
To do: The final paragraph has some references and question marks along with a note.  
 
 
 
5.5 Overmixing and maximal flow in estuaries. 
 
 
 As discussed in the previous section, two-layer exchange flows exhibit a range of 
critically controlled steady states.  Given certain restraints imposed by the upstream 
conditions, there generally exists a family of ‘submaximal’ solutions in which one of the 
layers acts more or less like a single layer (reduced gravity) flow while the other layer 
remains relatively passive.  There is a single section of critical flow and the wave that is 
arrested is the one that attempts to propagate in the upstream direction of the ‘active’ 
layer.  For a pure sill geometry, only the lower layer can be the ‘active’ one.  For a pure 
contraction, either layer may be the relatively active one.  There is also a particular 
solution that is characterized by the presence of two critical sections and is a limiting case 
of the above solutions.   One control often acts where the upper layer is active while the 
other acts where the lower layer is active.   Such controls arrest wave propagation 
opposite to the direction of flow in the active layer.   In the example of flow from a deep 
basin over a pure sill, the ‘lower layer control’ lies at the sill while the ‘upper layer 
control’ lies in one of the neighboring basins.   In the case of a pure contraction, both 
critical states coincide at the narrowest section and both layers are active.   The theory for 
these idealized geometries has been extended to include situations where the sill and 
narrowest width occur at different sections.  Farmer and Armi (1986) have shown that the 
maximal solution in this case has one control section at the narrows and the second at the 
sill.    
 
 For a steady exchange flow with fixed reduced gravity g  and flux ratio Qr  the 
solution with two critical sections has maximal exchange transport.   The control sections 
for the maximal solution are insulated from the far field by stretches of supercritical flow 
that extend into the reservoir, terminating in hydraulic jumps.  Linear wave propagation 
is permitted into, but not out of, the end basins.   In this way, the flow at the control 
sections (particularly the exchange transport) is immune to mechanical changes that 
occur in the end basins.  At the same time, it should be kept in mind that g  need not 
remain fixed. Its value is determined by the layer densities and these are advected by 
fluid itself.  Changes in density are carried through straits and over sills regardless of 
whether waves are able to propagate through.  As we shall show, the value of g  depends 
on how the flow is forced.  
 
 Although Long’s (1954) experiments, their descendants, and other initial-value 
experiments are helpful in developing intuition about maximal and submaximal flows, it 
is usually difficult to extrapolate the results to particular geophysical settings.  For 
example, oceanographically relevant exchange flows often originate from an upstream 
basin or estuary that has finite extent and is subject to forcing, dissipation and mixing.   
The upstream conditions are therefore quite different from those envisioned by Long.    
Usual forcing mechanisms include cooling, evaporation, and precipitation over the basin 



surface, inflows and outflows from other straits or rivers, and mechanical forcing due to 
winds and tides.  Estuaries are fed by sources of fresh runoff water that floats above the 
denser, saline ocean water and flow out into the ocean proper.  Turbulence generated by 
tides, winds and internal instabilities can lead to mixing of the two water masses and a 
salinifacation of the upper layer. The export of salt that occurs where the upper layer exits 
must be balanced by an inflow if deeper, saltier water, and an exchange flow is set up. 
Semi-enclosed seas having excessive evaporation or cooling can act as ‘inverse 
estuaries’, where the exchange flow is reversed.  Two of the most widely studied 
examples are the Red Sea and Mediterranean Sea, which experience excessive 
evaporation and relatively little fresh water input from rivers.  The combination of 
evaporation and surface cooling causes the surface waters to sink and eventually flow out 
into the ocean proper through the connecting passages, in this case the Bab al Mandab 
and the Strait of Gibraltar.   Relatively fresh water is drawn in at the surface of these 
straits, resulting in exchange flows.  Whether the latter are maximal or submaximal is a 
question that has excited a great deal of debate. 
 
