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5.7  Flow Between Two deep Basins. 
 
It might be good to break this section up into two parts, the first would be the text 
through (a) and the second would be (b) and (c).  Could make the first 5.6 and the second 
5.7, then renumber the current 5.6⇒ 5.9. 
 
Shortly before submitting the manuscript, we need to review our citation of any of the 
recent numerical or lab experiments that are relevant.  See the bold and italic text near 
the discussion of Figure 5.5.7 and on p. 13 for the particulars. 
 
The final version of Figure 4 is not yet complete.   
 
 
 We next explore a limiting case quite opposite to the one just considered. The 
internal Rossby radius of deformation (5.1.12) based on the potential depths will now be 
made much larger than the channel width w*, meaning that the boundary layer character 
of the flow will be lost.  The ‘local’ Rossby radius (that based on the local channel depth) 
may, however, be as large as w*, so that flow separation and other rotational effects 
remain in play.  This ‘zero potential vorticity’ model is more realistic for oceanographic 
situations but is made more cumbersome by the myriad of separation scenarios.  The 
following treatment is based largely on the work of Dalziel (1988, 1990), 
Riemenschneider et al. (2005), and Timmermans and Pratt (2005).   
 
 Consider a rectangular channel that has uniform width and that separates two 
relatively wide and deep basins with horizontal bottoms.  An exchange flow between the 
basins could be established as a result of a lock exchange experiment in which the basins 
are filled with fluids of densities ρ1 and ρ2 and are separated by a barrier that sits atop the 
sill (Figure 5.7.1a).  If the barrier is removed the two layers can be expected to displace 
each other and flow into the opposite reservoirs.  As usual, the basin that initially 
contains the denser fluid will be referred to as ‘upstream’ (Figure 5.7.1b) and the 
direction of its outflow will be considered positive. The layer depths in the initially 
quiescent reservoirs are the potential depths D1∞ and D2∞.  The potential vorticity of the 
layers within the channel will therefore be f/ D1∞ and f/ D2∞, provided that the initially 
shallow water has been entirely washed out of the strait and that dissipation does not 
intervene.  If the sill depth Ds<< D1∞ and <<D2∞, then the definition (5.1.9) of 
semigeostrophic potential vorticity implies that 
 

   f +
!vn *
!x *

"
#$

%
&'
/ f = O

Ds

Dn(

"

#$
%

&'
<< 1  

in the vicinity of the sill. Therefore 
 

    !vn *

!x *
" # f ,     (5.7.1) 

 
as was the case in the single-layer analog (Sec. 2.4). 
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 As discussed in Chapter 2, models based on (5.7.1) are often referred to under the 
title zero potential vorticity.  It is true that the relative vorticity exactly equals –f when the 
potential vorticity of the flow is exactly zero.  But (5.7.1) should in the present model be 
regarded as an approximation, valid only where the layer depth di* is small compared to 
its potential depth Di∞.  The dimensional value of the potential vorticity need not be zero. 
Equation (5.7.1) and the derived relations (5.7.2-5.7.4) below can be expected to hold 
near the sill, but will fail as either of the deep reservoirs are approached.  We will analyze 
the sill region first and return to the basin states later. 
 

In terms of the nondimensional variables, 
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the thermal wind relation (5.1.8) is 
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while (5.7.1) becomes 
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In addition, the dimensionless form of Crocco’s relation (5.1.16) 
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(see 5.1.17) is uniform wherever both layers are shallow with respect to their respective 
potential depths.  
 

It follows from (5.7.2) and (5.7.3) that the slope of the interface across the 
channel will be constant.   Some of the geometrically possible cross sections are shown in 
Figure 5.7.2.  Attached flow will refer to a state in which the layer depths remain positive 
across the channel (Figures 2a,b).  For a lock exchange flow, the lower layer velocity will 
generally be positive and the upper layer velocity negative, so the interface will slope 
from left to right, as in Figure 5.7.2a.  Other possible states are singly detached (Figures 
2c,d) and doubly detached (Figure 5.7.2d).  It will be convenient to redefine the location 
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of the origin x=0 depending on the state of separation. The separate cases of attachment 
and detachment are an artifact of the rectangular channel cross-section.  Natural straits 
have a smoothly varying topography, but this introduces difficulties more serious than the 
bookkeeping required to keep track of the various modes of separation. 
 
 
(a)  Critical conditions at the sill.  
 

With the channel spanning   !w / 2 < x < w / 2  the solutions to (5.7.2) and (5.7.3) 
can be written as 
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and 
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where 
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 is the channel depth, d =1 at the sill, and the overbars denote the value 

of the quantity at the channel center, x = 0.  
 

The volume fluxes 
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2  in layers n=1,2 can be calculated 
using(5.7.5)-(5.7.7) as 
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The dimensional versions are given by 
 

   
  

Q
1,2

!
= v

1,2

! d
1,2

! w!
± v

2

!
" v

1

!( )
w!3 f 2

12 #g
   (5.7.10) 

 
In the absence of rotation, the first terms on the right of (5.7.8) and (5.7.9) would give the 
layer transport.  With rotation, (16) shows how the velocity in each layer decreases as x 
increases.  If

 
!

