247 

without loss of generality. 248 
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b. The total solution 249 

The total solution for the velocity shows that a southward meridional flow arises as the 250 

boundary is approached at all depths, with a stronger, narrower boundary current in the upper 251 

layers compared to the lower layers (Fig. 2a). An adjacent northward velocity develops in the 252 

upper ocean on the offshore side of this narrow flow. The deep meridional velocities have very 253 

weak vertical shear and are trapped near the western boundary with scale /IL U b= . This is 254 

the inertial boundary layer, which is governed by a potential vorticity balance between relative 255 

vorticity and the planetary vorticity gradient. The ratio of this inertial boundary layer width to the 256 

baroclinic deformation radius is given by / /I dL L U Sb=  and, for the present parameters, is 257 

much less than one. 258 

Pedlosky (2013) found similar results for the interaction of surface Ekman transport with an 259 

island, with some of the streamlines feeding the eastern upwelling directly from the interior and 260 

some from along the island perimeter. If the island radius in Pedlosky (2013) is much larger than 261 

the deformation radius, the streamlines around y = 0 are similar to our straight boundary solution. 262 

The total solution contains three parts, the flat bottom source/sink forcing solution, the 263 

particular solution, and the topographic homogeneous solution. Because the problem is linear, 264 

we may consider each of these components separately. 265 

c. Flat bottom contribution 266 

The flat bottom source/sink solution is much stronger than the particular and homogeneous 267 

solutions forced by topography (Fig. 2b). For the barotropic part of the interior flow, the 268 

stretching vorticity is negligible because the height variations are small over a length scale less 269 

than the order of the deformation radius in the quasigeostrophic framework. The deep flow 270 

potential vorticity balance of the source/sink solution is mainly between the relative vorticity and 271 
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planetary vorticity, which are the first and third term in (10a). Therefore, the streamfunction 272 

anomaly owing to the source/sink forcing is intensified at the western boundary, which decays 273 

eastward with the inertial boundary layer width. This is demonstrated in Fig. 3a in which the 274 

horizontal scale of the deep flow was diagnosed from a series of solutions with different values 275 

for S, U, b, and λ, as summarized in Table 1. The horizontal scale was diagnosed as the location 276 

of the e-folding of the boundary streamfunction anomaly at z = 0.5. The diagnosed boundary 277 

current width scales with /U b  in Fig. 3a (solid line). This demonstrates that vortex stretching 278 

is negligible in the deep ocean and the balance is between relative vorticity and beta. Not 279 

surprisingly, the horizontal scale of the deep flow is not sensitive to S (not shown). 280 

The source/sink solution shows strong baroclinicity especially as the flow in the upper 281 

ocean enters into the inertial boundary layer. The streamfunction of the source/sink solution 282 

shows a sharper gradient in the upper layer than the lower layer (Fig. 1a, b). The delta function 283 

forcing at the surface results an intense, narrow structure, particularly as the surface is 284 

approached (Fig. 2b). The baroclinic structure shows a local maximum southward flow lying 285 

below the strong northward boundary current. However, if one averages in the vertical the net 286 

transport in this upper ocean baroclinic flow becomes evident (Fig. 1a). Below this the 287 

southward flow becomes independent of depth. The horizontal width of this baroclinic 288 

meridional boundary current scales as 1/α , which can be demonstrated from (13). The 289 

parameter scaling (18) shows that the typical value of the nondimensional number b is much 290 

larger than S and U. Therefore, in the series solution, 2 2/ /b U n Sπ>  for small n. Meanwhile, 291 

the remaining terms play a decreasing role in the summation of the series solution as n increases, 292 

especially for small z, owing to the cosine function. Therefore, the horizontal scale 1/α  can be 293 

approximated as /U b  in the lower layers, consistent with Fig. 3a. However, as z increases 294 
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from 0 towards 1, the remaining terms are beginning to play a more important role even for large 295 

n in the summation of the cosine series, resulting in the variability on a scale 1/ /U bα < , 296 

which means a sharper pressure gradient, and stronger currents, in the upper layer than in the 297 

lower layer.  298 

The stretching vorticity starts to play an increasing role near the surface in the vorticity 299 

balance. Given that the stretching does not contribute to the barotropic vorticity and the 300 

baroclinic solution is surface intensified (Fig. 2b) for the source/sink solution in a flat bottom 301 

ocean, the streamfunction anomaly due to the baroclinic stretching is strong near the surface and 302 

decays with depth. The balance between the planetary vorticity and stretching vorticity in (10a) 303 

shows that the key parameter of the baroclinic current forced by the source/sink solution is 304 