 
 Under conditions of steady flow in a closed basin with observable air-sea fluxes it 
is easy to write down a number of constraints on the overall exchange flow.  For 
example, the net mass transport out of the basin must be balanced by river runoff, 
precipitation, and evaporation: 
 

   (E P)
As

dA = (QR +Q1 +Q2 )    (5.5.1) 

 
where  E-P  represents the volume flux per unit surface area due to evaporation minus 
precipitation, As is the surface area of the basin, and -QR is the volume inflow due to river 
runoff.   If there are differences in the concentration of a chemical tracer between the 
inflow and outflow and if the sources and sinks of this tracer in the basin can be 
quantified, then a similar conservation law can be written down.  For example, the input 
of salt due to river runoff in the Red Sea and Mediterranean Sea is negligible and thus the 
total influx of salt must be approximately zero: 
 
     Q1S1+Q2S2=0.      (5.5.2) 
 
 Equations (5.5.1) and (5.5.2), which are known as the Knudsen relations, can be 
rearranged to yield 
 

   Q1 =
S2 (E P)dA +QrAs

S1 S2
    (5.5.3a) 

 and   

   Q2 =

S1 (E P)dA +QrAs

S2 S1
.   (5.5.3b) 

 



The salinity of the inflowing layer (either S1 or S2) is equal to the salinity of the ocean 
water that is drawn in and can nominally be regarded as known.  We will also assume 
that the values of E-P, and Qr are also known, even though the uncertainties in the 
measurement of these fluxes may be significant.  If the salinity of the outflowing layer 
can be measured, then (5.5.3) can be used to calculate Q1 and Q2.  
 
 The above approach appears to have been first used by Neilsen (1912) to estimate 
the volume fluxes in the Strait of Gibraltar.  Although they may provide a practical means 
for estimating layer fluxes, equations (5.5.3a,b) beg the question of what determines the 
salinity of the outflowing layer (or, equivalently, S2-S1).  A theory that provides an answer 
is based on the idea of overmixing, first proposed by Stommel and Farmer (1953).  Their 
ideas were formulated in the context of an estuary circulation, where E-P is neglected, S2 
is regarded as fixed, and mixing between the upper and lower layers in the estuary 
interior is regarded as imposed independently of the mean circulation itself.  One may 
begin by imagining an unmixed state in which the river discharge QR produces a fresh 
layer of water (S1=0) that passes through the surface of the estuary and exits at the mouth.  
If mixing with the lower saline layer is initiated, perhaps as a result of winds or tides, S1 
is increased and S2-S1 is decreased. Equations (5.5.3a,b) then show that Q1 and Q2 
increase: the estuary acquires a weak inflow of salty ocean water and an increased 
outflow of brackish surface water.  If the mixing is increased further, the salinity 
difference between the layers continues to decrease and a stronger exchange circulation is 
induced.  This process may not, however, continue unabated.  Eventually the exchange at 
the mouth of the estuary should reach a maximal value permitted by hydraulic constraints 
and mixing beyond this threshold should have no further effect.   
 
 These ideas can be cast in quantitative form by requiring that the flow at the 
mouth of the estuary be hydraulically controlled.  Thus  
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where dnc* here refers to the layer depths at the mouth. 
 
 The density difference between the two layers is due primarily to the salinity 
difference and thus  
 
 
    2 1 = (S2 S1)      
 
where  ( =0.77 10-3g cm-3 ppt-1) is the coefficient of expansion of water due to salinity. 
In terms of the reduced gravity: 
 

    g = g
(S2 S1)

o

.    (5.5.5) 

 



 If the depth at the mouth of the estuary is Ds, then d1c *+d2c* = Ds  or 
 
    d1c + d2c = 1      (5.5.6) 
where dnc=dnc*/Ds. 
 
 
 Substitution of the (5.5.3) layer transports into (5.5.4) leads to  
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after use of (5.5.5) and (5.5.6).   Further discussion of this relation can be simplified if it 
is assumed that (S2- S1)/S2<<1, implying that Q1 -Q2 and therefore QR<<Q1. Setting S1=S2 
in (5.5.7) then yields 
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 The relationship between the nondimensional salinity difference s and d1c 
(Figure 5.5.1) takes the form of a curve with two vertical branches and single minimum. 
For a given value of the nondimensional salinity difference s, and provided ( s)3>16, 
there are two roots d1a and d1b.  Let us assume for the time being that the left branch of the 
curve gives the appropriate root.  Begin at the state d1c=d1a and imagine that the mixing 
increases while QR is held fixed. Then S2-S1 should decrease, lowering the value of s, 
and the solution for d1c is found by descent along the left branch of the solution curve.  
The minimum possible value of s lies at the base of the curve, where d1c=1/2.  The 
corresponding salinity difference 
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is the minimum possible, corresponding to the largest Q1(=-Q2), for the estuary. A further 
increase in the intensity of mixing in the estuary can apparently not alter these values and 
the resulting state is therefore ‘overmixed’.  It is not clear what this term implies for the 
interior state of the estuary itself, but some clues are provided by laboratory experiments 
to be presented here and in the next section.  The analysis can also be carried out using 



the unapproximated version (5.5.7) of the governing relation and this leads to a skewed 
version of the Figure 5.5.1 curve (see Exercise 1).  
 