2
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1
> 0 , the interface slope is positive and the lower layer is thicker on 

the right-hand side of the channel (facing in positive y direction).  This thicker portion 
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has smaller (perhaps even negative) velocities compared to the velocities in the thinner 
left-hand side.  Hence the positive interface tilt reduces the transport in the lower layer.  
A similar effect occurs in the upper layer and thus rotation reduces the net 
exchange

  
Q

2
! Q

1
.  This trend is reminiscent of the tendency of rotation to reduce 

transports in single-layer overflows.  It will be shown later, however, that the tendency is 
reversed when the two-layer flow becomes doubly detached from the sidewalls.  
 

Attention is now restricted to pure exchange flow 
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Use of this relation with  (5.7.8) and (5.7.9) leads to 
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and it follows from (5.7.8) that 
 

  

v
2
=

Q / w( ) d ! d
2

( )
d

2
d ! d

2
( ) ! w2d / 12

   (5.7.13) 

 
and 
 

  

v
1
=

! Q / w( )d
2

d
2

d ! d
2

( ) ! w2d / 12
.   (5.7.14) 

 
 

A function G  relating a the single variable 
  
d

2
 to the geometric parameters can be 

found by substituting the last two relations for the velocities into (5.7.4): 
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which can also be written as  
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The left side of (5.7.17) can be viewed as a composite Froude number that characterizes 
the hydraulic state as subcritical, critical or supercritical for values <1, =1 or >1.  In the 
limit of weak rotation 

  
w! 0( )  it reduces to the familiar composite Froude number 
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for nonrotating flow.   The symmetric state of marginal separation, where 

the interface contacts the upper right and lower left corners of the channel, is a possible 
critical state and can be shown to occur when d=w2 (or w*=(g′d*)1/2/f (see exercise 4). 
 
 It can be shown (Exercise 5) that the characteristic speeds for the two-layer 
system under conditions of attachment, and allowing for net barotropic flow, are given by 
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Aside from the factor of w2/12, this formula is identical to its nonrotating counterpart 
(5.2.1). The critical condition (5.7.17) can be obtained by setting c-=0 and using 
v
1
d
1
+ v

2
d
2
= 0 .  

 
 The regularity condition (1.5.11) can be applied to determine further restrictions 
on the location of a section of hydraulic control.  Attention is confined to the channel 
portion of the domain, for which w = constant.  After use of (5.7.7) and some lengthy 
algebra, the condition reduces to  
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The control section can lie where dh/dy = 0 (as at the sill) or at a virtual control 
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In the limit of weak rotation (w→0), satisfaction of (5.7.19) requires

  
d

2!
" d .   As 

discussed by Armi (1986) the virtual control in this case occurs in the deep reservoir, 
when the upper layer is thin and the lower layer is infinitely deep and inactive.  Rotation 
allows this condition to occur in the shallow reaches of the channel.   
 

For attached flow, the volume flux for a particular critical sill state is obtained by 
setting d=1 in (5.7.16).  The flux depends on the mean lower layer thickness 

  
d

2
= d

2c
and 

the channel width w (Figure 5.7.3.).  In order to ascertain the effect of rotation on the 
flux, it is best to plot the flux per unit width 
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0.87 curve correspond to 
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2
 values over which the flow becomes detached from one of 

the sidewalls.  For w !  0.866, the flow at the sill is always attached to both sidewalls; for 
w >1 all possible critical states are detached. (NEED TO CHECK THIS 
STATEMENT-I think M-L’s new graph for w>1 has attached states.)   The figures 
shows that the maximum possible Q/w for any w occurs when

  
d

2c
 = 1/2.  However, we 

will later see that the corresponding critical state cannot be connected to deep upstream 
basin.  The maximum attainable exchange flux is therefore less than for 

  
d

2c
 = 1/2. 

 
In Figure 5.7.4, the end state of the solid portion of the curves, where wb/w=1, 

has the interface attached to both corners, but this is not a possible critical state.  
Something very wrong here.  Mary Louise has been asked about this.  

 
The interface may detach from one or both of the sidewalls in a variety of ways.  

The three possibilities relevant to the lock exchange experiment are shown by the lower 
panels in Figure 5.7.2.  An analysis of the type just described can be performed for each 
case, though the algebra is a bit more involved.  A case with single separation is worked 
through in Exercise 3 and the case of double separation (Figure 5.7.2d) can be found in 
the references cited earlier.  The results can be used to extend Figure 5.7.3 to cases of 
separated sill flow (Figure 5.7.4), in which Q/w is plotted a function of the separated 
width: ws for single separation and wb for double separation. For example, associated with 
the sill width w=2.0 is a range of critical solutions beginning with a singly separated case 
of zero width (ws=0) and zero flux.  As ws/w is increased the flux increases and double 
separation occurs at ws/w≅.34.  Beyond this point the (dashed) curve for singly attached 
flow becomes solid, signifying double separation. The horizontal axis must now be 
interpreted as wb/w (Figure 5.7.2d).  For narrow channel widths (specifically w<1.01) 
double separation does not occur.  By symmetry, ws may be interpreted in Figure 5.7.4 as 
the lower layer width for lower layer detachment or the upper layer width for upper layer 
detachment. 