/U Sb , which is the ratio of planetary vorticity to stretching vorticity as well as the ratio of the 305 

inertial boundary layer width and the deformation radius, squared. If 1U Sb = , the vertical 306 

length scale has to be small in order for the stretching term to balance the relative vorticity term. 307 

In the other limit, 1U Sb ? , the stratification is weak and the vertical length scale approaches 308 

the bottom depth. As the flow moves into the boundary layer, the relative vorticity starts playing 309 

an increasingly role in the potential vorticity balance. In the boundary layer /x U b< , the 310 

relative vorticity in (10a) exceeds the planetary vorticity advection, which then requires a smaller 311 

vertical scale so that the stretching vorticity can adjust to conserve q. 312 

The vertical scale was diagnosed as the depth of the e-folding of the surface streamfunction 313 

anomaly at /x U b= . The vertical scale is plotted as a function of /U Sb  in Fig. 3b (solid 314 

line), which is also well predicted by the theory, especially for small /U Sb . Physically, the 315 

larger the wind strength means the stronger the onshore flow, which turns to the meridional flow 316 

in the boundary layer. In order to balance the same strength of planetary vorticity variation, the 317 
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same relative vorticity forced by stronger onshore flow results in a larger horizontal scale for 318 

strong boundary flow. The vertical scale can also be understood from the balance between the 319 

relative vorticity and stretching vorticity in (10a), where the horizontal scale of the relative 320 

vorticity is the inertial boundary layer thickness /U b . The vertical scale is obtained by taking 321 

the ratio of the first term for the second term in (10a). Therefore, the vertical scale depends on 322 

the horizontal scale through the vorticity balance in (10a), which is also larger for stronger wind 323 

stress. The stratification plays an important role in the stretching vorticity variation (10a). For 324 

weak/strong stratification, the stretching vorticity is also weak/strong, which needs a large/small 325 

vertical scale to balance vorticity variations. As the stratification tends to zero, the stretching 326 

vorticity is not effective and the solution becomes barotropic. The dependence of the scales on b 327 

can be understood from recognizing that a stronger planetary vorticity gradient requires stronger 328 

relative vorticity and stretching vorticity, which means a narrower boundary layer thickness. 329 

d. The topographic contribution 330 

Topography enters the problem in two ways. First, it alters the flat bottom solution, that is, 331 

the stretching vorticity is involved in the barotropic vorticity balance over the topographic length 332 

scale1/ λ . As the interior flow moves across the sloping topography it introduces stretching of 333 

planetary vorticity, zfw , that tends to increase the potential vorticity, this is balanced by 334 

southward advection of planetary vorticity (Fig. 2c). Therefore, the horizontal scale of the 335 

stretching vorticity induced by topography depends on the topographic scale, which is distinct 336 

from the boundary layer thickness. As the flow impinges on the western boundary, the vorticity 337 

balance in the western boundary layer over topography is not only between relative vorticity and 338 

planetary vorticity, but the stretching vorticity is also active. Second, it provides a forcing at 339 
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0z =  through the no-normal flow condition at the bottom. This supports a bottom-intensified 340 

baroclinic current that decays upward with an e-folding scale of 1/m  (Fig. 3c).  341 

The vertical structure of the particular solution depends on the topographic slope (11a, b). 342 

For wide topographic slopes ( 2 /b Uλ < ), m is real and the particular solution is a bottom-343 

intensified flow over the slope, as in Fig. 2c. In this regime the topography is wider than the 344 

inertial boundary layer width, relative vorticity of the particular solution is small, and the 345 

potential vorticity balance is primarily between vertical stretching and advection of planetary 346 

vorticity. This is the most relevant regime for the mid-latitude ocean. The strength of the 347 

particular solution is far smaller than the source/sink solution and the vertical scale of the 348 

particular solution is always larger than the source/sink solution since /m Sb U< in this limit. 349 

