
5.3 Flow over an obstacle. 
  
 
 We now consider Froude number plane representation of a solution over 
topography in a channel of constant width.  For this case it is helpful to rewrite the energy 
equation (5.2.13) in the normalized form 
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One interpretation of the quantity on the right-hand side of (5.3.1) follows by imagining 
that the straight channel is connected to a wide, quiescent basin as described above. Use 
of (5.2.10) and (5.2.11) then leads to 
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The parameter d

1!
is the dimensionless upper layer thickness in the basin.  It may also be 

regarded as a measure of the potential energy in the quiescent basin, smaller d
1!

being 
associated with higher interface values and therefore higher potential energy. 
 
 A family of solutions to (5.3.1) for Q

r
= 1 and for various values of d

1!
are 

represented by the thick curves in Figure 5.3.1a.  Internal energy is constant along each 
curve and, in the absence of hydraulic jumps or other dissipative features, a solution must 
follow a particular curve. Some of these curves intersect the critical flow diagonal, 
raising the possibility that corresponding solutions can be critically controlled.  Others do 
not. Froude number diagrams for other values of Qr have similar qualitative aspects 
(Armi, 1986) and we can therefore discuss most of the general features of the solutions 
using the one figure. Note that Qr and Q1 enter (5.3.1) as 2/3 powers and therefore a 
solution curve valid for a combination (Qr, Q1) is also valid for (-Qr, Q1), (Qr, -Q1), or (-
Qr, - Q1).  The direction of flow in a given layer for a particular solution is therefore 
arbitrary. Each location in Figure 5.3.1a formally yields different solutions corresponding 
to different directions of flow in the two layers.  If one can establish a realizable solution 
that is valid for a given topography and upstream conditions, it is not always possible, 
however, to create another realizable solution by simply reversing the flow direction in 
one or both layers.  Doing so can change the stability of the flow or its ability to form 
hydraulic jumps at certain locations.  An obvious example is a unidirectional flow that is 
stable according to (5.2.2) but becomes unstable due to the increased interfacial shear that 
is created when the direction of flow in one of the layers is reversed.  More subtle 
examples arise when the change in direction gives rise to the shock-forming instability 
(Figure 1.4.4) created at a critical section when a change in flow direction causes waves 
to converge at that section. 
 
 To find a solution for particular values of Q2, zT*, and w* and for a given 
topography h*(y*), we need to know how to move along the appropriate solid curve as h* 



varies. This link between the solution and to topography is provided by (5.2.14) and it is 
helpful to rewrite this equation as 
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The thin contours drawn in Figure 5.3.1a are ones of constant q2.  Since Q2, zT*, and w* 
remain fixed for a particular solution, changes in q2 are entirely due to changes in h*.  
Increases in h* lead to increases in q2 and inspection of Fig. 5.3.1a shows that this 
generally corresponds to moving away from the origin. 
 

Flow from a deep basin. 
 
 One important class of solutions describes flow originating from an infinitely 
deep upstream basin.1 At least one of the layer depths must be infinite (and the 
corresponding velocity zero) in the basin and therefore the solution curve must begin 
along the horizontal  (F2

2=0) or vertical (F1
2=0) axis in Figure 5.3.1a.  Inspection of the 

figure shows that the only possibilities originate from the horizontal axis.  These 
solutions have F2=0 in the basin, meaning that the lower layer is infinitely deep and 
stagnant.  The reverse situation, a stagnant upstream upper layer with a moving lower 
layer, is not possible.  This asymmetry between the upper and lower layer is due to the 
fact that the obstacle contacts only the lower layer.  Although the formal solutions allow 
the direction of flow within each layer to be arbitrary, let us assume that the lower layer 
flow is out of the deep basin.  The upper layer flow may then be in either direction, unless 
otherwise noted. We will continue to refer to the latter as the upstream basin, even though 
the upper layer may flow into it.  
 
