
5.6  Overmixing in Inverse Estuaries.   
 
To do: The Q’s in this section should probably have stars??  The solution to problem 2 
needs to be entered into the hw solution section.  
 
 Ideas about overmixing and maximal flow have also been applied to inverse 
estuaries, most notably the Mediterranean and Red Seas.  The overturning circulation and 
exchange flow is driven primarily by excessive evaporation that exists in the arid 
climates of these marginal seas.  Historical estimates of E-P range from 0.5 to 1.0 m/year 
in the Mediterranean and roughly twice that amount in the Red Sea.  The contribution 
from river runoff is minor in both cases and thus Qr can be neglected in the Knudson 
relations (5.5.3a,b).   Evaporation concentrates salt in the surface waters, thereby 
increasing its density and leading to sinking.  In some cases the evaporation preconditions 
the water for deep convection in response to atmospheric cooling events that take place in 
winter. In the two-layer idealization, upper layer water is mixed down into the lower 
layer and the exchange flow at the mouth, in this case the Strait of Gibraltar or the Bab al 
Mandab, is reversed relative to a normal estuary.  The upper layer salinity S1 at the mouth 
is considered to be the observable since it is this water that is drawn in from the outside 
ocean.  
 
 It should be kept in mind that the intensity of the mixing and deep convection in 
an inverse estuary is, in principle, a function of the E-P and/or the surface thermal 
forcing.   It is therefore more difficult to think of mixing as in independent parameter in 
the way that estuary mixing can be considered independent of Qr.   Moreover, 
intensification of thermohaline forcing at the surface presumably causes the density of the 
product water to increase.  That is, stronger forcing ostensibly leads to more mixing but 
also to an increase in the value of g′.  In this situation it is unclear whether stronger 
surface forcing moves the system towards or away from an overmixed state. 
 
 In the Mediterranean and Red Seas, the exact sequence of events by which the 
outflow waters are produced and the geographical distribution of such events are not 
perfectly understood.  In the Mediterranean deep convection events have been observed 
in the Gulf of Lyon and the northern Aegean Sea.  The Red Sea is not as well observed 
but it is known that the outflow comes from an intermediate water mass that lies only 
100-300 below the surface.  In one view of the overturning circulation (Philips, 1969; see 
Exercise 1) the sinking occurs continuously over the whole area of the sea.  Sporadic 
deep convection events in the northern reaches of the Red Sea (Woelk and Quadfasel, 
1996) produce a deeper water mass that contributes a lesser amount to the outflow.  The 
dynamics of the overturning circulation are further complicated during the summer 
monsoon by the appearance of a three-layer exchange flow in the Bab al Mandab. 
 
 The overmixing hypothesis was first applied to the Mediterranean Sea by Bryden 
and Stommel (1984). As in the original estuary formulation, the density difference 
between the two layers is due primarily to the salinity difference, and thus (5.5.5) 
continues to hold.  The arguments leading to the Figure 5.5.1 curve can be repeated with 



river runoff Qr  replaced by (E ! P)dA
As

""  and S1, rather than S2,  considered known.  

The approach to the limit of overmixing occurs as a result of descent along the left or 
right branch of the curve until the maximal flux permitted by the mouth geometry is 
reached.  For an estuary, this descent occurs as a result of holding Qr fixed and supposing 
that S2-S1 decreases as a direct result of increased missing.  This scenario is more 
problematic for an inverse estuary where increased mixing due to 
increased (E ! P)dA

As
""  might actually increase S2-S1.  Regardless of these how it is 

achieved, the minimum possible salinity difference corresponding to the overmixed and 
maximal exchange conditions is found to be 
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As discussed in Sections 5.3 and 5.4, the coefficient q2(Ds/zT*) ranges between 0.208 and 
.25 as the geometry changes from a sill with infinitely deep upstream basin (Ds/zT*=0) to 
a pure contraction (Ds/zT*=1). It has been assumed that the sill lies at the point of 
minimum width in the mouth and that there is no barotropic flow. 
 
 Bryden and Stommel employ the pure contraction limit of (5.6.1) along with  E-
P=.95m/year to obtain S2-S1=1.7 o/oo, not far from the observed value 2.1 o/oo.  This 
estimate has been refined by later investigators who considered physically separated sill 
and narrows and weak barotropic inflow.  In the case of Gibraltar, the shallowest sill lies 
adjacent to Camarinal (Figure 5.6.1) while the narrowest section lies at Tarifa.  Through 
the work of Farmer and Armi (1986) it is now understood that maximal flow under these 
conditions tends to have one control at the narrows (where the upper layer is most active) 
and the other at the sill (where the lower layer is most active).  Further refinements can be 
introduced through the use of non-rectangular cross-sections to more accurately represent 
the true topography  (Bormans and Garrett 1989, and Dalziel 1991).  The most refined 
model to date is due to Bryden and Kinder (1991), who also describe this history in more 
detail.   Their predictions based on maximal exchange are S2-S1=2.0 o/oo, Q2=0.88×106 
m3/s, and Q1=-0.92×106 m3/s as compared with contemporary observations S2-S1=2.1 o/oo, 
Q2=(0.67±0.04)×106 m3/s, and Q1=-(.78±0.17)×106 m3/s (Tsimplis and Bryden, 2000). 
 