Physically, the dependence of vertical scale on stratification, geostrophic flow strength, and β is 350 

the same as the vertical scale of source/sink solution but trapped in the bottom layer. 351 

If 2 /b Uλ = , the topography is exactly the width of the inertial boundary layer and m = 0 352 

so the balance is between relative vorticity and β and the particular response is barotropic. 353 

For topography narrower than this ( 2 /b Uλ > ) m becomes imaginary, which results in 354 

wave-like solutions in the vertical. In this limit the relative vorticity produced by the narrow 355 

topographically-induced flow is larger than can be balanced by advection of planetary vorticity 356 

and so the stretching term is required to balance. The stretching contribution is of opposite sign 357 

in this limit compared to the wide topography case. 358 

The homogeneous topographic forced solution is a maximum at the western boundary and 359 

decays eastward with horizontal scale 1/α  (17a). Since the particular solution satisfies the 360 

vertical boundary condition and the topographic forcing solution is a supplemental solution that 361 
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matches the lateral boundary condition, the topographic forced solution shares the same vertical 362 

scale with the particular solution.  363 

The source/sink forcing solution has no barotropic component. However, for nonzero 364 

topography, the particular and topographic solutions do contain barotropic components (Fig. 4a, 365 

b). Both the particular and topographic solutions are boundary intensified but with different 366 

scales. The particular solution decays eastward with a scale depending on the topographic 367 

extension from the western boundary, while the homogenous topographic forcing solution 368 

decays over the inertial boundary layer width (the same decay scale as the source/sink solution), 369 

which is independent of the topography (Fig. 4b). The barotropic velocity over the topography 370 

increases as the width (1/ λ ) decreases or the maximum height at the boundary h0 increases. 371 

Although the streamfunction anomaly of the particular solution at the boundary depends only on 372 

h0 (11), the decay of the streamfunction anomaly depends on the topographic scale (1/ λ ), 373 

resulting in distinctive boundary currents with different topographic scales (Fig. 4a, b). The 374 

boundary perturbation streamfunction of the homogenous topographic solution is sensitive to 375 

both h0 and λ . The velocity of the homogeneous topographic solution is reversed but with the 376 

same magnitude as the particular solution at the boundary. Therefore, the solutions forced by the 377 

topography have no meridional velocity at the western boundary, which is the no-slip boundary 378 

condition (16).  379 

e. The mass budgets 380 

These solutions provide a framework for understanding the mass budget and the origin of 381 

water that is drawn into the Ekman layer. The zonal flow approaching the western boundary is 382 

exactly that required to balance the offshore Ekman transport. However, the deep flow turns 383 

parallel to the boundary, it does not upwell into the Ekman layer. This is a major difference 384 
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between these three-dimensional solutions and two-dimensional solutions (e.g. Lentz and 385 

Chapman, 2004; Choboter et al., 2011). So, the logical question is, if this deep water is not 386 

entering the Ekman layer, where does that transport into the Ekman layer come from? 387 

The upper ocean streamfunction in Fig. 1a shows that the upwelling is provided by the 388 

meridional flow in the baroclinic boundary current, which feeds into a vanishingly thin boundary 389 

layer that ultimately feeds the upwelling into the Ekman layer. Additional physics that include 390 

mixing and viscosity, not considered here, would be required to explicitly represent the balances 391 

in this narrow boundary region. The depth that marks the transition between the deep 392 

recirculating flow and the source waters for the Ekman layer is the vertical length scale for the 393 

baroclinic flow, / /I dL L U Sb= . Given that the perturbation solution has zero depth-integrated 394 

meridional transport, the meridional transport shallower than this depth is of equal magnitude 395 

and in the opposite direction to the deep flow and thus provides the transport required by the 396 

offshore Ekman flow. As the boundary is approached, the deep zonal flow approaches zero over 397 

a horizontal length scale /U b . In order to keep the source/sink forced perturbation solution 398 