 Now suppose that the value of d1∞ is known to be 1.7, so that the solution must lie 
along the dark curve with that value. Keep in mind that d1∞ is not the actual upper layer 
depth in the deep basin, but rather the upper layer depth in a hypothetical reservoir that 
has infinite width and is therefore quiescent.  This reservoir might be imagined to lie 
upstream of the deep basin.  The flow state in the latter lies where the d1∞=1.7 curve 
intersects the F1

2 axis and is clearly subcritical.  An observer moving from the basin into 
the channel will see an increase in h and must therefore move upwards along the ‘1.7’ 
curve to higher contour values of q2. If the sill is reached before the critical diagonal is 
encountered then the solution at points downstream is found by retracing the ‘1.7’ curve 
back to the F1

2 axis. In this way a completely subcritical solution is obtained.  The value 

                                                
1 Since the deep basin has finite width, the parameter d1∞ should not be interpreted as the upper layer depth;  
the upper layer may be moving.  However, one could imagine the deep basin  broadening into an infinitely 
wide basin  as some point even farther upstream, and here d1∞ would indeed represent the upper layer 
depth. 



of F1
2 is minimal at the sill, meaning that the interface elevation is also minimal (see 

5.2.12a).   Figure 5.3.1b shows this situation schematically, with the ‘1.7’ solution curve 
traced over a circuit aba and the corresponding subcritical solution  (shown in the inset) 
experiencing an interfacial dip over the obstacle.   
 
 If the sill height is increased to the point where the sill is encountered at the 
crossing with the critical diagonal, then a transition to supercritical flow is possible.  Note 
that the dark and light contours make grazing contact with each other along the critical 
diagonal, implying that the solution may be followed beyond the sill either by continuing 
along the ‘1.7’ curve into the supercritical region or by retracing back into the subcritical 
region.  This same dilemma arises in the treatment of single-layer flows and it can be 
shown by similar arguments (see Section 1.4 or Exercise 4 of the previous section) that 
the correct option is to continue into supercritical space.  The circuit is something like 
abcd in Figure 5.3.1b and the interface profile resembles the free surface profile for a 
hydraulically controlled, single-layer flow.  
 
 If the sill height is increased beyond its critical value for the ‘1.7’ energy curve 
then the solution cannot lie along that curve.  In this case an upstream disturbance is 
generated that adjusts Q1, Q2, and/or d1∞* to new values needed to maintain critical flow 
at the sill.  This process is described in more detail below. 
 
 Given the similarity with the single-layer case, one might expect a hydraulic jump 
to arise in the supercritical part of the flow. The problem of shock joining in two layers is 
more difficult than for the single-layer case due to several factors.  First, momentum 
transfers between the two layers can occur as the result of pressure forces on the steeply 
sloping interface within a jump.  These forces exist in the region where nonhydrostatic 
effects are expected to be greatest, making calculation of the pressure force problematic.  
The difficulty is avoided in single layers due to the fact that the pressure is essentially 
zero at the free surface.  Second, entrainment of one layer into the other or creation of 
masses of intermediate density can occur as the result of mixing.  These transformations 
complicate the mass balances.  In some cases  interfacial instability and mixing occur 
broadly and cause the transition from supercritical to subcritical flow to occur without 
any roller or other abrupt feature. An example of this limiting case is shown in the top 
frame of Figure 1.6.5. 
 
  One situation that allows simplification occurs when the two fluids are imiscible, 
so that Q1 and Q2 are conserved across the jump.  If the jump occurs over a small interval 
in y*, so that h* is the same on either side, then the conjugate states must occur along the 
same constant-q2 curve. As an example, suppose that a hydraulic jump occurs at point d 
in Figure 5.3.1b. The jump must return the supercritical flow to a subcritical state and 
must do so along the thin curve passing through d.  It must therefore connect with another 
constant energy curve, perhaps at point e.  Determination of the correct energy curve is 
quite difficult, however.   The jump should cause an overall loss of total energy and it is 
not obvious what this means for !B , the difference between the upper and lower layer 



Bernoulli functions2. There have been a number of attempts to come to grips with these 
problems and the reader is referred to Jiang and Smith (2001a,b) and references contained 
therein for more information. 
 

