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5. Two-layer Flows in Rotating Channels. 
 
 

The exchange flow between a marginal sea or estuary and the open ocean is often 
approximated using two-layer stratification.  Two-layer models are most valid when the 
interfacial region separating the upper and lower layers is relatively thin.  The exchange 
flow in the Strait of Gibraltar exhibits this behavior, at least at certain locations and 
times. As shown by Figure (I10), the vertical density and velocity profiles taken near the 
Camerinal Sill show a relatively sharp transition between slab-like upper and lower water 
masses.  On the other hand, the Bab al Mandab (BAM) exchange flow experiences more 
continuous and variations throughout the water column (Figure 5.0.1).  Under such 
conditions, a two-layer model might still give guidance provided that motions over the 
water column are associated with the lowest internal mode of the stratified shear flow. 

 
Rotational effects are often ignored in applications such as Gibraltar and the 

BAM, where the narrowest widths are less than or of the order of the internal Rossby 
radius of deformation.  However valid this assumption is, it certainly fails where the strait 
broadens into the neighboring marginal sea or ocean. 
 
 For most deep-ocean overflows rotation is paramount but exchange dynamics are 
less important.  However, deep overflows are often composed of fluid drawn from an 
intermediate water mass in the upstream basin, with a weaker contribution from deep 
waters.  The deep and intermediate water masses may exhibit independent behavior that 
can be captured by treating the two as separate homogeneous layers.  The flow of 
Antarctic Bottom Water through the Vema Channel (Figure 5.0.2) provides an example 
of independent behavior within the same overflowing water mass  (Hogg, 1983).  
Upstream of the sill (right-hand section), all isopycnals slope downwards from left to 
right, or west-to-east as shown.  However, slightly downstream of the sill section (middle 
frame), the slopes in the deepest (dark shaded) water are reversed and slope upwards.  
Isopycnals on the right-hand side of the Channel become pinched together as a result.  
Further downstream the deep isotherms regain their original slope (left-hand frame).     
 
 The central aim of this chapter is to explore two-layer hydraulic phenomena under 
the influence of rotation.  However, the theory of two-layer hydraulics without rotation is 
quite extensive and a moderately thorough review (Sections 5.2 and 5.3) will be 
necessary to bring the uninitiated reader up to speed.  A more extensive discussion 
appears in Baines (1995).  Models of two-layer behavior under the influence of rotation 
are even more involved.  Our approach will be to illustrate some of the fundamental 
properties of such model through the discussion of two limiting cases.  In the first 
(Sections 5.4) the channel width is taken to be large in comparison to the internal Rossby 
Radius of deformation.  The second limit (Section 5.5), in some respects the reverse of 
the first, is that of nondimensionally small potential vorticity. 
 
 
5.1 Formulation of two-layer, semigeostrophic models. 
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 The layout of the channel model is shown in Figure 5.1.1. The channel has a 
rectangular cross-section and the width and bottom elevations are denoted w* and h* as 
before. Two homogeneous layers of fluid are now present and we follow the 
oceanographic convention in numbering the top and bottom layers 1 and 2 respectively.  
The density ρ2 of the bottom layer is only slightly greater than ρ1.   
 
 In formulating the governing equations, we will employ a number of standard 
approximations.  The first involves the treatment of the upper boundary of the two-fluid 
system. If this boundary were a free surface, overlain by a vacuum or by a substantially 
less dense fluid such as air, then free surface gravity waves would exist.  In nearly all 
oceanographic applications the propagation speeds of these waves are much greater than 
the typical current velocities. In the Denmark Strait overflow, for instance, typical peak 
velocities are about 1m/s whereas the speeds of long, free surface gravity waves are two 
orders of magnitude larger. The Froude number Fd = v* / gd *  based on free surface 
dynamics is therefore <<1. Our previous experience with homogeneous flows suggests 
that it is unlikely that bottom topography (or width variations) will cause significant 
departures of the free surface elevation from a horizontal plane.  For example, equation 
(1.4.3) shows that the when Fd is small, the departure in the free surface elevation is 
smaller by a factor Fd

2 than the variation it w or h.  For the Denmark Strait, Fd
2 is about 

10-4.  On the other hand, the speeds of the internal wave that propagate on the interface 
between the two layers are much smaller and the associated Froude numbers much larger.  
One might expect, then, that the typical vertical excursions of the interface will be much 
greater than those of the free surface.  Since the latter now give a negligible contribution 
to variations in the upper layer depth, we simply regard the upper surface as rigid and 
horizontal.  If z*=zT* denotes the elevation of this surface, h* the bottom elevation, and 
d1* and d2* the thicknesses of the two layers, then 
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 The rigid lid approximation is explored more formally in Exercise 1.   
 
 We continue to assume that the fluid pressure is in hydrostatic balance.  Thus the 
pressures in the two layers are given by 
 
    p

1
* = pT * +!1g(zT * "z*)    (5.1.1) 

 
and 
 

 
p

2
* = pT * +!

1
g(zT * "h * "d

2
*)+ !