purely baroclinic, the upper layer zonal flow increases towards the boundary over this same 399 

length scale. Therefore, the water that gets upwelling into the Ekman layer comes primarily from 400 

the upper ocean shallower than /U Sb  and is advected into the upwelling region through a 401 

combination of a meridional boundary current of the inertial boundary layer width and the 402 

onshore flow in the interior. The direction of the meridional flow that supplies the source waters 403 

in the baroclinic boundary current depends on the choice of boundary constant 0ψ . This means 404 

that the depth of the source waters that feed Ekman upwelling is not an inherent length scale that 405 

depends only on the local environmental parameters but instead deepens as the wind forcing 406 
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strengthens, as the stratification weakens, or as the Coriolis parameter increases. In dimensional 407 

units, this vertical length scale is *
0 / /D f N U β=  which, for typical parameter, is O(100 m). 408 

 This also provides a scaling for the magnitude of the meridional velocity in the boundary 409 

current since it has to provide the transport into the Ekman layer that is not provided from the 410 

interior onshore flow. If one takes the deep southward transport, which scales as411 

(1 / ) yU U Sb L− , and requires that this be provided in a boundary current of horizontal scale 412 

/U b  and vertical scale /U Sb , then the magnitude of the velocity in the baroclinic boundary 413 

current is (1 / ) yV b S U Sb L= − , where Ly is the nondimensional distance from where 0ψ ψ= . 414 

For typical values of 1b ? , 1yL ? , (1)S O= , and (1)U O= , 1V ? and the baroclinic boundary 415 

current is very strong compared to the interior flow. Note that the boundary current is stronger 416 

for stronger stratification, larger beta, and stronger onshore flow but it is not a simple linear 417 

dependence because both the width and depth of the boundary current depend nonlinearly on 418 

these parameters. 419 

The upwelling into the Ekman layer is carried in a narrow region adjacent to the boundary. 420 

However, there are also significant vertical velocities forced away from the wall within the 421 

boundary current. The vertical velocity at z = 0.85, derived as 1/ ( , / )w SJ zψ ψ= − ∂ ∂ , is shown in 422 

Fig. 5 for the region near the western boundary. There is strong upwelling over a horizontal scale 423 

of 1/α  within the region of northward flow and a symmetric downwelling in the region of 424 

southward flow. This arises as a result of the sloping isopycnals required to support the 425 

meridional flow in the baroclinic boundary current. Where the flow is to the north, the isopycnals 426 

rise towards the boundary, as required to support the thermal wind associated with the northward 427 

upper ocean velocity. Since the flow is adiabatic, the barotropic zonal flow, U, interacts with 428 
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these sloping isopycnals to produce upwelling. The opposite happens where the meridional flow 429 

is to the south, resulting in downwelling in the boundary current. The vertical velocity forced in 430 

the baroclinic boundary current can take either sign even though the Ekman pumping in the 431 

corner is always upward. 432 

f. The eastward interior flow 433 

For steady frictionless flow, an inertial boundary layer arises as the onshore geostrophic 434 

flow impinges on the boundary. The occurrence of inertial boundary layers completely depends 435 

on the direction of the interior flow at the boundary (Greenspan, 1962; Pedlosky, 1965). We 436 

adopt an oceanic interior westward geostrophic flow towards the western boundary. However, if 437 

there were southward wind stress the interior flow would be towards the east, away from the 438 

western boundary. The potential vorticity still holds as a constant along streamlines (10a) but the 439 

sign of the last term on the left hand side is now positive. This does not support an exponentially 440 

decaying boundary current, as was found for the western boundary. Pedlosky (1965) interpreted 441 

the need for westward flow into the western boundary as a means to trap short Rossby wave 442 

energy from radiating away from the boundary.  The width of the inertial boundary layer is such 443 

that the group speed of the eastward propagating Rossby waves is exactly balanced by the 444 

westward velocity U.  445 

This may also be understood from consideration of the barotropic potential vorticity, 446 

defined as 447 

bt bt
bt bt

v uq by by
x y

ζ∂ ∂= − + = +
∂ ∂

 (18) 448 

Far from the boundary, the relative vorticity btζ  is zero. At the boundary, again since the 449 