Maximal Flow 
 
 Up to this point, the presence of an upper layer has introduced nothing 
qualitatively new; the lower layer acts like a single layer.  However, novel effects come 
into play if the interface level in the hypothetical reservoir is raised (d1∞ is decreased).  
This change could be effected by demanding that Q1 and Q2 remain fixed, that the sill 
flow remain critical, and that the sill height (and therefore q2) be increased.  The new sill 
flow is found by following the critical diagonal from point c in Figure 5.3.1b down and to 
the right until the thin curve with the new value of q2 is encountered.  The solution now 
lies along the (thick) energy curve that intersects this point, and it can be seen that the 
corresponding d1∞ is lower than before.  The new energy curve intersects the F1

2 axis at 
larger values of F1

2 then before and thus the composite Froude number G2 of the 
upstream flow is greater.   The upper layer in the basin now has a higher velocity and 
smaller thicknesses.  If the sill height is increased further, the upper layer Froude number 
in the basin continues to increase.  Eventually the value d1∞ =1.5 is eventually reached 
and it can be seen that the corresponding energy curve has an intersection with the F1

2-
axis at F1

2=1. The flow in the basin is now critical.  Since the basin is infinitely deep, the 
lower layer remains at rest and the upper layer moves at speed v1*=(g′d1*)1/2. The value 
of G2 is unity both in the basin and at the sill and the flow therefore has two control 
sections.  In the case where the both layers flow out of the basin the upstream control is 
called an approach control.  In an exchange flow, where the direction of the upper layer 
is reversed, the basin control is called an exit control.  The flow is subcritical between the 
two controls and is supercritical downstream of the sill, perhaps with a hydraulic jump.  
The situation is represented by the solution ghi in the Figure 5.3.1b inset.  In the idealized 
geometry of this example, the upper layer flows at the critical speed far into the upstream 
basin.   A uniform critical flow of this type is typically vulnerable to frictional and 
dispersive effects. A more stable version of the solution can be set up if variations in the 
upstream width are allowed, as discussed below. 
 
 
 The solution with both a sill control and an approach control has been obtained by 

allowing the value of d1∞= 
d
1!
*

( " g Q
1
/ w*)

2/ 3  to decrease until the upper layer in the basin 

becomes critical.  Since d1∞* is a measure of the internal energy of the flow the decrease 
in d1∞ can be accomplished by holding the energy constant and increasing Q

1
.   The 

threshold state d1∞=1.5 may therefore be regarded as having the maximum possible upper 
layer transport for the given available internal energy.   As Figure 5.3.1a shows, this 
value cannot be exceeded by any solution that connects smoothly to a deep upstream 

                                                
2  The simplest approach [suggested by Armi (1986)] is to assume that the energy loss in the jump is 
negligible, so that the conjugate states lie on the same energy curve.  



basin.  There are solutions with larger Q
1

  (i.e., the ones with d1∞>1.5) but none intersect 
the lower axis. 
 
 For flows with only a sill control (d1∞>1.5) the behavior of the lower layer is 
similar in most respects to a single layer.  The upper layer is relatively unimportant.  For 
example, it can be shown that the layer Froude numbers at the sill fall in the ranges 
0.8<F2

2<1 and F1
2<0.2.  Thus the lower layer Froude number is close to the critical value 

(=1) for a single layer whereas the upper layer Froude number is well into the subcritical 
range of a single layer.   The wave arrested at the sill is dynamically similar to a wave 
propagating in an environment in which the upper layer is inactive.   In contrast, the 
solution for d1∞<1.5 involves engagement of both layers.  The approach (or exit) control 
takes place where the lower layer is inactive and the sill control takes place where the 
upper layer is relatively inactive. 
 