 
The curves in Figure 5.7.4 suggest that double separation occurs more readily as 

w increases.  In addition, the maximum possible Q/w increases as rotation increases.  It 
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will be shown later that the maximal Q/w that can be linked to a deep upstream basin 
actually decreases with increasing w for singly separated flows.  However this trend is 
reversed when double separation occurs.  Another subtlety is that the relationship 
between Q and ws is not always unique for a given w.  There are two sets of curves for 
0.866  ! w "  1.720, as represented in the Figure by w= 0.87, 1.0, and 1.5.  The second set 
of curves appear in the lower right of Figure 5.7.4 and are associated with relatively small 
values of Q/w.  The significance of these solutions is not well understood.  
 

 
b)  The Froude number plane. 
 
 Attention has thus far been confined to the sill, where the flow is assumed to be 
critical.  In order to extend the solution upstream and downstream, and thereby describe 
the solution for the channel as a whole, one can use conservation of layer fluxes and 
internal energy.  In the absence of rotation, the solutions are conveniently represented in 
the layer Froude number plane (e.g. Figure 5.3.1a).  As shown by Reimenschneider et al. 
(2005), a similar approach is possible here, though under more restricted circumstances.  
 
 The governing relationships for the case of attached flow can be derived by using 
(5.7.11) to write the lower layer transport relation (5.7.9) and the Bernoulli equation 
(5.7.4) in the forms 
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F
1
, F

2
are layer ‘Froude numbers’ based on the total depth and layer velocities at mid-

channel.   
 

In the Froude number plane representation for nonrotating flow a form of the 
energy equation (e.g. 5.3.1 or 5.4.1) was used to construct solution curves in the space of 
the layer Froude numbers F1 and F2.  For a given range of bottom elevation or channel 
width, one traces out a solution by moving along the appropriate constant-energy curve. 
Control points occur where the solution curve intersects the critical diagonal F1

2+F2
2=1.  

The range of bottom elevation (or width) is specified by contours that cross the energy 
curves and are based on the continuity equation (5.2.9).  A similar construction in terms 
of the pseudo Froude numbers F

1
, F

2
 is possible, but there are several complicating 

factors.  One is that that the energy (!B " z
T
)  depends not only on F

1
and F

2
 but also d.  

A more suitable quantity on which to base solution contours is Q1/2
/ (!B " z

T
) , which 

depends on F
1
, F

2
 and on the ratio of the channel width to the ‘local’ radius of 

deformation, 
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If the topography is chosen such that this ratio is remains constant, then Q1/2

/ (!B " z
T
)  

depends only on the Froude numbers and contours of this function represent solutions in 
the Froude number plane (Figure 5.7.5). The channel geometry must therefore be one in 
which width varies in proportion to the square root of depth.  
 
 A second complication with the Froude number plane is in the representation of 
various regions flow separation (Figure 5.7.5 inset).   Where single or double detachment 
occurs the governing equations must be reformulated.  It can be shown that 
Q
1/2
/ (!B " z

T
) continues to depend only on F

1
, F

2
 and w/d1/2.1  The corresponding 

solution curves can therefore be extended and are shown in the main part of the figure.  
 

In order to trace solutions along such curves for a given range in d, contours of 
constant Q/d2 can be plotted.  Equation (5.7.21) can be used for this purpose in the 
attached region, while modified relations hold in the other regions.  The resulting 
contours are shown as dashed curves in Figure 5.7.5.  For the case shown, the value of d 
is infinite at the origin, corresponding to a deep upstream (or downstream) reservoir.  If Q 
is regarded as fixed, then shallower depths are found by moving away from the origin. 

 

                                                
1 In cases of extreme separation, the upper (or lower) layer may not exist at midchannel and the 
corresponding v

1
 (or v

2
) will cease to be physically meaningful.  In such cases, F

1
 (or F

2
) is defined by 

extrapolation to midchanel (x=0) using the mathematical form of v1 (or v2) valid in the nonseparated region. 



©L. Pratt and J. Whitehead 2/7/06 
very rough draft-not for distribution 

 9 

We may regard Q1/2
/ (!B " z

T
) and Q as Gill-type functions that depend F

1
and 

F
2

as well as the geometric variables d and w/d1/2. Critical flows therefore occur where 
  

J
F1 ,F2
[Q

1/2
/ (!B " zT ),Q / d

2
] = 0 .   (5.7.24) 

 
There are two geometrically distinct situations where (5.7.24) is satisfied. The first 
(indicated by stars in Figure 5.7.5) lie where the (solid) solution curves and (dashed) 
topographic curves make grazing contact.  These correspond to sill controls.  The second 
(indicated by a single square) occurs where two solution curves cross.  The Jacobian 
vanishes here because Q1/2

/ (!B " z
T
) is locally constant.  Since the bottom elevation 

changes as one follows a solution curve through the intersection point, this point is a 
virtual control.   
 
