
5.4  Steady flow through a pure contraction. 
 
 
 If the bottom remains horizontal (h*=constant=0, say) and the flow is choked only 
by contractions in the width of the rectangular channel then a new type of control 
condition can come into play.   Solutions can still be represented in the Froude number 
plane and Figure 5.4.1a shows an example with Q

r
=1. The thinner contours continue to 

represent constant Q
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/ (zT * !h*)
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w *[ ] , except that w* rather than h* is considered 
as varying from one contour to the next.  Decreasing values of w* generally lead one 
away from the origin.  The form (5.3.1) of the energy equation is no longer convenient 
for constructing solution curves since w* appears as a scale factor.  The more helpful 
form 
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is obtained by setting h*=0 and using (5.3.2) to eliminate w* from (5.3.1). The internal 
energy is now represented by d2∞ which, in view of (5.2.10), is the interface elevation in 
the hypothetical quiescent basin.  The thick curves in Figure 5.4.1a are contours of 
constant d2∞. Exchange flows and unidirectional flows having the same values of Q

r
 and 

Q
2

 are again represented by the same diagram, though differences exist in terms of 
stability properties and locations of hydraulic jumps.  In contrast to the case of variable 
topography, both layers feel the geometric variations directly, leading to symmetry 
between the upper and lower layers.  For any solution with a given Qr there is a 
comparable solution with flow rate ratio 1/Qr in which the two layers are interchanged 
(see Exercise 2.) 
 

Submaximal Flow from a Wide Basin 
 
 
 Figure 5.4.1a represents solutions for which the volume flow rates in the two 
layers have equal magnitude: Q

r
 =1.  There is a family of constant energy curves that 

emanate from the origin (F
1
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= F
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= 0 ) and represent flows originating from an infinitely 
wide, quiescent basin.  Let us first restrict attention to unidirectional flow.  All of the 
curves beginning at the origin intersect the critical diagonal, indicating the presence of a 
critical section for sufficiently small wm*.  For all but one of these curves, the contours of 
constant width are parallel to the energy curves along the critical diagonal.  Critical flow 
for these solutions occurs at the narrowest section.  Continuing past this section leads to 
supercritical flow, possibly with a hydraulic jump.  If the upper layer thickness is greater 
than the lower layer thickness in the basin  (d2∞<0.5) then the lower layer is thinned and 
accelerated  and the upper layer is thickened and decelerated through the contraction.  An 
example is given by the curve afm of Figure 5.4.1b. The opposite is true when d2∞>0.5 as 
indicated by curve ain.  The behavior of the thinner layer in each case is similar to single 
layer flow through a contraction. 



 
 

Self-Similar Flow 
 
 Of the Figure 5.4.1a curves originating from the origin, there is one that does not 
cross the critical diagonal at a point of minimum width.  This ‘similarity’ solution is 
given by straight line F1

2=F2
2 and corresponds to equal basin layer thicknesses (d2∞=0.5). 

Since Q
r
= 1this solution is characterized by equal layer depth and velocity at each 

section. The fluid behaves as if it were homogeneous, entirely bereft of internal 
dynamics.  For relatively large values of wm* (q2<0.25) the solution will remain 
subcritical and will resemble something like the trace ala in Figure 5.4.1b.  As q2 is 
increased, the trace will cross the critical diagonal and become something like abc.   
Where the diagonal is crossed (point b) the solution curve is normal to the curves of 
constant q2.  In other words, critical flow occurs not at the minimum width but at a point 
of changing width: !w * /!y* " 0 .  The existence of this virtual control is permitted by 
the regularity condition (5.2.17) and the fact thatv
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terms, the control is made possible by the fact that changes in width force no changes in 
the internal dynamics of the flow. 
 
 This seems like a phony version of hydraulic control. Decreasing the narrowest 
width simply causes point c to slide away from the origin in Fig 5.4.1b.  There is no 
choking or upstream influence.  If the width at the virtual control itself is altered, then the 
control section simply moves to the new location of the former width.  The internal 
dynamics have completely been removed from this flow and the fact that the flow 
becomes critical w.r.t an internal wave is incidental. 
 

