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5.2  Review of the Theory for a Nonrotating Channel. 
 
 
The regularity condition (5.2.17) does not agree with the one that can be inferred from 
Armi (1984).  His had a mulplicative factor of F2

2 in the second term and the sign of the 
second term differs from mine. His sign is clearly wrong, as seen by looking at the single-
layer case (v1=0) where dw/dy and dh/dy must be the same sign at a control point (when 
both are finite).  (The width must be expanding where h is increasing or vice versa.) 
 
 
 
 To set the stage for a discussion of the effects of rotation, we review some 
fundamental features of two-layer hydraulics in the absence of rotation.  There are several 
articles that deserve special mention in the annals of this subject, the earliest being 
Stommel and Farmer’s (1952, 1953) model of estuary dynamics.  Many of the distinctive 
properties these flows, including the possibility of two control sections, were identified 
by Wood (1968, 1970)] in his laboratory simulations of lock exchange between basins 
and selective withdrawal from stratified reservoirs. The steady theory was unified and 
extended in a series of articles by L. Armi and D. Farmer, who were interested in the 
Strait of Gibraltar and other oceanographic examples of exchange flow. This work forms 
the foundation for our summary.  A slightly different view is provided by Long’s (1954) 
towing experiments and subsequent investigations of initial-value problems by various 
authors (Baines, 1995 and references contained therein).  This literature gives 
considerable insight into how two-layer flows are set up.  
 
 The governing equations are the x*-independent, f=0 versions of (5.1.4,5.1.6, and 
5.1.7).  These equations can be put into characteristic form [Baines (1995) pp. 98-99] 
using the methods laid out in Appendix B.  The characteristic speeds are given by 
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For an evolving flow containing disturbances of arbitrary amplitude, we may regard c+* 
or c-* as the local and instantaneous signal speed of a signal propagating forward or 
backward with respect to the advective speed defined by the first expression on the right-
hand side of (5.2.1).  Although no linearization has been made, we can also regard c+* 
and c-* as the speeds of small-amplitude, long waves propagating on a steady and 
uniform background flow with depth and velocity di* and vi*. Note that these speeds are 
real only so long as  
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Thus, if the magnitude of the shear velocity v

1
* !v

2
*  is large enough, c

±
*  become 

imaginary, corresponding to long-wave Kelvin-Helmholtz instability of the background 
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flow.  The parameter  Rb is a discrete (or ‘bulk’) form of the Richardson number 
Ri = [g!

"1
#! / #z*] / (#v* /#z*)

2  for continuously stratified shear flow.  
 
 The possibility of instability is an important departure from the behavior of the 
single-layer case considered in the first chapter.  It is natural to ask whether traditional 
properties such as hydraulic control and upstream influence remain meaningful in the 
presence when part or all of the flow is unstable.  The answer to this question was largely 
unknown at the time of this writing.  For many of the two-layer flows encountered in 
nature or in the laboratory, the primary instabilities occur in supercritical regions away 
from control sections.  The associated disturbances propagate away from the control 
section(s) and conditions there remains steady. 
  

There is another aspect of the stability issue that bears consideration.  A stability 
analysis (e.g. Turner 1973, Sec. 4.1) of the inviscid, two-layer system with respect to an 
arbitrarily short (nonhydrostatic) disturbances shows that the flow is always unstable 
provided that v

1
* ! v

2
* .   In a two-layer system with infinite layer depths, for example, 

all sinusoidal interfacial waves with lengths less than ! v
1
*"v

2
* / #g  are unstable.  The 

resulting mixing can destroy the sharp interface and create an intermediate transitional 
layer. Wilkinson and Wood (1985) present a laboratory demonstration using a 
hydraulically driven, two-layer system.    If the shear is weak, unstable waves have small 
scales and the intermediate layer remains thin.  Its thickness dI* can be estimated using 
the notion that the layer will grow until the mean flow becomes stable.  A necessary 
condition for instability of a thin, laminar, intermediate layer is that the bulk Richardson 
number !g dI * /(v1 *"v2*)

2  based on dI* falls beneath 1/4.  Empirical evidence (Koop and 
Browand, 1979) suggests a transitional value closer to 0.3, and thus the expected layer 
thickness is  

 
   dI* ! 0.3(v1 *"v2*)

2
/ #g .  