 The overall geometry of the cases shown in Figure 5.7.5 is similar in some 
respects to the Froude number planes for nonrotating flow through a contraction, 
particularly Figure 5.4.1a.  However there are also some important differences.  To start 
with, there is nothing so simple as the critical diagonal; critical flows now occur along the 
arc indicated by a heavy dashed line in the inset.  Subcritical conditions hold below this 
curve. Also, where there was a single family of submaximal solutions with sill controls, 
there are now two.  The first begin in the subcritical region at a point lying along the F

1
 

axis and end at a point on the F
2

axis.  The second begin at the same point and end at 
another point on the F

1
-axis.  Each member of this family passes through a sill control. 

 
  Of the two families of submaximal solutions, the ones beginning on the F

1
-axis 

and ending on the F
2

axis are most consistent with physical expectations.   An example 
corresponding to the -1.4-contour appears in Figure 5.7.6. At the upstream end, which 
corresponds to the left ends of the panels, the flow is subcritical, the lower layer is very 
deep and the upper layer is separated (panel a).    The lower layer mid-channel velocity 
v
2

is nearly zero and bands of positive and negative flow exist on the left and right walls 
(panel b). As the channel narrows and shoals the flow becomes attached and the lower 
layer velocity becomes unidirectional.  As the sill is passed, the lower layer separates and 
becomes strongly trapped to the right wall.  The upper layer becomes very deep and 
develops the same swirl velocity with backflow that characterized the upstream lower 
layer (panel c). The second group of submaximal solutions have deep lower layers at both 
ends of the channel and do not appear as relevant to the lock exchange problem. These 
solutions correspond to the set of small-flux solutions that appear in the lower right 
corner of Figure 5.7.4. 
 
 There is also a single solution with properties vaguely similar to the nonrotating 
maximal solution (curve jbk of Figure 5.4.1b).  The corresponding solution curve begins 
along the F

1
-axis near F

1
=0.5 and continues through a virtual control (square), becoming 

subcritical and then passing through a sill control (star) and ending on the F
2

-axis.  The 
later termination coincides with the downstream termination of the previously discussed 
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submaximal solutions, with a thin, separated lower layer and a deep, swirling upper layer.  
It can also be shown that the upstream state, which lies near F

1
=0.5 and F

2
= 0 , has a 

relatively deep, swirling lower layer and a separated and unidirectional upper layer.  Both 
end states would almost certainly terminate in hydraulic jumps before the basin depth 
became infinite.  The maximal nature of the flux for this solution is confirmed by the fact 
that the dashed contour lying at the sill control indicates a flux that is larger than for the 
previously considered solutions. 
 
 It is possible to construct other solutions that are more difficult to connect to deep 
upstream basins.  For example the solution curve that begins along the F

1
 axis near 

F
1
=0.2 and passes through the virtual control, is similar to the curve abc of Figure 5.4.1b, 

which was disqualified under conditions of exchange flow for reasons of long-wave 
instability.  However, the general level of numerical and laboratory verification of any of 
the solutions is poor.  We also note that unlike the previous Froude number plane 
representation, in which the direction of the velocity in any particular layer is arbitrary, 
the present solution curves apply only to exchange flow.  
 
  
 
C. Connecting the sill flow to the upstream basin. 
 
  
 The solutions represented in the Froude number plane predict that strong 
recirculations will develop within at least one of the layers as the upstream or 
downstream basin is approached.  This property derives from the global enforcement of 
the ‘zero potential vorticity’ condition !vn * /!x* = " f .  While this condition will hold 
near the sill, or wherever else the layer thickness is much less than its potential depth Dn∞, 
it becomes untrustworthy where the layer thickness becomes as large as Dn∞. In the dam 
break experiment with a shallow sill (Figure 5.7.1a),  Dn∞ is just the initial depth of layer 
n in the basin of origin.  After the exchange flow has been initiated, the upstream depth of 
either layer will can be expected to decrease a relatively small amount, and vorticity thus 
generated should also be small compared with f.  In other words the layers are expected 
to remain relatively quiescent in their upstream basins.   
 