  Debate continues as to whether the Gibraltar exchange flow is maximal or slightly 
submaximal (Garrett 2004). Although a hydraulic jump is observed at the western end of 
the strait, it is less clear whether such a jump occurs at the eastern end.  In addition, the 
flow is strongly modulated by the tides, which can cause the observed jump to break up 
and travel away as a train of internal waves.  A comprehensive documentation of the flow 
over a tidal phase appears in Armi and Farmer (1989). Despite these complications, the 
reasonable agreement with observations has made the Mediterranean Sea/Gibraltar 
system the most promising large-scale application of the theory of overmixing.  
 



 In the Bab al Mandab, the exchange flow does not appear to be maximal.  The sill 
and narrowest section occur in different locations and the flow at the latter appears is 
subcritical (Pratt, et al. 1999).  The exchange flow therefore lacks the double critical 
sections characteristic of maximal exchange.  The Red Sea therefore does not appear to 
be overmixed, nor even close to such a state, despite that fact that it is subject to fierce 
evaporation and winter cooling and that the sill depth is about the same as in Gibraltar.   
This apparent incongruity could be explained by the failure of one of the many 
assumptions leading to the hypothesis of overmixing.  One of the most fundamental is 
that an increase in the sea surface forcing pushes the system towards maximal exchange.  
Intuitively, one would expect Q2 to increase as the rate of convection-generating 
buoyancy loss to the atmosphere is increased.  However, the turbulence generated by 
vertical convection and the associated eddy stresses must also increase as the convection 
becomes more active.  The resultant eddy momentum stresses may actually retard the 
exchange flows, making it difficult to predict how rapidly Q2 will actually increase. In 
summary, it is not obvious that an increase in E-P must cause the solution to descend 
along the Figure 5.5.1 solution curve (or its equivalent for an inverse estuary). 
 
 In an attempt to investigate the competition between forcing and eddy damping 
Finnigan and Ivey (1999, 2000) performed the laboratory simulation suggested in Figure 
5.6.2.  The ‘marginal sea’ is really a section of strait channel that lies to the left of an 
obstacle.  The flow there is driven by cooling at the upper surface, which produces 
vertical convection1.  The convection does not penetrate completely to the bottom, but 
does give rise to something like a two-layer exchange flow with most of the sinking 
occurring at the far left end of the basin.  The two active layers overlie a third, inactive 
layer.  In the area between the sinking and the sill, there is some return flow or 
recirculation of layer 2 fluid back into layer 1 (not shown in the figure). The lower layer 
spills over the sill and the for there is hydraulically controlled in all cases. 
 
 Since the experimental flow is driven entirely by thermal effects, a 
thermodynamic balance is needed to replace the statement of conservation of salt.  
The new constraint may be derived from the density equation, which for a continuously 
stratified fluid is 
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Here κ is a turbulent diffusivity and !

3

*
"  represent the three-dimensional divergence 

operator.  Relative differences in density throughout the domain are typically small and it 
has become traditional to work with buoyancy b = !g

" ! "o
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 in place of density.  Here ρ 

ρo denotes a constant reference density.   If the condition of incompressibility !
3

*
"u* = 0  

is used, b may be used in place of ρ in (5.6.2) and the corresponding steady form is  
 
                                                
1 The true system in an inverted version of what is shown in Figures 5.1 and 5.2, with the obstacle 
suspended from the top lid and the left hand basin heated from below. 
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Integration of this relation over the volume of the marginal sea and use of the divergence 
theorem gives a relation between the advection of b into the basin at the mouth and the 
turbulent diffusion of b through the bounding surfaces.  The former is given by the 
integral of vb over the entrance of the strait and equals 
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exchange flow.  In the case of pure exchange (Q1=-Q2) the net flux is 
 
     Q2(b2-b1)=-g(ρ2-ρ1)/ρo=-Q2g′.  (5.6.3) 
 
The diffusive flux is presumably dominated by fluxes at the air-sea interface z*=zT* and 
is given in terms of the rates of evaporation E and sensible heat gain Qs by  
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(e.g. Phillips 1966).  Here Ss is the surface salinity and LH, αv and cP are the latent heat of 
evaporation, the coefficient of thermal expansion and the specific heat under constant 
pressure, all of sea water.  Bo has units [L2/T3] and is positive over areas of heat loss. If Bo 
is uniform over the surface area As of the basin then the buoyancy budget is given by 
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An analogous expression can be derived for the case of haline forcing (see Exercise 2). 
 