 
As long as dI* remains much less than d1*and d2* the presence of the intermediate layer 
may to a first approximation be disregarded and the two-layer protocol adopted.   
 
 Some of the important differences between single- and two-layer hydraulics may 
be anticipated from an examination of the formula for the long-wave phase speed.  If the 
background flow is at rest,  (5.2.1) reduces to 
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When the lower layer is relatively thin (d

2
* << d

1
*),  c

±
*  reduces to the value ± ! g d

2
*  

for a single layer under reduced gravity.  A corresponding result for the upper layer is 
obtained by taking d

2
* << d

1
* .  If the total depth d

2
* +d

1
*  is held constant while the 

interface is varied from the top to bottom boundary, c
±
*  vary from zero to their 
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maximum values at mid-depth (d
1
* = d

2
*), then back to zero.  This is quite different 

from the resting single-layer case, in which c
±
*  increases monotonically as the lower 

layer depth increases.  
   
 From (5.2.1) it can be shown that 
 

  c
+
* c!* =

" g d
1
* d

2
*

d
1
* + d

2
*

v
1
*
2

" g d
1
*

+
v
2
*
2

" g d
2
*
!1

# 

$ 
% 

& 

' 
(  ,   (5.2.4) 

 
and thus at least one of the characteristic speeds is zero if the sum of the layer Froude 
numbers, 
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is unity.  This result makes it convenient to define a composite Froude number G such 
that: 
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and therefore critical flow corresponds to G2=1.  If G2<1 then (5.2.4) indicates that the 
product of c+* and c-* is <0, implying that the two internal gravity waves propagate in 
opposite directions.  This type of flow is called subcritical since information can move in 
both directions.  Similarly, G2>1 implies that both waves propagate in the same direction 
and the flow is supercritical.  These definitions avoid reference to ‘upstream’ or 
‘downstream’, a tacit acknowledgement that two layers may flow in opposite directions.  
Thus, supercritical flow may have both waves moving in the +y* direction or vice versa. 
It is not meaningful to talk about the criticality of an individual layer unless the other 
layer is inactive.  For example, it is not meaningful to state that layer 1 is ‘critical’ when 
F1=1, unless F2<<1.  However, it can be stated with certainty that the two layer flow is 
supercritical if either F1 or F2 is >1. 
 
 Imagine a flow that is evolving in the y*-direction due to changes in the channel 
geometry and suppose that this flow undergoes a transition from stable to unstable at a 
particular y*.  Since  Rb=1 at that section (5.2.1) requires that c+*=c-* there. Thus the flow 
must first be supercritical before it can become unstable with respect to long waves. 
 
  The volume transport within a layer is  
 
     Qi = vi * di *w *    (5.2.7) 
 
and both Q1 and Q2 are constants for steady flow.  If Q1 and Q2 have opposite signs we 
have an exchange flow.  Pure exchange flow occurs when the net or barotropic transport 
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is zero.  Another quantity that will prove useful is the transport ratio: 
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 The time-dependent continuity equation for a particular layer, which may be 
obtained by integrating (5.1.7) across the channel, is 
 

     w
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= 0 . 

 
 An important constraint on the barotropic transport can be formulated by adding together 
the time-dependent continuity equations for each layer.  Noting that d1*+d2* depends 
only on y: 
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The total transport Q is therefore a function of t* only.  It follows that Q is constant in 
time if this is so at any section.   
 
 Steady solutions are normally calculated using the internal Bernoulli equation 
(5.1.17).  In thinking about the various solutions, it often helps to imagine that the 
channel is connected to an infinitely wide basin where the layer depths d

1!
*  and d

2!
*  

are non-zero and where the flow is therefore quiescent.   If h*=0 in this basin then 
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If a hydraulic jump occurs within the channel, the value of ΔB* will generally change 
across the jump. 
 
 
 
(a)  The hydraulic function and conditions for critical flow. 
 