 In the overmixed limit, the interface depth at the estuary mouth lies at mid-depth 
and this corresponds to a state of maximal hydraulic exchange for flow through a pure 
contraction, as discussed in Section 5.4.  Thus the state represented by the minimum of 
the Figure 5.5.1 curve represents a dynamically consistent state of maximal exchange in 
which the mouth, where the flow is critical, is insulated from both the ocean and the 
estuary by finite regions of supercritical flow. Other solutions lying along the left branch 
of the curve are hydraulically controlled, but submaximal.  Supercritical flow exists only 
outside the estuary mouth. 
 
 The situation in which the mouth contains a sill is another matter.  Let zT* 
represent the depth, taken as constant, in the estuary interior, so that Ds/zT*<1 when the 
mouth contains a sill.  As discussed in Section 5.3, the corresponding maximal exchange 
solutions have unequal layer depths over the sill.  When the sill is very high (Ds/zT*<<1), 
d1=.625 and d2=.375 so that the interface lies below mid-depth.  As the sill height  Ds/zT* 
is reduced the interface rises, eventually to mid-depth.  The corresponding range of d1 
values is indicated by the solid segment of the curve in Figure 5.5.1.  The limiting state of 
maximal exchange, and thus overmixing, in the presence of a sill therefore lies above the 
bottom of the curve and on the right branch.  For a submaximal flow the interface at the 
sill lies below its level for maximal exchange.  The corresponding ‘undermixed’ states lie 
along the right-hand branch of the curve.  If no sill is present, the choice between left and 
right branches depends on how the flow is established; the laboratory experiment 
described next selects the left branch.   
 

The Stommel-Farmer hypothesis of an approach towards maximal estuary 
exchange and overmixing under conditions of controlled mixing has been investigated in 
a number of the laboratory experiments.  Similar experiments geared towards inverse 
estuaries will be discussed in the next section.  On method of controlling the mixing rate 
is to introduce fresh water into the laboratory estuary in the form of a turbulent plume of 
adjustable depth, and hence variable mixing.  In Timmermans (1997), a small basin 
representing an estuary is connected to a salt-water reservoir by a narrows (Figure 5.5.2). 
The estuary basin receives a steady flux of fresh water through a small submerged tube at 
adjustable depth. The fresh influx forms an ascending turbulent plume that entrains salty 
water as it rises to the surface. Brackish plume water accumulates at the surface and exits 
horizontally through the narrows while salty water enters beneath to supply salt to the 
plume. As the depth over which the plume rises increases, so does the total amount of 
entrainment.  The net upstream mixing in the experiment, thought by Stommel and 
Farmer to be controlled by the tides or winds, can be varied by injecting the fresh water at 
different elevations. 

   
Suppose that the plume is fed at elevation zS* and volume rate QR and that it 

ascends a height zT*-du*- zS* in order to the reach the base of the upper layer (Figure 
5.5.2). The entrainment into the plume, and the corresponding value of g  at its top, can 
be estimated (Turner, 1973) using a theory for a self-similar plume rising through a 



quiescent fluid.  The theory, which is based on the assumption that the source is weak 
(QR<<Q2) yields 

  

 g = 8.33 g S2QR( )
2
zT * du * zS *( )

5
1
3
,   (5.5.9) 

 
where the leading coefficient is determined empirically. 
 
 This information may be used to predict the state of the exchange flow as function 
of the source elevation zS*.  To do so, one must equate the internal energy (Bernoulli 
function) in the basin near the source to that at the narrowest section.  If the 
approximation of zero net exchange is made, it follows that  
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where d1c and du are the upper layer depths at and upstream of the sill, 
nondimensionalized by the total depth Ds.   
 

 Equations (5.5.8-10) can be used to calculate the state variables ( g , du, 
d1c, etc.) as functions of the mixing parameter, zS*, or equivalently zR=( zT*- zS*)/DS.  For 
a given zR, the exact location along the curve of possible solutions (Figure 5.5.1) can be 
found.   Timmermans (1999) verified that increasing zR, caused by a decreases in the 
source elevation, causes the solution to tend towards the overmixed limit and that data 
track the predicted curve quite well (Figure 5.5.3).  However, even when the plume 
source is positioned at the bottom of the tank (zR=1) the total entrainment is insufficient 
to reach the limit of overmixing, here the minimum of the curve.  (The threshold zR 
predicted by the theory is about 2.5.) This limitation can be overcome by adding more 
plumes and the ‘x’ symbols, representing experiments with 6 plumes, reach the threshold 
of overmixing.    