meridional scale is much larger than the zonal scale, the relative vorticity is /btv x∂ ∂ . For 450 
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northward wind stress the westward zonal interior flow impinges the western boundary and 451 

deflects either northward or southward. For northward flow, the relative vorticity in the boundary 452 

layer is negative, which can balance the increase in the planetary vorticity and vice versa for 453 

southward flow. However, for southward wind and eastward zonal interior flow, the relative 454 

vorticity in the northward flowing boundary layer will increase, as does the planetary vorticity, 455 

violating potential vorticity conservation. Therefore, the eastward flow lacks the physical 456 

mechanism to support an inertial boundary layer on the western boundary. However, as we 457 

demonstrate in the next section, a numerical model with eastward interior flow produces a 458 

boundary current very similar to that for a westward interior flow.  We assert that the dissipation 459 

in the model is large enough to trap short Rossby waves near the western boundary and allow for 460 

set up of a baroclinic boundary current structure analogous to the westward interior flow cases 461 

even though the boundary current in the model is viscous, not inertial 462 

. Numerical Model 463 

The quasigeostrophic theory predicts a strong baroclinic boundary current in the upper 464 

ocean whose horizontal scale is /U b  and whose vertical scale is /U Sb . The advantage of 465 

the inviscid, adiabatic quasigeostrophic framework is that it allows for closed form solutions and 466 

a clear interpretation of the physics that controls the structure of the boundary current. However, 467 

many strong assumptions are required which may be questionable in the near coastal region. In 468 

particular, quasigeostrophy linearizes the stratification and assumes isopycnal displacements are 469 

small. It also neglects advection of potential vorticity by the ageostrophic flow. We have 470 

neglected mixing of momentum and density, which may not be good approximations in strong, 471 

narrow surface intensified boundary currents. In this section we apply an idealized configuration 472 

of a nonlinear primitive equation model to compare with the basic predictions from the theory. 473 
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g. Model Configuration 474 

The numerical model used is the MITgcm primitive equation model. The model is 475 

configured using z-level vertical coordinate and with a partial cell treatment of the bottom 476 

topography. This allows for accurate treatment of the pressure gradient terms in stratified flows 477 

over a sloping bottom, which is important for the present problem. The domain is 960 km by 960 478 

km and 2000 m deep with a flat bottom and closed boundaries. The model has a uniform 479 

horizontal grid spacing of 2 km and 45 levels in the vertical with spacing ranging from 10 m over 480 

the upper 200 m to 200 m at the bottom. The initial stratification is uniform and a spatially 481 

uniform, steady, northward wind stress is applied. The model is run for a period of 120 days with 482 

the analysis taken over the final 90 days of integration. Subgridscale mixing is represented by a 483 

horizontal Smagorinsky viscosity (Smagorinsky, 1963) with nondimensional coefficient 2.5 and 484 

vertical viscosity and diffusion with coefficients 10-4 and 10-6, respectively. Additional 485 

calculations have shown that the basic results are not sensitive to these parameters. The Coriolis 486 

parameter at the southern limit of the domain is 5 -13 10  s−×  with meridional variation 487 

11 1 12 10  m  sβ − − −= × . The wind stress for the example case is -20.005 N mτ = . This weak wind 488 

stress was chosen to provide a central case that would produce moderate strength currents so as 489 

to be consistent with the quasigeostrophic approximation in the theory. Stronger wind stresses, 490 

up to -20.05 N m , are applied in the following section. The initial stratification 491 

2 6 22.25 10  sN − −= ×  was chosen to give a baroclinic deformation radius of 100 km. After this 492 

central case is discussed, a series of model runs are carried out in which β, N2, and τ are all varied 493 

and the results are compared with predictions from the theory in the previous section. 494 

The inertial boundary layer width varies between 2 km and 10 km for these model runs. The 495 

Smagorinsky viscosity parameterization produces viscosities of O(10-50) m2/s, which gives a 496 
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viscous boundary layer width of O(10 km). This is as wide or wider than the inertial boundary 497 

layer, so that friction is important in all cases and the model western boundary layer is not purely 498 

inertial.  499 

Central Case 500 

A vertical section of the mean meridional velocity and density, averaged in time and 501 

between latitudes y = 200 km and y = 400 km, is shown in Fig. 6. Note that this is only the upper 502 