As a more specific application of this last view, let us assume that the width w of 
the strait separating the two basins is constant and that all changes in total depth D occur 
within the strait (Figure 5.7.1b). The upstream basin for the lower layer formally begins 
at the channel mouth, where the channel starts to widen. We denote the width in this 
widening region wB(y) and note that the depth D there is already very large in comparison 
to Ds.  The upper layer in this region is expected to be relatively shallow and therefore 
subject to the zero potential vorticity approximations.  The corresponding velocity and 
depth profiles are therefore determined by the single-layer expressions for zero potential 
vorticity: (2.2.29) for attached flow or (2.3.11) for separated flow.  In the present context 
it is convenient to rewrite the expressions for attached flow as 
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    v
1
(x) =

2d̂(y)

wB

! x     (5.7.25) 

 

    d
1
(x, y) = d (y) +

2d̂(y)

wB (y)
! x    (5.7.25) 

 
where d and d̂  are one half the sum and difference of the depths at the side walls 
x=±wB/2 (see 2.2.5 and 2.2.6).  The associated flux and internal Bernoulli functions are 
given by  
 
     Q = !2d̂d     (5.7.26) 
and  
 

    !B = "
2d̂

2

w
B

2
"
w
B

2

8
" d + z

T
    (5.7.27) 

 
where vo and do are the velocity and depth at the side wall, here x=-wb/2.  
 
 If the upper layer is detached, it is convenient to redefine x=0 as lying at the left 
wall.  The corresponding profiles are given by  
  
    v(x, y) = v

o
(y) ! x     (5.7.28) 

 
and 

    d(x, y) = vo(y)x !
x
2

2
+ do(y) ,   (5.7.29) 

 
where vo and do are the left wall velocity and depth.  The flux and Bernoulli function for 
this case are given by 
 
    Q = do

2
/ 2      (5.7.30) 

and 
 

    !B = "
v
o

2

2
+ z

T
" d

o
,    (5.7.31) 

and the latter is obtained by evaluating (5.7.4) at the left wall.  The separated current 
width we can be related to Q by  
 

    vo =
we

2
!
do

we

=
we

2
!
(2Q)1/ 2

we

,   (5.7.32) 

 
which follows from setting d=0 at x=we. 
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 At this stage we have written down expressions for the upper layer velocity and 
depth that are valid in the vicinity of the mouth and points upstream.  The derivation is 
based on the hypothesis that the lower layer is deep and quiescent and the upper layer is 
thin.  In order to smoothly connect the flow at the mouth (w=wB) to one of the previously 
described critical sill states, for which both layers are active, we require that the two 
states have equal values of !B and Q.  Since the mouth flow may be attached or 
detached, and the sill flow may lie in one of four configurations, a good deal of 
bookkeeping is required to check through all the possibilities.  The general procedure is 
to begin with one of the critical sill flows represented in Figure 5.7.3 or 4, then check 
whether there is a mouth state, either attached or detached, with the same !B and Q.   
Proceeding thus will lead to one of three possibilities: there are no mouth states; there are 
two mouth states, one subcritical and one supercritical; or there is a single, hydraulically 
critical, mouth state.  The solution associated with the final possibility will have maximal 
flux and will have two controls, one at the mouth and one at the sill.  
 
 As an example, consider the case w=0.5. The possible critical sill states are all 
attached and are specified along the middle curve in Figure 5.7.3.  Begin at the lower left 
extremity of the curve, where both d

c
and Q/w are small.  For each location on this 

portion of the curve there are two possible mouth states, one supercritical and one 
subcritical.  As one proceeds to the right, the value of Q/w increases and the two mouth 
states converge, eventually merging to a critical state.  This state, which is indicated by a 
cross in the figure, is the maximal state for the w in question. For higher values of d

c
 

there are no physically meaningful mouth states, and thus the whole right-hand portion of 
the diagram is irrelevant to the problem at hand. The maximal Q/w for each case, as 
indicated by a cross, is always less than maximum the value of the curve in question.  
 
 A similar set of calculations can be carried out for separated sill flows.  An overall 
view of the maximal solutions thus obtained for various w appears in Figure 5.7.7.    It 
can be shown that the maximal Q/w for a given w is always less than the maximum value 
permitted by the critical condition alone.  It is also generally true that the mean lower 
layer depth at the sill is less than the mean upper layer depth, and thus solutions such as 
shown in Figure 5.3.1b are ruled out.  The maximal value of Q/w (Figure 5.7.8) decreases 
as the strength of rotation (the value of w) increases, provided that w is less than about 
1.6.  However this trend is reversed at higher values of w, corresponding to the transition 
between singly separated sill flow (dots) and doubly separated sill flow (crosses).  The 
increase in the exchange transport with increasing rotation contrasts with the usual 
tendency in single-layer hydraulics for the flux to decrease with rotation.2   The new trend 
is due in part to the zero potential vorticity model, which has no constraining boundary 
layer structure.  In addition, the tendency rotation to squash a separated layer against its 
right-hand wall has different consequences in single- and two-layer flows.  In the former, 

                                                
2 The trend for the maximal flux to increase when w exceeds 1-2 deformation radii is also predicted in the 
Reimenschneider et al. 2005 model. 
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the effect is to constrict the cross-section of the and thereby diminish the transport.  In the 
two-layer setting, the squashing of one layer against a wall relives other layer.   
 