 
One of the great mysteries raised by the hypothesis of overmixing concerns the 

state of the flow that occurs when this limit is exceeded.  The basic premise is that the 
salinity difference between the two layers decreases as mixing increases, and that the 
exchange flow must increase to satisfy the overall salt budget.   But what then happens 
when the exchange reaches its maximal value?  A further increase in mixing would seem 
to require a further decrease in the salinity difference, leading to a violation of the salt 
budget.   What happens under these conditions is not generally understood and 
undoubtedly depends on the way the flow is set up.  The laboratory experiments 
described below and in the next section provide some insight. 

 
Using an inverted version of the experiment described above, Whitehead et al. 

(2003) attempted to exceed the overmixed condition with a single plume and to provide 
some insight into the corresponding upstream state. Technical considerations made it 
desirable to invert the experiment, so that the outer reservoir contains fresh water and salt 



water is pumped in through a tube elevated above the bottom the ‘estuary’ basin (Figure 
5.5.4).  The greater relative elevation zR > 5 is achieved in the same tank through 
replacement of the full-depth narrows with a submerged and shallower passage, similar to 
an upright experiment with a shallow sill. The dyed salt plume appears on the far right in 
a photo (Figure 5.5.5).  The salt-water layer appears black in the right basin and grey in 
the narrows because the basin is wider.  

 
The run shown is thought to exceed the limit of overmixing. The fresh upper layer 

flows into the basin from left to right and accelerates as it passes through the narrowest 
section and into the right basin.  In the classical view, this flow would develop a 
hydraulic jump somewhere near the entrance to the basin.  However, the region where 
this jump is expected is instead marked by the presence of billows (Figure 5.5.6). The 
latter cause the clear, fresh water entering the chamber to mix with the salty water, 
resulting in a brackish (grey) layer that extends into the basin up to the level of the tube 
source.  The presumed maximal exchange flow should also have a hydraulic jump at the 
left end of the channel, and while this feature may have been present, it was not 
documented. 

 
The approach to and beyond the limit of overmixing can been seen in a set of 

density profiles taken in the right basin (Figure 5.5.7).  The value of zR, now the elevation 
of the plume source, is labeled with each profile. The profiles show something like two 
homogeneous layers, often separated by a stratified, intermediate layer.  The value of g  is  
defined using the difference between the local density and the density of the fresh water 
in the left reservoir.  For the Stommel and Farmer theory, the relevant value of g  is based 
on the density difference between the upper and lower layers, measured at the narrowest 
section.  This value is very close to the g  measured within the bottom layer of the 
profiles shown in the figures.  It can be seen that as zR is increased (the source is raised) 
from 1.5 to 2.5, the bottom value of g  decreases. Further increases in zR cause g  to 
cluster around a value .105, though there is an unexplained minimum at zR=3.0.  
Although the theoretical value g =.073 for this experiment is not reached, the 
convergence for values zR>2.5 suggests that the exchange flow is close to or has exceeded 
the limit of overmixing. The theoretical underestimate may be due to the presence of 
frictional effects that have not been accounted for. 

 
We now return to the conceptual question, raised earlier, and ask how 

‘overmixed’ flow conspires to keep g at a relatively fixed value while the elevation of the 
plume source, and presumably the mixing, increased.  In answer is provided by two other 
changes in density distribution of the basin flow. One is a deepening of the lower layer 
and the other is the salinification of the overlying fluid (as evidenced by an increase in 
overall density).  This second effect is due to the billows and other interfacial instabilities 
in and around the narrows, which cause the salty bottom layer to become entrained in the 
fresh layer entering from the reservoir.  Now the total amount of salt in the basin must 
remain constant, and thus the source salt flux must equal the salt flux through the narrows 
into the right reservoir.  When the basin flow is undermixed, freshwater from the 
reservoir enters the basin and becomes entrained into the salty plume. As the plume 



mixing is increased and more fresh water is entrained, the plume is increasingly diluted, 
the density difference between layers decreases, and the exchange flow through the 
narrows intensifies.  Once maximal exchange conditions in the narrows are reached, the 
amount of fresh water that can be drawn in from the reservoir cannot be increased.  If the 
plume mixing is increased (by raising the source) the system responds in a way that limits 
the entrainment of fresh water. It does so by increasing the depth of the lower layer (thus 
limiting the vertical height over which mixing can occur) and by creating a mechanism 
by which salt is detrained into the incoming fresh water (thus increasing the salinity of 
the water that is entrained into the plume).  In this respect the term ‘overmixing’ is 
misleading. Although the overall level of turbulence in the basin may increase, the actual 
net mixing between the fresh and salty layers remains fixed.  