1000 m and westernmost 100 km of the basin. The flow is dominated by a northward surface 503 

intensified current and a weaker southward current below. The northward flow is a maximum 504 

just off the western boundary while the southward flow is a maximum on the boundary. The 505 

interior flow towards the boundary is ( )4 -110  m sO − , so the boundary current is approximately 506 

two orders of magnitude stronger, consistent with the theory. The horizontal scale of the 507 

boundary current is ( )10 kmO , an order of magnitude less than the baroclinic deformation 508 

radius. The isopycnals are flat in the interior but they are deflected within a few kilometers of the 509 

western boundary. In the upper 50 m the isopycnals rise, providing anomalously dense water 510 

near the boundary and a horizontal density gradient to support the surface intensified jet. Over 511 

the deeper half of the countercurrent the isopycnals are deflected downward, as required to 512 

balance the local maximum in southward flow. It is clear that near the surface the 513 

quasigeostrophic assumption of spatially uniform stratification is not well satisfied, yet the basic 514 

baroclinic current structure predicted by the theory is found in the model. 515 

There are differences between the model and the theory. Notably, the theory predicts that 516 

the countercurrent projects all the way to the surface in an ever narrowing region along the 517 

western boundary. Its absence in the numerical model is not surprising, however, because the 518 

Ekman upwelling is not confined to a delta function in the corner and the model has lateral 519 



 25 

viscosity and diffusivity that will erode such a narrow flow. The weak deep southward flow 520 

expected from the theory is also not apparent but we find that the deep flow is time-dependent as 521 

a result of basin modes that are excited by the forcing. They are sufficiently strong to alias the 522 

deep flow depending on what time period is chosen for averaging (but the stronger baroclinic 523 

flow in the upper ocean is not strongly affected). Friction is sufficiently small that they decay 524 

over a longer time scale than the model integration time. Longer time integrations result in 525 

instabilities of the western boundary current and further mask the basic current structure. 526 

Moreover, it is worth noting that there is a limitation on the applicability of our theory due to the 527 

offshore advection of density caused by Ekman transport in the surface layer. Absent a balancing 528 

surface heat flux, this will spread dense water offshore and result in convective mixing near the 529 

surface (Spall and Schneider, 2016). Therefore, we focus on the early time mean vertical 530 

structure of the upper ocean baroclinic flow in the following diagnostics.  531 

h. Vertical scale 532 

The dimensional vertical scale of the baroclinic flow was predicted by the theory to be  533 

*
0 0

2 *
0

f fUD
N N H

τ
β ρ β

= =  (19) 534 

For the central parameters used for the model run depicted in Fig. 6, D=127 m. The 535 

exponential decay scale used to diagnose the vertical scale in the previous section was found to 536 

be very sensitive and inconsistent when applied to the model output, especially for cases with 537 

very weak stratification. Instead, we use two different methods to diagnose the vertical scale 538 

from the model fields, one based on transport and one based on perturbation density near the 539 

boundary. The transport based diagnostic is the depth at which the meridional transport in the 540 

boundary current is a maximum. This effectively distinguishes the northward flowing upper 541 

boundary current from the deeper counter current. The density anomaly metric is the depth at 542 
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which the density anomaly adjacent to the boundary has dropped to 50% of its maximum value 543 

at the surface. Reassuringly, these two measures give very similar results, 135 m and 115 m for 544 

this case, that are also close to the theoretical prediction. They are indicated on Fig. 6 by the 545 

solid and dashed red lines and compare well with the vertical scale of the baroclinic flow. 546 

This is a scaling for the parameter dependence of the vertical decay scale of the baroclinic 547 

flow, so the best way to test this prediction is through a series of model calculations in which the 548 

governing parameters are varied. The same model configuration was used as for the central case 549 

but the values of N2, β , and 0τ  were varied in various combinations. The wind stress was varied 550 

between 20.00125 N m−  and 20.05 N m− , the stratification was varied such that the baroclinic 551 

deformation radius ranged between 10 km and 200 km, and β  was varied between 552 