2
g(h * +d

2
* "z*)

     = pT * +g(!
2
" !

1
)(h * +d

2
*)+ g(!

1
zT * "!

2
z*)

,   (5.1.2) 

 
where pT*(x*,y*,t*) denotes the pressure at the rigid upper lid. 
 
 There are two other assumptions.  The first is that the channel geometry varies 
only gradually along its axis, suggesting that the along-channel velocity vi* will be 
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geostrophically balanced.  The formal arguments leading to this ‘semigeostrophic’ 
approximation are essentially those laid out in Chapter 2.  The second assumption is that 
the density difference between the two layers is relatively small: 
!" / " = ("

2
# "

1
) / [12 ("2 + "

1
)] << 1.  This is the basis for the Boussinesq approximation, 

in which the actual density ρ1 or ρ2 is replaced by a representative value, here the average 
! , except where they are multiplied by g.   The semigeostrophic equations governing the 
inviscid, Boussinesq, two-fluid system are thus: 
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where ! g = "#g / #  is the reduced gravity.   
 
 The equation of mass conservation within layer i is 
 

   !di *

!t *
+
!(ui * di*)

!x *
+
!(vi * di*)

!y *
= 0     (5.1.7) 

 
 If (5.1.5) is subtracted from (5.1.3) the result is the thermal wind relation for the 
along-channel velocity component: 
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The difference in velocities between the two layers is thus proportional to the cross-
channel slope of the interface. 
 
 The semigeostrophic potential vorticity within layer i is defined by 
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and conservation of this property following the fluid motion, 



© L. Pratt and J. Whitehead 8/10/05 
very rough draft- not for distribution 

 
 

    !
!t *

+ ui *
!

!x *
+ vi *

!
!y *

"
#$

%
&'
qi* =

di *qi *

dt *
= 0 ,   

 
may be shown in the same manner as for a homogeneous fluid. 
 
 In the event the potential vorticity is uniform within each layer, it is convenient to 
write 
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where D

i!
 represents the potential depth of layer i. Using this definition in  

(5.1.9) and combining the two results with (5.1.8) leads to an equation for the cross-
channel structure of the flow 
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is the internal Rossby radius of deformation.  Equation (5.1.11), which is similar to the 
cross-channel structure equation (2.2.2) governing the single-layer case, shows that the 
interface will have a boundary layer structure with e-folding scale LI when the channel 
width is >> LI.  Through the thermal wind relation this structure will be imposed on the 
shear velocity  v1*-v2*.  However, v1* and v2* need not individually decay away from the 
side walls.     
 
 When the flow is steady, individual transport stream functions ψ1* and ψ2* can be 
defined such that 
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The semigeostrophic Bernoulli functions for each layer are conserved along streamlines 
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We leave it as an exercise to show  
     dBi *
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= qi * .    (5.1.16) 

 
In most problems it is convenient to eliminate the rigid lid pressure and work with 

quantities that govern the internal structure of the flow. For example, subtracting (5.1.15) 
from (5.1.14) eliminates pT*, leaving 
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The quantity !B*  is sometimes referred to as the internal energy (per unit mass). 
 
 
Exercises: 
 
1)  Reformulate equations  (5.1.3-5.1.7) allowing for a free upper surface (at which the 
pressure may assumed to be zero).  Though inspection of these equations, formulate 
velocity, length and time scales based on the internal dynamics of the flow (i.e. use g′ 
rather than g).  Under this scaling, show that the contribution to d1* from a typical 
displacement of the interface is much greater than the contribution from a typical 
displacement of the free surface.  Deduce that the free surface displacement can be 
neglected in the continuity equation for the upper layer, so that the upper surface can 
effectively be treated as rigid. 
 
2) Show that the Bernoulli functions as defined by (5.1.14) and (5.1.15) are indeed 
conserved along streamlines of the respective layers, provided that the flow is steady.  
  
3) Prove (5.1.16).  
 
4) Using the expression for linear wave speed of an internal disturbance in a nonrotating, 
two layer system (see 5.2.3 of the next section) show that the two-layer Rossby radius of 
deformation may be interpreted as the distance that such a wave will travel in one-half 
rotation period. 
 
Figure Captions 
 
5.0.1  April 1996 CTD cast at the Bab al Mandab sill along with an month-average 
velocity profile for the same month.  (From Pratt et al. 1999, Figure 6). 
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5.0.2  Three cross sections of the Vema Channel showing depths of selected potential 
density(σ4) surfaces.  Sections 1 is upstream of the sill, Section 4 is close to the sill, and  
Section 6 is downstream of the sill.  (From Hogg, 1983). 
 
5.1.1  Definition Sketches.  
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Figure 6 from Pratt et al. 1999 showing April
1996 CTD cast at BAM sill along with March
1996 ADCP monthly meanb velocity profile.

Figure 5.0.1



Three cross sections of the Vema Channel showing depths of selected potential density
σ4 surfaces.  Sections 1 is upstream of the sill, Section 4 is close to the sill, and 
Section 6 is downstream of the sill.

Figure 5.0.2
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