 
 Modern thinking about estuarine circulation has progressed well beyond the basic 
ideas presented here.  Overmixing and maximal exchange are certainly relevant but 
models that resolve the interior dynamics and that include tidal forcing show that the 
circulation can be limited by other factors.  The reader is referred to Hetland and Geyer 
(2004) and references contained therein for further information. 

  
We end this section with a bit of speculation that some readers may wish to turn 

into careful research.  The Black Sea acts like a giant estuary, with a relatively fresh  
surface layer fed by rivers and precipitation, and a deep, saline bottom layer.  The Sea is 
connected to the Mediterranean by the Bosphorus, which contains a two-layer flow that 
exchanges fresh surface water for saline Mediterranean water.  The lower layer of 
Mediterranean water begins it’s journey at a salinity of about 38 psu, passes through the 
Bosphorus, and descends in a turbulent plume into the Black Sea.  Entrainment with the 
fresher (17 psu) water leads to dilution of this plume.  The resulting water mass (about 22 
psu) spreads throughout the deep Black Sea basin.  The deep and shallow layers are 
separated by pycnocline with a base at about 150m depth, well below the 40m deep 
Bosphorus.   

 
There are two features that suggest that the Black Sea could be overmixed.  One is 

the relatively deep pycnocline, similar what occurs in the inverted experiment (Figure 
5.5.7).  In that experiment, the interface or pycnocline in the right basin is much 
shallower than the passage.  The second suggestive piece of evidence is that two separate 
sections of possible hydraulic control have been observed in the Bosphorus (Gregg? 
Seim? E. Özsoy, et al. 1993), suggesting that the exchange flow could be maximal.  Need 
to look at some of the recent papers by Mike and Harvey to see whether they document 
the double hydraulic control, and whether it is the right combination to support the idea 
of maximal exchange. The two controls must have supercritical flow on either side, and 
subcritical flow between. 
 
  
Exercises 
 
1)  By rearranging the primitive version (5.5.7) of the relation governing estuary flow, 
show that  
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sketch the curve of  s  vs. d1c over 0<d1c<1 and note that the result is an asymmetrical 
version of the Figure 5.5.1 curve.  Show that the minimum value of  s  lies where 
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Deduce that this minimum must occur in 1/2 d1c<1 and thus the interface must in the 

overmixed limit lie below mid-depth.  Note that the minimum value of  s itself can be 
obtained by eliminating d1 between the last two equations and solving the resulting 
polynomial. 
 
2.  How would the original theory of Stommel and Farmer be modified to fit the 
experimental conditions suggested in Figure 5.5.4? 
 
 
Figure Captions 
 
Figure 5.5.1.  The dimensionless salinity difference s as a function of the dimensionless 
upper layer thickness d1c at the mouth of the estuary, according to equation (5.5.8).  The 
thickened portion of the curve shows the location of maximal exchange for a range of sill 
heights.   
 
Figure 5.5.2  Sketch of the reservoir, fresh water source, and passage used to quantify an 
exchange flow with partial mixing. The arrows indicate direction of flow and not the sign 
of the flux. 
 
Figure 5.5.3. The curve shows the predicted value of g  as a function of the 
dimensionless, critical upper layer depth d1c at the narrowest section. The hash marks on 
the curve indicate where a solution with the indicated value of zR should lie.  The symbols 
indicate data points from the experiment of Timmermans (1999). Points indicate forcing 
by a single plume while crosses indicate six plumes. 
 
Figure 5.5.4  Sketch of the Whitehead et al. (2003) laboratory setup. 
 
Figure 5.5.5  Photograph of an experiment with zR=3, thought to be overmixed.  
 
Figure 5.5.6 Close-up of the flared region between the passage and the right basin where 
clear water flows up and into the chamber with developing billows. The experiment is the 
same as shown in Figure 5.5.6. 



 
Figure 5.5.7  Density profiles for 14 experiments, measured at the location shown in 
Figure 5.5.4.  
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