11 1 10.5 10  m  s− − −×  and 11 1 12 10  m  s− − −× . These values were chosen to provide a wide range of the 553 

primary scaling parameter I dL L , which varied between 0.016 and 2 over 15 different model 554 

runs. The vertical length scale diagnosed in the model is compared to the scaling prediction in 555 

Fig. 7. The blue squares are for the transport-based diagnostic and the blue diamonds are for the 556 

density anomaly diagnostic. In general, the parameter dependence predicted by the theory is 557 

supported by the model calculations. The vertical length scale varies between about 60 m and 558 

1000 m in the model with an approximately linear dependence on I dL L . At very weak 559 

stratification (large vertical length scales) the scaling theory overpredicts the vertical scale 560 

slightly, but the model diagnostics become more sensitive to the detailed method in this limit. 561 

The theory provides solutions only for cases in which the interior flow is towards the 562 

western boundary. To test the applicability of the scaling theory to downwelling favorable winds, 563 

for which the interior flow is eastward, we carried out 9 additional calculations in which the 564 

wind stress was varied between 20.00125 N m−−  and 20.05 N m−−  and the baroclinic 565 
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deformation radius was varied between 10 km and 200 km. This produced values of I dL L  566 

between 0.016 and 1.0. These model runs produce a similar vertical length scale as the upwelling 567 

winds and are also in general agreement with the theory (Fig. 7, red symbols). We attribute the 568 

ability of the numerical model to represent boundary layer solutions even with eastward interior 569 

flow to the weak but finite viscous dissipation in the model, which is able to damp short Rossby 570 

waves before they can propagate energy into the interior (Pedlosky, 1965). 571 

Conclusions 572 

The three-dimensional coastal upwelling forced by a uniform northward wind stress in a 573 

stratified ocean has been studied using analytical and numerical models. We adopt an oceanic 574 

interior westward geostrophic flow towards the western boundary, which balances the offshore 575 

Ekman transport and produces an inertial boundary layer as the onshore geostrophic flow 576 

impinges on the boundary.  577 

The source/sink forcing supports a purely baroclinic boundary current in a narrow boundary 578 

layer with a horizontal scale /IL U b= , which is typically smaller than the deformation radius 579 

dL . This scale is determined by the vorticity balance between the relative vorticity and planetary 580 

vorticity, which is wider for stronger wind stress or weaker planetary vorticity gradient. This 581 

baroclinic flow is surface intensified and decays downward with a nondimensional vertical scale 582 

of / /I dL L U Sb= . Deeper than this the depth-independent onshore flow turns parallel to the 583 

boundary and flows meridionally in an inertial boundary layer. The vertical scale depends on the 584 

horizontal scale through the vorticity balance and is also larger for stronger wind stress or 585 

weaker planetary vorticity gradient. Stronger stratification means the more baroclinic flow is 586 

trapped near the surface, resulting in a smaller vertical scale. In contrast to the two-dimensional 587 

wind-driven coastal upwelling, the transition between the deep recirculating flow and the surface 588 
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intensified flow marks the maximum depth of the source waters for the Ekman upwelling. This 589 

means that the depth of the source waters that feed Ekman upwelling is not an inherent length 590 

scale that depends only on the local stratification but instead deepens as the wind forcing 591 

strengthens, as the stratification weakens, or as the Coriolis parameter increases. Although the 592 

analytic solutions are valid only for westward interior flow, it is argued that if dissipation is 593 

sufficient to trap short Rossby waves then downwelling favorable winds and eastward interior 594 

flow can support western boundary currents analogous to those for westward interior flow. The 595 

basic current structure and vertical scale predicted by the theory was reproduced in an idealized 596 

primitive equation model for both upwelling and downwelling favorable winds over a wide 597 

range of parameter space.  598 

Topography provides a forcing at z = 0 and alters the flat bottom solution through involving 599 

the stretching vorticity in the barotropic vorticity balance over the topographic length scale 1/ λ  600 

but with a far smaller strength compare to the source/sink solution. The vertical structure of the 601 