 Laboratory and numerical experiments with two-layer, rotating exchange flows 
have so far failed to reproduce double separation of the interface.  Where double 
separation is predicted (w > about 1.5) the flow is instead observed to become unstable.  
The result is a time-dependent field marked by the presence of eddies and with mean 
features quite different from what is predicted by the zero potential vorticity theory.  
These complications may well prevent the increase in flux past w=1.5 that is predicted in 
Figure 5.7.8.  It is unclear at this point which experiments to cite, but here are some 
possibilities: 
 
-Whitehead and Miller (1979) have photos that clearly show an eddy-choked flow, but the 
experiment was without a sill and no flux measurements were made. Perhaps Jack will 
have one of their photos in his section on exchange through a contraction. 
 
-Dalziel did some experiments as part of his thesis; I could put some of the data points on 
Figure 5.7.8. 
 
-Reimenschneider did some numerical experiments in which the flow is forced by 
maintaining certain interface elevations at the upstream and downstream walls.  She 
documents the eddies and makes flux calculations, but there is no figure showing the 
maximal flux as a function of w.   
 
-Ben Rabe wrote a thesis describing experiments with two-layer exchange through a 
contraction.  They also document the eddies.  His data points would not be relevant to my 
sill flow.    
 
 Is it possible to relate Q to some well-defined and easily measured property of the 
flow in the upstream basin?  To investigate this question further it will be helpful to have 
a better understanding of the behavior of the upper layer in the basin.  Any mouth state 
can be formally extended into the basin by allowing the width wB to gradually increase 
from its value w at the mouth and requiring that Q and !B are conserved.   In all cases, 
the upper layer will separate at sufficiently large wB if it is not already separated in the 
mouth.  Once separated, the flow will continue, unaltered, into the basin until some other 
process intervenes.  The velocity and depth profiles of the separated upper layer are given 
by (5.7.28) and (5.7.29).   As explained in Section 2.3, the criticality of the flow may be 
identified by the presence or lack of velocity reversals.  If the upper layer depth decreases 
monotonically away from the left wall (Figure 5.7.9a), so that v1 is everywhere <0, then 
the flow is supercritical.  The presence of a depth maximum and a corresponding velocity 
reversal (Figure 5.7.9c) implies subcritical flow.  In this case there will be a band of 
reverse flow along the left wall carrying fluid towards the mouth.  If the maximum depth 
occurs at the wall (Figure 5.7.9b) then v1 is zero there and the flow is critical.  
 
 If one begins by selecting a sill flow that is submaximal, then for that Q and w 
there are two possible mouth states, one supercritical and one subcritical.  The usual 
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stability considerations require that we select the subcritical root.  This mouth state may 
be separated or non-separated; in the latter case separation will occur within the wide 
basin.  An example based on the case w=0.5 (Figure 5.7.10a) shows an attached mouth 
flow that becomes separated in the basin.  The anticipated band of counterflow is present 
along the wall. 
 

 For the maximal state the mouth flow is critical.  Stability considerations now 
require a transition to supercritical flow as the basin is approached (Figure 5.7.10b).  The 
separated upstream state is distinguished from the submaximal case in that the current is 
narrower and contains no velocity reversals.  Of course, the supercritical flow could pass 
through a hydraulic jump and lose these distinguishing characteristics. 

 
 
 The separated upstream width we is a clearly defined property of the basin flow 
and, as such, is a potentially convenient property on which to base a weir relation. An 
implicit weir formula for the case of attached sill flow can be developed by equating 
!B at the sill (see 5.7.15 with d=1 and h=zT-1) with (5.7.31).  With the help of (5.7.32) 
this equality can be written as 
 

    
  

w
e

2
+

(2Q)1/ 2

w
e

!

"#
$

%&

2

= 2 ' 2d
2c
'

Q 2 1' 2d
2c( )

w2 (d
2c

(1' d
2c

) ' w 2/ 12)2
, (5.7.33) 

 
where d

2c
 is determined by (5.7.16) as applied at the sill: 

 

  

Q2

w2
=

d
2c

1! d
2c( ) ! w2

/ 12( )
3

d
2c

1! d
2c( ) ! w2

/ 12 + 1! 2d
2c( )

2( )
.  (5.7.34) 

 
Together, (5.7.33) and (5.4.34) provide a relationship between Q/w, w, and we.  Satellite 
or aircraft measurements of separated current width might thereby provide an estimate of 
the flux, provide that the width is clearly defined.  Here the numerical experiment of 
Reimenschneider could be mentioned. She observes something along the lines of 
what we predict, though with an unstable, meandering character, and she 
sometimes sees an ‘Alboran Gyre’.  Her upstream basin is separated from the strait 
by sharp corners. 
  
 A point of departure from the purely zero potential vorticity solutions is in the 
location of the virtual control.  For the solutions under discussion, the upstream control 
lies at the mouth of the strait.  For the Froude number plane solutions based on the global 
enforcement of zero potential vorticity, the virtual control lies within the strait (see 
5.7.20). Both results must answer to criticism; in the first case the upstream control is 
imposed by hypothesis, in the second the control may lie where the zero potential 
vorticity approximation fails.  However, it turns out that the maximal fluxes predicted in 
either case differ by a negligible amount.  The dots on the curves of Figure 5.7.3 indicate 



©L. Pratt and J. Whitehead 2/7/06 
very rough draft-not for distribution 

 15 

the maximal flow rate obtained when the zero potential vorticity relations are enforced 
globally.  They indicate Q/w values that lie only slightly above the maximal fluxes 
obtained with a mouth control.  Moreover, no virtual controls within the channel are 
found once the sill flow becomes separated. 
  