 At this stage, the mathematical problem for the steady two-layer flow involves 
four variables (the depth and velocity in each layer) governed by two continuity 
equations (5.2.7), the internal Bernoulli equation  (5.1.17), and the geometric constraint 
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1
*(y*)+ d

2
*(y*) + h * (y*)= zT *    (5.2.11) 

 
resulting from the rigid-lid assumption.  It is possible to reduce the algebra to a single 
equation for one of the layer thicknesses and sketch solution curves analogous to that 
shown in Figure 1.4.  Another approach is to reduce the algebra to two equations in two 
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variables and sketch solution curves in the two-dimensional space of these variables.  The 
choice of method is largely one of personal preference.  Our preference is for the second 
approach as it allows a great deal of information to be displayed in a single figure. Armi 
(1986) has argued that it is helpful to choose the layer Froude numbers as the two 
dependent variables.  The layer depths and velocities may be written in terms of F1 and F2 
using 
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Making these substitutions and using (5.2.11) allows (5.1.17) to be written in the form 
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Furthermore, (5.2.11) can be rewritten as 
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 Using the two-variable generalization of Gill’s approach, the critical condition 
may be calculated using (1.5.9), which leads to  
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The reader may wish to verify that application to (5.2.13) and (5.2.14) yields the result 
G
2

= 1, the condition for stationary disturbances derived from the wave speed formula. 
 
 The regularity condition that must hold at a critical section can be obtained by 
applying (1.5.11), which leads to  
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with the functions  G1

and G2
defined by (5.2.13) and (5.2.14) and γ1=F1

2/3 and γ2=F2
2/3, or 

any other set of suitably defined functions and variables. Exercise 4 guides the reader 
through a choice that minimizes the algebraic manipulations. The resulting condition is 
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where yc* denotes the position of the critical section.   If w* is constant, critical sections 
must occur at a point where !h * /!y* = 0 .  In our previous, single-layer examples such 
points were generally restricted to sills.  Later we will show that two-layer critical flow 
can also occur on a level part of the channel away from an obstacle.  If h* is constant but 
w* varies, than critical flow can occur as before where !w * /!y* = 0 , as at a narrows, or 
where v

1
*
2

= v
2
*
2 .  The latter possibility was first identified by Wood (1968) and the 

corresponding control section is called a virtual control. If the flow is unidirectional 
(v1*v2*>0) the shear velocity (v

1
* !v

2
*) is zero at such a control.  A novel aspect of the 

virtual control is that it can occur where the channel is expanding or contracting.  Its 
position yc* depends on the flow itself and is not locked to a particular width. 
 
 An advantage of the Froude number plane representation is that critical flow lies 
along the diagonal line F

1

2

+ F
2

2

= 1  (Figure 5.2.1). In the triangular region to the lower 
left of the diagonal the flow is subcritical.   Above, the flow is supercritical.  Some of the 
solutions in the supercritical range may be unstable with respect to long waves.  The 
condition for stability (5.2.2) can be written in terms of the layer Froude numbers using 
(5.2.12) and the resulting threshold curve  
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is plotted in Figure 2a for Qr=-1.  For pure exchange flow, solutions lying above this 
curve are subject to long wave instability.   (The threshold curve for Qr=1 lies well above 
the critical diagonal and out of the range of the plot.)  
 
  
 
Exercises 
 
1)  Show that application of (5.2.15) to (5.2.13) and (5.2.14) leads to the critical condition 
G2=1. (Hint: notice that F1, F2, and w* only enter these relations in 2/3 power or 4/3 
powers.)  
 
2)  Derive (5.2.16). 
 
3)  Derive the regularity condition (5.2.17) as follows:  
 
 (a)  Use the layer velocities v1* and v2* as independent variables and define 
functions  G1

and G2
written solely in terms of these variables (and the geometric 

variables).  This can be accomplished using equations (5.1.17), (5.2.6) and (5.2.11). 
 
 (b)  Obtain (5.2.17) by evaluation of (1.5.11) and use of the functions defined in 
(a) and the two-layer critical condition. 
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4)  Show that when critical flow occurs  at a sill (where dh*/dy*=0,  d2h*/dy*2<0) that  a 
supercritical to subcritical (or vice versa) transition must occur.  That is, the flow cannot 
remain subcritical on either side of the sill. 
 
Figure Captions 
 
Figure 5.2.1  The critical diagonal and the long-wave stability threshold in the Froude 
number plane.  Exchange flows are unstable with respect to long waves above the 
threshold curve.  [Flows with vertical shear are unstable with respect to sufficiently short 
(nonhydrostatic) waves throughout the entire space.] 
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