 For exchange flows it is common to refer to the solution with both a sill control 
and an approach control as being maximal.  It has the largest Q

1
, and therefore the 

largest exchange transport Q
1
!Q

2
, of all the solutions that can smoothly be connected to 

a deep basin.  The maximization assumes that Qr remains fixed.   Solutions with just sill 
controls (d1∞>1.5) are called submaximal. Note that the extremities of the solution curves 
with d1∞<1.5 extend to F1

2→∞ in one direction and F2
2→∞ in the other, and therefore 

cannot be smoothly be linked to infinitely deep upstream basins.  
 
 

Basins with Finite Depth 
 
 If the upstream basin has finite depth, identification of the submaximal and 
limiting maximal solutions is just slightly more difficult.  The previously considered 
constant-energy curves are still in play, but the possible upstream states now lie at finite 
F2 and not along the abscissa of the Froude number plane.  In order to fix the parameter 
d1∞ we continue to imagine that the actual upstream state is connected to a hypothetical 
basin with infinite width and having a known interface elevation.  The parameter d1∞ is 
the upper layer thickness corresponding to this upstream elevation and its value 
determines the energy curve that defines the solution.  Suppose that this value is 1.7, so 
that the solution lies along the left-most energy curve in Figure 5.2c.  Then we can 
construct a variety of solutions with different fluxes as before.   If it is known in advance 
that the solution is controlled at the sill section, then the flux magnitude Q

1
 (or Q

2
) is 

determined from the q2 value that exists where the d1∞=1.7 curve intersects the critical 
diagonal.   
 
 One may then consider the family of controlled but submaximal solutions for 
successively smaller values of d1∞.  A limiting maximal solution will eventually be 
obtained, this time with a value <1.5. An example is shown by the curve segment klmn in 
Figure 5.3.1b. The upstream flow in the uniform, finite-depth section of channel (k in the 
figure) is an approach (or ‘exit’) control.  Once the bottom begins to shoal, the flow 



becomes subcritical (l).  It then passes through a sill control (m) and becomes 
supercritical (n).  A profile of the solution is sketched in the inset.  
 
 The limiting solution curve that determines the maximal solution for a given finite 
upstream depth is not easy to locate. However the curve and it’s d1∞ value can be 
calculated and shown to depend on the ratio of the depth Ds over the sill to the upstream 
depth zT*.    By applying the definition of q2 at the upper left intersection of the energy 
curve with the critical diagonal (i.e. at the sill control) it follows that  
 
   Q
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The function q2(Ds/zT*) is simply q2 at the upper left intersection point and the calculation 
of its dependence on Ds/zT* is described in Exercise 5.  For the case of an infinitely deep 
upstream basin D

s
/ z

T
*! 0  q2 is given by .208, whereas q2=0.25 for the point labeled o. 

As D
s
/ z

T
*  increases so does the associated q2 and thus the maximal flux for fixed Ds 

and g′ increases as the upstream depth decreases. That these flows are choked to a lesser 
extent is due to the fact that the sill height hm* is a smaller percentage of the upstream 
depth zT*.  
 
 Although (5.3.4) bears similarity to the single-layer weir formula (1.4.12), it is 
more constrained.  It is no longer necessary to have knowledge of an upstream interface 
elevation or the like; the only dynamic variable that needs to be measured is the reduced 
gravity g′.  The insensitivity of the flux to upstream conditions is consistent with the 
existence of the ‘exit’ or ‘approach’ control, which blocks mechanical information from 
reaching the sill. The relevance of g′ is consistent with the fact that density is advected by 
the flow and information about the density difference Δρ can pass right through the 
control section.  The value of g′ has been regarded fixed throughout this discussion, but 
one would wish to eventually relax this constraint by allowing Δρ to vary, say in response 
to changes in forcing and/or mixing in the upstream basin.  This topic will be pursued in 
Section 5.3. 
 