 
 

d) The Strait of Gibraltar revisited. 
 

Conventional wisdom dictates that rotation is not a major influence in 
dynamically narrow straits such as Gibraltar and the Bab al Mandab.  In the case of 
Gibraltar (Figure 5.6.1) the value of (g′Ds)1/2/f  based on the average sill depth Ds=200m,  
and g′=0.02ms-2 is 23km, which is significantly greater than the width w*≅13km at Terifa 
Narrows.  However, this gross estimate fails to account for the behavior of the upper 
layer at the eastern end of the strait, where it shallows and accelerates. Acoustic images 
and CTD sections have shown that this layer can separate from the northern coast at some 
point between Tarifa and Gibraltar.  Corroboration of this phenomenon can be found in 
photographs of the strait from space (e.g. Figure 5.7.11), which suggest detachment of the 
(lighter) surface layer and outcropping of the (darker) lower layer near the northeastern 
corner of the strait.  

 
 We have already documented the tendency of maximal flows to produce an 
upstream separated width we that is significantly smaller than what would occur for 
submaximal flow.  The observed separation width (we*=15±1km) is therefore a potential 
discriminator.  Although the idealized theory does not account for barotropic flow, nor 
for the geometric complexities of the Strait, it is still instructive to compare the predicted 
maximal and submaximal values of we with what is observed.  To do so, fix the width of 
the idealized, constant width channel as w=.57, which corresponds to the above estimate 
w*f/(g′Ds)1/2=13/23. As shown by Timmermans and Pratt (2005) the corresponding we* 
for maximal flow is 15km, within the range of uncertainty of the observed value, whereas 
submaximal solutions would have we*>32km. The predicted volume flux for the maximal 
case is Q*=0.92±0.03, which lies at the upper end of the estimate 0.78±0.17 for the upper 
layer flux obtained by Tsimlis and Bryden (2000).  A number of refinements are called 
for here, but the results suggest that the flow was maximal at the time of the observations. 
 
 
 
Exercises   
 
1)  Show that the ‘zero potential vorticity’ limit Ds<<Di∞ is equivalent to the limit in 
which the global Rossby deformation radius (5.1.12) is large compared to the ‘local’ 
deformation radius (g′Ds)1/2/f.   
 
2) Barotropic ‘similarity’ solution for flow through a pure contraction. 
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 Suppose that for two-layer, zero potential vorticity flow, the layer fluxes Q1 and 
Q2, both >0, are specified.  Then show that equation (5.7.15) admits a barotropic solution 
for which the interface is horizontal ( v

1
= v

2
)and the layer depths are constant in x and y.  

Show that the values of v , v
2

, and the layer depths are determined from  
 

 v
1
(y) = v

2
(y) =

Q
1
+Q

2

w(y)d
 and  d2 = d ! d1 = d2 =

Q
2
d

Q
1
+Q

2

.   

 
Show that the Bernoulli function ΔB is not a free parameter for this solutions but instead 
is determined from (2.11) as h+d2. 
 
 
3)  Critical conditions for singly-detached sill flow. 
 

(a) Consider a singly-detached exchange flow where the interface between the 
two layers intersects either z = zT or z = 0.  For a positive interface slope

 
!

2
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1
# 0( ) , 

show that the flow detaches from the right wall (x = w/2) when 
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and that it detaches from the left wall (x = -w/2) when 
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2
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1
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w

2
. 

 
 (b) With the origin x=0 positioned as the left wall (as in Figure 5.7.2b), show that 
the velocity and depth profiles for the case of lower layer separation are given by 
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where the ˆ over a variable implies its value at x = w - ws, the point where the interface 
intersects the bottom of the channel z = 0, and

 
!̂± = !̂

2
± !̂

1
.  

 
(c) Show that the volume fluxes in the two layers are given by 
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(d) By evaluating the Bernoulli function where the interface intersects the bottom, 
show that 

 
 

  

!B =
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+
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#

2
+ z

T
# d                           (5.7.38) 

   
 
Assuming the net transport to be zero  (Q = -Q1 = Q2 > 0), show that (5.7.36), (5.7.37), 
and (5.7.38) can be written as 
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and 
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where 
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(e) By interpreting (5.7.39-41) as three functionals in the three variables 
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and
 
w

s
, show that the critical conditions is. 
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4.  Show that a symmetric state of marginal separation, in which the interface contacts the 
upper right and lower left corners, occurs when d = (v

2
! v

1
)w  and v

2
= !v

1
.  Show using  

(5.7.17) that this state is critical when d=w2.  
 