particular solution depends on the topographic slope. For wide topographic slopes ( 2 /b Uλ < ), 602 

the particular solution is a bottom intensified flow over a wider scale than the inertial boundary 603 

layer, which results in a small relative vorticity. If 2 /b Uλ = , the topography shares the same 604 

scale as the inertial boundary layer and the balance is between the relative vorticity and β . For 605 

narrow topographic slopes ( 2 /b Uλ > ), the relative vorticity produced by the topographically-606 

induced flow is larger than the advection of planetary vorticity, which results in wave-like 607 

solutions in the vertical.  608 

The westward interior transport was chosen to match the transport upwelled into the Ekman 609 

layer in anticipation that this westward flow provided the source waters for the upwelling, as for 610 

previous two-dimensional solutions.  However, it was shown that, for typical parameters, most of 611 
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the upwelling transport is supplied from a remote location by a narrow, shallow western 612 

boundary current, not from the interior flow.  Yet this interior flow is required to maintain the 613 

western boundary current that feeds the Ekman layer, so they appear to be connected.  We 614 

speculate that the interior flow represents an inertial recirculation akin to a Fofonoff free mode 615 

that might be driven by eddy fluxes as the end result of enstrophy minimization (Bretherton and 616 

Haidvogel, 1976). 617 
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Table 1. Parameters for the theory calculation used in Fig. 3. The sensitive calculations are based 

on the standard calculation, where S = 1, U = 1, b = 100, and λ = 5. In each calculation, only one 

parameter was altered.  

S U b λ 

0.2 0.2 20 0 

0.4 0.4 40 1 

0.6 0.6 60 2 

0.8 0.8 80 3 

1 1 100 4 

1.2 1.2 120 5 

1.4 1.4 140 6 

1.6 1.6 160 7 

1.8 1.8 180 8 

2 2 200 9 
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Fig. 1. The streamfunction averaged between z = 0.8 and z = 1 (a) and z = 0.1 (b) of the 

source/sink solution. In this calculation S = 1, b = 100, U = 1, and 0 5ψ = . 
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Fig. 2. Meridional velocity of the total solution (a), the source/sink forcing solution (b), the 

particular solution (c), and the topographic forcing solution (d) at y = 0. In this calculation, S = 1, 

b = 100, U = 1, 0 5ψ = , λ = 5, and h0 = 0.5. The black line in (c) and (d) denote the vertical scale 

1/m  in each solution, the vertical black line in (b) denotes the horizontal scale /U b , and the 

horizontal black line denotes the vertical scale /U Sb . 
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Fig. 3. Comparison between (a) the horizontal scale of the deep streamfunction at the western 

boundary, (b) the vertical scale of the source/sink solution at the surface, and (c) the vertical 

scale of the particular solution and that predicted by the scaling theory. The black line denotes 

the theory and the colored dots denote the scale diagnosed from the analytic solutions for a wide 

range of the parameters. 
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Fig. 4. (a). The barotropic perturbation streamfunction of the particular solution (dotted line) at y 

= 0, the homogenous topographic forced solution (dashed line), and the total solutions relevant to 

the topography (solid line). Different colors denote the different topographic parameters. (b) As 

in (a) but for the barotropic meridional velocity. 
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Fig. 5. Vertical velocity at z = 0.85. 
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Fig. 6. Vertical section of the mean meridional velocity (colors, units m s-1) and density field 

(white contours, contour interval 0.1 kg m-3) adjacent to the western boundary, averaged between 

y = 200 km and y = 400 km. The bold black line is the zero velocity contour. The solid and 

dashed red lines are two measures of the vertical scale for the baroclinic flow, as described in the 

text. 
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Fig. 7. A comparison between the vertical length scale diagnosed from a series of numerical 

model calculations (Hs) and the vertical scale predicted by the theory ( )* /I dH L L , where 

* 2000 mH =  is the bottom depth). The squares are derived from a transport-based diagnostic 

while the diamonds are based on a density anomaly metric (as described in the text). The blue 

symbols are for positive wind stress and the red symbols are for negative wind stress. The green 

symbols are for the central case discussed in Section 4.2. 
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