 If the sill elevation hm* is decreased to zero, so that D

s
/ z

T
*=1, the upstream and 

sill controls merge.  The coalescence point lies at o (5.3.1b) where the critical diagonal 
makes grazing contact with the curve d1∞=1.25. It can be shown (see Exercise 2) that both 
c+ and c- are zero in this solution, which will emerge as an important type of flow through 
a contraction.  The corresponding lower layer transport is given by  
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(see Exercise 6), where Ds is now just the depth in the uniform channel. Larger values of 
Q
2

correspond to (supercritical) solution curves lying entirely above the critical 
diagonal.  These solutions do not connect directly to any geophysically relevant reservoir 
state, nor is it possible to connect the solutions to subcritical flow by hydraulic jumps 



along curves of constant q2.  Therefore (5.3.4) gives an upper bound on Q
2

 for relevant 
flow (i.e. flows that become subcritical somewhere upstream).  
 

Other Constraints 
  
 In most cases of geophysical or engineering interest, geometrical variables like 
w*, hm* , and zT* are known in advance and d1∞* can be estimated from hydrographic 
data. In addition, a relation between Q1 and Q2 can often be stipulated, such as when the 
strait connects with a closed basin with known evaporation E and precipitation P.  (The 
flow rates are then constrained by Q

1
!Q

2
= (E ! P)dA

As
"" , where As is the surface area 

of the basin.) These constraints are still insufficient to determine the parameters d1∞, q2, 
and Qr required to fix the solution and the individual values of Q1 and Q2.  To do so, one 
must assume that the solution is critical at the sill, and perhaps in the approach, and use 
these conditions to close the problem.  
 
 As an example, consider the case where the upstream basin is infinitely deep and 
it is suspected that an approach (or exit) control and a sill control occur (d1∞=1.5).  For 
exchange flow, this would mean that the exchange transport is maximal.  Further assume 
that the downstream basin is closed and has (E ! P)dA

A
s

"" = 0 , so that Q
r
= !1 . We have 

already shown that Q
2
= !Q
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3/2 under these conditions. If Q
r
! 1 , then 

a more general version of the last relation (Exercise  3) can be used.  If it is known that 
only a sill control exists, then the flux is just one of a continuum of values, each with its 
own d1∞.   It now becomes necessary to measure the upstream interface level in order to 
close the problem. 
 
    
 

Laboratory and numerical experiments on two-layer sill flows. 
 
 To further digest the properties of the flows under condideration it can be helpful 
to consider how they are established.  We discuss two revealing experiments, the first 
dealing with unidirectional  flows and the second with exchange flows.  The first was 
originally performed by Long (1954, 1970) who towed an obstacle through a two-fluid 
system initially in a state of rest. Extensions have been carried out by Houghton and 
Isaacson (1970), Baines (1984, 1987), and others.  The typical setting for numerical 
computation of the flow has two layers moving from left to right at equal speeds (Qr=1) 
in a uniform channel (h*=0).  Consider the case where this initial flow is subcritical and 
where F1

2<<F2
2, so that the upper layer is relatively deep and inactive. For example, we 

could assume that the initial state lies at point b in Figure 5.3.1b.  At t*=0 an obstacle of 
height hm* is placed in the path of the flow. The adjustment for moderate hm*/zT* is 
similar to that for a single-layer flow.  If hm*/zT* <<1, the flow remains subcritical and 
there is no upstream influence.  As hm*/zT* is increased, a critical value will be reached 
above which upstream influence occurs.  The critical value is that required to move the 
solution from point b to point c in Figure 5.3.1b.  The steady solution that develops over 