 
5.  Characteristic speeds under conditions of attachment.  By observing that the profiles 
(5.7.5-5.7.7) are valid for time-dependent flow, show that the equation for conservation 
of y-momentum is given by 
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where v̂ = v

2
! v

1
 denotes the shear velocity and v
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(constant) barotropic velocity.  Further show that the continuity equation for either of the 
layers may be written as 
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From these two expression deduce the characteristic speeds c± and show that they can put 
in the simplified form given by the equation following (5.7.17). 
 
6.  Consider a configuration in which the interface of the two-layer, zero potential 
vorticity exchange flow (with zero net exchange) contacts both the upper right and lower 
left corners of the channel.  Show that such a flow can be critical only for w=d1/2 or 
w=(3d)1/2. 
 
 
Figure Captions 
 
Figure 5.7.1.  Initial condition for the lock exchange problem (a). Plan view of the basin 
and strait geometry (b). 
 
Figure 5.7.2.  Definition sketches for the flow cross section (a) and the various possible 
separation states for with a positive interface tilt (b-d). 
 
Figure 5.7.3.  The nondimensional exchange transport per unit width as a function of the 
mean lower layer depth.  The flow is assumed to occur at the sill section (d=1) and is 
critical and attached to both sidewalls.  Gaps in the curve for w=0.87 correspond to 
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separated flow, for which Figure 5.7.4 should be consulted. The dots and crosses indicate 
maximal exchange values calculated under two different assumptions as described in the 
text. 
 
Figure 5.7.4.  The flow rate per unit width as a function of the separated width of the 
current at the sill (ws/w for single detachment and wb/w for double detachment) for 
various w. By symmetry, ws may be interpreted as the lower layer width for lower layer 
detachment, or the upper layer width for upper layer detachment. 
 
Figure 5.7.5. Pseudo Froude number plane for two-layer flow with zero potential 
vorticity and flow the self-similar channel geometry: w/d2=1.  The inset shows the 
(dashed) critical curve and the (sold) boundaries demarking various regions of separation.  
The shaded region of the inset corresponds to subcritical flow. The layer Froude numbers 
are defined as F

n
= v

n
/ d

1/2 , where d is the total channel depth and v
n

is the centerline 
velocity.  If the layer in question is separated and does not exist at the channel centerline, 
v
n

is defined by formally extending the velocity profile for that layer to the centerline.  
The solid curves in the main part of the diagram are of constant Q1/2

/ (!B " z
T
) , while 

the dashed curves are of constant Q/d2.  There are no contours on the dashed lines, but the 
value of Q/d2 increases as one moves away from the origin, corresponding to shallower 
depths. Solutions are traced along solid lines.  Stars indicate sill controls while the square 
indicates a virtual control.  (Reconstructed from Reimenschneider et al. 2005 Figure 
5.7.9.) 
 
Figure 5.7.6.  An example of submaximal flow based on the Q1/2

/ (!B " z
T
) =-1.4 

contour of Figure 5.7.5.  The top three panels show d2, v2, v1, respectively. The dashed 
curves in the middle two figures show where the edge of the layer in question contacts 
the bottom or top lid.  The bottom panel is a side view showing the intersection of the 
interface with the left wall (dashed-dotted curve) and the right wall (dashed curve.)    
(Constructed from Reimenschneider et al. 2005, Figure 12.) 
 
Figure 5.7.7.  Cross sections of maximal exchange configurations at the sill, mouth and in 
the upstream basin.  (From Timmermans and Pratt, 2005 Fig. 17) 
 
Figure 5.7.8.  The nondimensional maximal volume flux per unit width Qmax/w 
(=Q*max/w*g′1/2Ds

1/2) for pure exchange flow.  The geometry is shown in Figure 5.7.1 and 
the lower layer is assumed to be inactive in its deep upstream basin.  The ×, • and + 
correspond to attached, singly-separated, and doubly separated sill flow, as showing by 
the insets. (From Timmermans and Pratt, 2005, Figure 16.) 
 
Figure 5.7.9.  Cross section of the separated flow in the upstream basin (From 
Timmermans and Pratt, 2005, Figure 5.7.7.) 
 
Figure 5.7.10.  Plan views of the flow upstream of the sill.  The upper layer velocity and 
depth profiles are shown at the mouth (or entrance) of the strait and in the upstream basin 
after detachment has occurred.   In both cases the sill width w and mouth width wm are 
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0.5.  Frame (a) shows a submaximal case with subcritical flow at the mouth and in the 
basin.  Frame (b) shows the maximal flow with critical flow at the mouth and 
supercritical flow in the basin (From Fig. 10 of Timmermans and Pratt, 2005.) 
 
Figure 5.7.11.   October 1984 space shuttle photograph of the Strait showing a (dark) area 
thought to be lower layer outcrop south of Gibraltar.  The strait width at the narrowest 
section is about 13 km, while that at the separation point is 15±1 km.  (NASA, LBJ Space 
Center Photo S-17-34-080.) 
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