Laboratory Examples of Unidirectional Flow 
 
 Armi (1986) has produced examples of these solutions in a laboratory channel 
with a width contraction (Figure 5.4.2). The two layers are pumped from right to left at 
fixed values of Q1 and Q2  such that Qr=1.  The channel narrows to a minimum width 
midway through and widens again at the left end.  There is nothing like a quiescent 
reservoir and the flow is varied changing the net transport Q (=Q1 +Q2 ) and by altering 
the downstream conditions.  For smaller values of Q, the flow resembles a solution with 
unequal layer depths (d2∞<0.5 or d2∞>0.5) as described above. Examples are given in 
Figures 5.4.2a,b and the corresponding solution traces are something like ain or afm in 
Figure 5.4.1b.   In either case the flow is subcritical until it reaches the narrowest section, 
where it undergoes a transition to supercritical flow.  The particular solution arising from 
a specified Q  is obtained by calculating the value of q2 (=Q
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narrowest section and finding the intersection of the corresponding q2=constant curve 
with the critical diagonal in Figure 5.4.1a.  For q2<.25 there will be two such intersections 
and therefore one must choose between two solutions, one having d2∞<0.5 and the other 
d2∞>0.5.  In the experiment, the choice is forced by downstream conditions that influence 
the initial evolution by which the steady flow is set up.  
 



 If Q is increased, the value of q2 at the narrowest section increases, forcing the 
intersection with the critical diagonal to move closer to the midpoint F1

2= F2
2=1/2.  The 

value of d2∞ for the corresponding solutions therefore approaches 0.5, meaning that the 
layer depths become more equal.  At the value q2=.25 the similarity solution is obtained 
and the layer depths become equal at all points along the channel.  The flow is critical at 
the narrowest section and subcritical elsewhere.  If Q  is increased still further, the 
corresponding maximum value of q2 must be realized by following the similarity solution 
beyond the critical diagonal.  The flow now passes through a virtual control and becomes 
supercritical at a point upstream of the narrowest section.  It remains supercritical through 
the latter and retraces its path back towards the origin and through a second virtual 
control.  The theoretical path is something like abcba in Figure 5.4.1b. In reality, a slight 
amount of dissipation will cause the flow to move off of the supercritical portion of the 
similarity solution and onto one of the supercritical solutions (with d2∞≠0.5), perhaps with 
a hydraulic jump.  The circuit traced by the solution is therefore something like abcdefa 
or abcghia  in Figure 5.4.1b, the choice influenced by downstream conditions.  A 
laboratory realization of this flow is shown in Figure 5.4.2c.  In principle, Q  can be 
increased without limit, not surprising when one considers that the flow is behaving as if 
the density was uniform. 
 

Lock Exchange Flow 
  
 Under conditions of pure exchange (Qr=-1) similar versions of most of the above 
solutions can be found.  One that that is not observed is the exchange version of the 
similarity solution, which now has v

1
= !v

2
and is unstable upon entry into the 

supercritical region.  However another solution comes into play: the one indicated by the 
energy curve d2∞=0.5 that makes grazing contact with the critical diagonal in Figures 
5.4.1a or b.  First identified by Wood (1968), this solution can be imagined to occur 
between two wide basins, one in which the top layer is very thin and the other in which 
the lower layer is very thin.  This situation is difficult to realize when the flow is 
unidirectional  (see Exercise 3), however it can readily be established for an exchange 
flow. The traditional method of doing so is to perform a ‘lock exchange’ experiment (e.g. 
Figure 5.4.1) with a pure width contraction in place of an obstacle.  Removal of a barrier 
placed at the contraction allows the fluids to move in opposite directions, displacing each 
other above and below, eventually resulting in a steady solution of the type just 
described.  The flow is critical at the narrowest section, where both c

!
*  and c

+
*  vanish, 

and becomes supercritical on either side.  Hydraulic jumps typically arise in these 
supercritical extensions, so that the complete solution circuit is something like aijbkfa in 
Figure 5.4.1b.  The direction of wave propagation in the supercritical regions is always 
away from the narrowest section and thus the flow there is insulated from small 
disturbances generated in the neighboring basins.  
 