the obstacle will resemble solution bcd.  A slight increase in hm*/zT* past the critical 
value will result in the excitation of an upstream disturbance that will permanently alter 
the upstream flow by deepening the lower layer and decreasing the lower layer transport.  
Further incremental increases in hm*/zT* will have a similar effect.  As long as the upper 
layer remains relatively inactive during this process, the linear waves speed (c-*≅v2*-
(g′d2*)1/2<0) of the upstream flow increases in magnitude.   As the obstacle height 
increases, it is possible for the lower layer to become completely blocked as a result of 
this process and further increases in hm*/zT* will cause the obstacle to protrude into the 
upper layer.  In this case, additional changes to the upstream are prevented.3  Up to this 
point the evolution is similar to that found in the single-layer version of Long’s 
experiment (Section 1.6).  
 
 If the lower layer remains unblocked, increases in hm*/zT* eventually lead to 
effects that are special to two-layer systems.  To understand these changes, it must first 
be recognized that growth of the obstacle does not alter the total volume transport Q1+Q2.  
Thus, the decrease in Q2 is compensated by an increase in Q1.  In addition, the upstream 
thickening of the lower layer results in a thinning of the upper layer.  Both effects tend to 
bring the initially inactive upper layer into play upstream of the obstacle, and the main 
effects is to reduce the magnitude of c-*. As hm*/zT* increases, c-* reaches a maximum 
negative value then moves towards positive values.  At some hm*/zT* this trend causes 
the upstream flow to becomes critical c-*=0.  The flow over the obstacle now resembles 
the solution klmn of Figure 5.3.1b, with approach and sill controls. (The reader is 
cautioned, however, that Qr may no longer by unity and therefore Figure 5.3.1b may no 
longer apply.)  Numerical simulations have shown that further increases in hm*/zT* 
causes flow over the obstacle to revert to a supercritical, symmetrical state, while the 
approach control is maintained.  The flow near the obstacle now resembles solution kjk.  
Beyond this point, increases in hm*/zT* lead to no further upstream influence.   
 

There are some variations to this chain of events and many subtleties that have not 
been mentioned.  The reader is referred to Baines (1995, Chapter 3) for more details. 
A fundamental point to keep in mind is that formation of the approach control, the central 
departure from single-layer hydraulics, occurs because -c-* has a maximum value in the 
upstream flow at an intermediate interface level. 
 
It is not obvious that the flow with both approach and sill controls (and presumably 
subcritical flow in between) transists to a state with only an approach control and 
supercritical flow over the obstacle. Why not have an approach control with subcritical 
flow over the sill? Perhaps such a state would be unstable; disturbances created at the 
sill would propagate to the upstream edge of the obstacle but would be arrested there. If 
this is the case, then doesn’t the same argument apply to the maximal solution?? Also, 
it appears from the experiment that the solution with approach and sill controls is one 
that occurs for a particular sill height and not a range of sill heights.  On  the other 
hand,  flows with just a sill control or just an approach control occur over a range of 

                                                
3 Additional increases in the obstacle height will only impede the upper layer flow if frictional or non-
hydrostatic effects come into play. 



sill heights.  This makes it hard to see how the ‘maximal’ solution could actually arise 
in nature.  
 
 An experiment showing maximal and submaximal exchange flows in a laboratory 
channel was performed by Zhu and Lawrence (2000).  As shown in Figures 5.3.2(a,b), 
the channel contains an isolated obstacle and opens abruptly at either end into wide 
reservoirs.    The right and left reservoirs initially are filled to the top with fluids of 
slightly different densities, the left reservoir containing the denser fluid.  A barrier that 
sits atop a sill separates the two fluids.  The barrier is removed and the two fluids are 
allowed to displace each other.  After an initial period of transient activity, the flow 
within the channel settles into a nearly steady state.   The layer velocities in the left 
reservoir are relatively weak and the upper layer depth therefore approximates d1∞*.  
Initially, this depth is relatively small (Figure 5.3.2c), but it gradually increases as lower 
layer fluid is drained out of the reservoir.  An exit control occurs near the left end of the 
channel (point k) and the flow immediately to the right is subcritical. To the left there is a 
brief span of supercritical flow that is linked to the reservoir by something like a 
hydraulic jump.  The flow near the jump is horizontally two dimensional due to the 
abrupt widening of the geometry.  At the sill the subcritical flow passes through a second 
control and becomes supercritical.  A hydraulic jump occurs on the right slope of the 
obstacle and the flow thereafter is subcritical.  From the left end of the channel to the 
hydraulic jump the interface resembles the solution klmn of Figure 5.3.1b. The transition 
from the left end of the channel into the left reservoir cannot be traced in this figure but is 
discussed below.  While in this configuration, Q