 If (5.6.5) is used to replace Q2 (=-Q1) in the critical condition (5.5.4), the result 
may be written.  
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This relation is kin to (5.5.8), but now the surface buoyancy flux BoAs replaces the river 
runoff Qr and g′ replaces the salinity difference.  This relation can also be written in terms 
of the lower layer volume flux: 
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If one were to follow the thread of the previous section, the buoyancy flux would be 
considered fixed and the value of g′ would be minimized (or Q2 maximized) over d1c to 
get a maximal, overmixed state.  The overmixed state would be limited by the maximal 
Q2 permitted by the hydraulic constraints for the sill height in question.  For a high sill, 
the maximal Q2 occurs when d1c=.625 whereas d1c=0.5 for a pure contraction with no sill.  
The Finnigan and Ivey experiment utilizes a relatively high sill, leading to: 
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A measure of proximity to this overmixed state is then 
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Maximal exchange occurs when d1c=.625; submaximal exchange occurs for larger values, 
or deeper interface levels. 
 
 Now consider a sequence of experiments in which the exchange is initially 
submaximal and the surface buoyancy flux (and therefore g′Q2) is gradually increased. It 
is possible, though unlikely, that g′ could stay fixed during this process.  The increased 
buoyancy flux would then have to be carried by an elevated Q2 and, as suggested by 
(5.6.9), the interface would shallow and the system would evolve towards maximal state.  
At the other extreme, Q2 might remain constant and the extra buoyany flux would be 
carried by a larger g′.  In this situation, the flow would be pushed away from the maximal 
limit (Q2 would stay the same while Q2max would increase.)  More generally, (5.6.7) 
suggests that Q must increase more rapidly than (BsAs)1/3 in order to move towards the 
maximal state.  According to (5.6.6) g′ must then increase no more rapidly than  (BsAs)2/3.  
 
 Finnigan and Ivey cite four experiments with successively larger Bo (Table 5.1).  
Bo is lowest for experiment 1 and increases by factors of about 2 or 3 for experiments 2,3 
and 4.  The value of Q2/Q2max increases slightly from Experiment 1 to 2, but it decreases 
for the remaining runs.  Although the value of Q2 increases slightly from 2 to 3 to 4, this 
trend is compensated by increases in g′.   There are some practical limits on how hard the 
experiment can be driven.   
 
 
 One aspect of this experiment that is unrealistic for applications such as the 
Mediterranean is the limited extent of the upstream reservoir.  Suppose that the local 
surface buoyancy flux Bo is kept constant and the area As of the marginal sea is increased.  
If the local convection and overturning processes remain unchanged then g′ should also 
remain the same and the increased buoyancy flux !g Q

2
 should be contained largely in the 

flux Q2. Grimm and Maxworthy (1999) describe an experiment in which As is effectively 
larger than in the Finnigan and Ivey experiment.  [Also, the thermal forcing is replaced 
by an injection of a brine mixture at the surface.]  Both submaximal and maximal 
(overmixed) exchange flows are observed depending on the strength of the forcing.  Still, 
the latter show that there is more to overmixing and maximal exchange than perhaps met 
the eyes of the originators of this idea.  
 

 
Table 5.1 

(data from the four experiments of Finnigan and Ivey, 2000) 



 
 Experiment  Bs×106 (m2 s-3)   Q2/w* (m2 s-1)  g′ (m s-2) 
 
  1   0.4   0.39  0.0036 
  2   0.9   0.56  0.0029 
  3   3.0   0.82  0.0068 
  4   6.0   1.02  0.0080 
 
 
 
 
Exercises 
 
 
1)  (The Phillips(1969) Red Sea model):  As a simple model of deep convection consider 
a quarter plane (z<0 and y>0) of initially homogeneous fluid.  At the upper boundary z=0 
the fluid is subjected to a uniform buoyancy flux Bo due to cooling and evaporation. This 
forcing gives rise to turbulent convection, setting up a hypothetical cellular circulation in 
which fluid surface fluid is drawn towards the wall and deep fluid moves away from the 
wall.   The effects of viscosity are to be ignored and there is no buoyancy flux thought the 
sidewall (y=0).  Present a coherent argument, purely on dimensional grounds, that 
 
    v ! (Boy)

1/ 3
f (z / y) , 

 
where v represents the time-mean y-velocity  of the statistically steady flow that 
eventually occurs. Also,  f is an unknown universal function.    
 
 Next suppose that the inflow and outflow must cross a sill of depth Ds that lies a 
distance L from the vertical wall.  A plausible generalization of the above relation is then 
 
    u ! (Boy)

1/ 3
f (z / y)g(z / Ds ) . 

 
If the flow is now imagined to occur in a channel of width w*, compute the exchange 
transport and comment on similarities with (5.5.12). 
 
2.  For the case of an inverse estuary driven by E-P, and with negligible Qr, show that the 
buoyancy flux through the mouth is given by 
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Note the analogy with the expression (5.6.5) for a thermally driven system. 
 
 
 



 
Figure Captions 
 
Figure 5.6.1 Bathymetry of the Strait of Gibraltar. 
  
Figure 5.6.2 Sketches of the flow forcing and resulting two-layer regime in the 
experiments of Finnigan and Ivey (2000).  The lowest layer is relatively inactive. 
 
Figure 5.6.3  Photographs of three realizations of the Finnigan and Ivey (2000) 
experiment with progressively larger surface buoyancy flux (applied where the surface is 
marked by a thickened line).  From top to bottom, the frames correspond to Experiments 
2, 3, and 4 in Table 1.  
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Low resolution version of Figure 5.6.3