 The pure lock exchange solution achieves the maximum value of q2 (=0.25) of 
any of the realizable exchange solutions.  This solution therefore reaches the maximal 
flux  
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for fixed minimum width wm*.  The formula follows from use of the definition of q2 
along with its observed value, or simply by setting Q

r
=1 in (5.3.4). This solution is 

characterized by a double hydraulic control in the sense that both internal waves are 
frozen at the narrows.  Stommel and Farmer (1952) identified this state and verified it 
experimentally.  Their analysis and their later (1953) application to estuary dynamics 
deserves special mention in the annals of hydraulics.  The work revealed the first 
example of maximal exchange and also represented one of the first applications of 
hydraulic theory to oceanographically relevant flows.  Both layers are engaged: the upper 
layer being more so in one reservoir, the second in the other, and both being active at the 
narrowest section.  The submaximal solutions (d2∞≠0.5) are characterized by having only 
one wave frozen at the narrowest section, by having a smaller Q2 for the same wm*, zT* 
and g′, and by being dominated by the dynamics of one of the layers.  For unidirectional 
flow we do not identify a maximal solution.  The ability of the flow to become barotropic 
means that the volume flux that can be forced through the contraction is unlimited.  
 
 It is possible to devise a number of experiments demonstrating how maximal flow 
is obtained as a limiting case of the submaximal flows.  For example, one might carry out 
a series of lock exchange solutions in which the initial barrier extends only partially 
through the depth.  One reservoir is filled to the top with the lighter fluid.  The other is 
filled to the top of the barrier with the denser fluid with the less dense fluid lying above.  
If this partial barrier is low enough, the exchange flow set up by its removal will be 
submaximal.  Increasing the barrier height sufficiently will eventually lead to formation 
of the maximal solution.  A similar set of experiments could be made by pumping the 
fluids in opposite directions and gradually increasing the pumping rates.  The sequence of 
exchange solutions that one might encounter is shown in Figure 5.4.3.  I need a basic 
reference here regarding the two-layer lock exchange experiment and how maximal 
and submaximal flows are produced.  Wood  1970 did the right experiment but did not 
know about submaximal vs. maximal flows and the documentation of his experiments 
was not very extensive..  Lane-Serff, et al. 2000 did a 3-layer version of the experiment, 
but it is too advanced.  Does anyone reading this know of a good experimental 
reference? 
  

Unequal Layer Fluxes 
 
 Froude number diagrams for Q

r
≠1 show similar features but with a loss of 

symmetry between upper and lower layers.  The case Q
r

=0.5 is shown in Figure 5.4.4a.  
Under conditions of exchange (Qr<0), the flow contains a barotropic component, equal to 
Q1+Q2 (=Q1/2).   The similarity solution with the virtual control lies along the straight 
contour with d2∞=2/3.  [For general Q
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, the corresponding value of d2∞ is given by 
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2 .]  However, the former ‘lock exchange’ 
solution, which occurs along the curved energy contour with d2∞=2/3,  now has two 
control sections.  The first is a virtual control, which lies at the lower right intersection 
with the critical diagonal, and a narrows control lying at the upper left intersection.  It can 
be shown that the virtual control lies on the side of the narrows from which the barotropic 



component of the flow originates.  Also, there is a group of solutions with d2∞ slightly 
greater than 2/3 that intersect the critical diagonal twice and which go off into 
supercritical space at either end.  Since both F1

2 and F2
2 go to infinity following the right 

hand branch of these curves, the corresponding solutions cannot easily be connected to a 
wide reservoir, even with the aid of hydraulic jumps.  
 
 If the flow is unidirectional and originates from a wide reservoir than the range of 
possible behavior can be illustrated, as before, by imagining a series of experiments in 
which the value of q2 (=Q
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w m*)) is gradually increased by increasing Q2.   
We continue to assume that the flow is critical at the narrows.  Beginning along a 
solution curve for which d2∞>2/3, we move through a succession of flows with relatively 
deep lower layers.  These solutions have active upper layers, which are accelerated 
through the contraction, and relatively inactive lower layers.  However, the transport in 
the lower layer is twice that in the upper layer and the dynamics of this layer are more 
easily brought into play. As Q2 is raised the similarity solution is realized when d2∞ 
reaches the value 2/3.   Here the lower layer depth remains twice the upper layer depth 
along the entire solution curve.   For further increases in Q2 the solution remains along 
the similarity solution and develops a virtual control upstream of the narrows.  As before, 
the flow becomes supercritical through the narrowest section and, in the expanding 
section of channel, tends to wander off of the d2∞=2/3 curve.  Possible outcomes are 
illustrated by the paths abefgha or abeijla in Figure 5.4.4b. 
  