1
!Q

2
 remains fixed at its maximal 

value, the determination of which is described in Exercise 4. 
 

As the left reservoir loses lower-layer fluid, the interface there falls and the 
hydraulic jump moves closer to the entrance (point k) of the channel.  At the same time, 
conditions in the channel between the exit control and the sill control remain steady; the 
supercritical end states insulate that part of the flow from the two reservoirs.   However, 
the interface in the left reservoir eventually becomes low enough that the hydraulic jump 
reaches the position of the exit control. The exit control becomes ‘flooded’, the flow there 
becomes subcritical, and the exchange becomes submaximal and dependent on the 
upstream interface elevation.  This elevation continues to decrease and with it the 
exchange flux. 

 
Exercises 
 
 
1)  For arbitrary Qr, which constant  energy curve makes grazing contact with the critical 
diagonal in Figure 5.3.1a? 
 
2) For the solution designated by the point o in  Figure 5.3.1b, prove that under 
conditions of pure exchange flow, c+*=c-*=0. 
 
3)  Consider the case of flow over an obstacle  and originating from an infinitely deep 
basin.  If the flow has an approach control and a sill control, show that d1∞=1.5 regardless 



of the value of Qr.  Further show that the transport in the lower layer is given the 
generalized weir formula: 
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where  F1c is determined from 
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4)  In the experiment of Zhu and Lawrence (2000), described in part c, a maximal 
exchange flow was observed.  The values of w*, g′, zT*, and hm* are set by the geometry 
and by the initial conditions and it is also known, due to the closed geometry of the 
channel and reservoir system, that Qr=-1.   To predict the maximal value of Q2:  
 
(a) Show that     
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where the subscripts e and s correspond to exit and sill.  (Hint: use energy conservation 
between the exit and sill along with the critical condition at both locations.) 
 
(b)  Further show using volume flow rate continuity that  
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This gives three equations for the unknowns F1e

2, F1s
2, and Q2 in terms of the known w*, 

zT*, etc. 
 
   
 
5)   Calculation of the coefficient q

2
(D

s
/ z

T
*)  in equation 5.3.3.  Consider a solution for 

flow in a channel with constant width and with Q
r
= 1 . The flow has two control points 

corresponding, say, to points k and m in Figure 5.3.1b.  Show that the values of the lower 
layer Froude numbers at k and m can be computed from the relations: 
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Here zT* is the total depth upstream of the obstacle (where h*=0).  Once F1m has been 
calculated from these relations, F2m follows from the critical condition G2=1.  Then q2 
follows from (5.3.2). 
 
  
 
Figure Captions 
 
 
Figure 5.3.1 (a) The Froude number plane showing solution curves for flow over a 
variable bottom in a channel width constant width and the Q

r
=1. Contours of constant 

internal energy d1∞ are represented by thick lines.  Continuous solutions must lie along 
these contours.  The thin contours represent constant q2.   For a fixed layer flux Q2, larger 
values of the topographic height h* correspond to smaller q2. 
 
Figure 5.3.1 (b) A portion of the Froude number plane with examples of various solutions 
sketched in the insets. 
 
Figure 5.3.2  The experimental setup used by Zhu and Lawrence (2000) to simulate a 
lock exchange. 
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