 If instead we begin with a solution for which  d2∞<2/3, the approach to the 
similarity solution is a bit different.  We move through a series of solutions in which the 
lower layer is most active.  As Q2 is raised, a solution traced by the curve abcd  is 
approached.  The subcritical flow from the reservoir follows the similarity branch of the 
solution until it becomes critical, or nearly so, in the contracting part of the channel (point 
b).  However, it returns to a subcritical state and passes through a narrows control (point 
c), after which it becomes supercritical.  A further increase in Q2  gives rise to the 
similarity solution with a virtual control. 
 
 Under conditions of exchange, a similarly modified sequence of solutions exists.  
As Q2 is increased from low values the limiting form is no longer the similarity solution 
(which is again unstable) but rather the full lock exchange solution.  Although this 
solution is formally supercritical in both reservoirs, it can be connected to quiescent 
reservoirs by hydraulic jumps, as shown by the circuit alkbcdha  in Figure 5.4.4b.  The 
flow rate is given by 
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In the presence of barotropic flow the virtual control in the full lock exchange 
solution occurs upstream of the width contraction (upstream being the direction that 
opposes the barotropic flow).  As the barotropic component decreases the two control 
section move closer together.  In the limiting case of zero barotropic flow studied by 



Stommel and Farmer (1952, 1953) the virtual control is hidden by the fact that the two 
controls occur together. 
 
  
 For further reading on the subject of two-layer flow, one could consult Baines 
(1995), the work of Armi and Farmer as referenced in their 1988 paper.       
 
 
Exercises 
 
1)  By free hand, sketch the qualitative features of the solutions corresponding to the 
following circuits: 
 
 a)  afm (Figure 5.4.1b) 
 b)  ain (Figure 5.4.1b) 
 c)  abcba (Figure 5.4.1b) 
 d)  jbk (Figure 5.4.1b) 
 e)  aijbkfa (Figure 5.4.1b) 
 f)   kbcd (Figure 5.4.4b) 
 g)  alkbcdha  (Figure 5.4.4b) 
 
The sketches should be the style of the Figure 5.3.1b insets, with control sections and 
stretches of subcritical and supercritical flow labeled. 
   
2)  For flow through a contraction with constant  h*, show that for each Qr there is 
another solution with reciprocal flow rate ratio (1/Qr) in which the two layers are 
interchanged. 
 
3)  Consider the following flows, each of which has at least one critical section.  Remark 
on the stability of the hydraulic transition  at the critical section(s) in each case.  (Speak 
to the shock-forming instability, not Kelvin-Helmholtz instability.) 
 
 (a)  The solution kjk in Figure 5.4.1b. 
 
 (b)  A solution of the type abcd in Figure 5.4.1a, with the lower layer entering the 
deep basin and the upper layer exiting the basin. 
 
 (c)  The ‘lock exchange’ solution with Qr=0.5.  In other words, the solution with 
both a virtual and narrows control lying along the d1∞=.667 curve in Figure 5.4.1a, but 
now with unidirectional flow. 
 
4)  Verify (5.4.3) by direct calculation (i.e. do not use the contour values printed on the 
curves in Figure 5.4.4a). 
 
 
  



 
Figure Captions 
 
 
Figure 5.4.1a  The Froude number plane for flow through a pure contraction with Q

r
=1. 

Solutions must lie along the thick curves, which have constant d2∞.  The thin curves are of 
constant q2 and are the same as in Figure 5.3.1a, but now the larger values of this 
parameter are associated with narrower widths. 
 
Figure 5.4.1b  Examples of solutions for the previous figure, as described in the text. 
 
Figure 5.4.2 Side views of unidirectional, two-layer flows through a contraction.  Frames 
(a) and (b) show flows with a control section at the narrowest section, which lies 
approximately at the numeral ‘2’.  Frame (c) shows a self-similar flow with a virtual 
control.  At the upstream (right) entrance the layer depths and velocities are equal and 
continue to be so as the channel converges and the narrowest section is passed.  The 
virtual control occurs somewhere to the right of the narrowest section but is not 
distinguished by any visual property of the interface.  A small amount of mixing is 
observed in the downstream end of the channel. (Based on Plates 1 and 2 from Armi, 
1986). 
 
Figure 5.4.3. A sequence of steady solutions for two-layer exchange through a pure 
contraction, as described in the text.  (Based on Figure 2 from Armi and Farmer, 1986). 
 
Figure 5.4.4a  Froude number plane for flow through a pure contraction with Q

r
=0.5 

 
Figure 5.4.4b  Examples of solutions for previous figures as described in the text. 
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