
4.3  Oblique Shocks and Expansions Fans:  The Supercritical Marine Layer. 
 
 
 The marine layer is a relatively dense and well-mixed layer of moist air that lies 
above the sea surface and is often capped by a strong inversion in temperature and 
humidity.  In the North Pacific the layer can extend all the way from California to Hawaii 
and its thickness can increase over that distance from around 600m or less to 2000m.  
The physical properties of the layer are particularly well observed along the Northern 
California coast (e.g. Dorman 1985, 1987; Winant et al. 1988 and Dorman et al. 1999).  
During the summer upwelling season, the North Pacific High drives equatorward winds 
along the coastline.   The winds are intensified to the west of the 1000m high coastal 
mountain range, an effect that extends 100km or so offshore.  Wind speeds near the 
inversion level can reach values of up to 30m/s. and Froude numbers can exceed unity. 
During such periods of ostensibly supercritical flow, irregularities in the coastline can 
produce dramatic changes in the wind speed and layer thickness.  In one configuration 
(Figure I2a,b) the winds accelerate and the layer thins as it passes Point Arena, where the 
coastline abruptly veers to the southeast.  Speeds of 20m/s are reached and the layer 
thickness decreases form 600 to 300m. The contours of constant wind speed, which are 
roughly perpendicular to the coastline near Point Arena, become more oblique as 
Stewarts Point is approached. Similar behavior has been observed along Peru’s coastline 
by Freeman (1950), who likens the acceleration and thinning with an expansion fan, a 
phenomena well documented by aeronautical engineers.  The fan is sometimes marked by 
clearing as the high-speed air descends (Figure 4.3.1). Between Stewarts Point and 
Bodega Bay, where the coast veers slightly southward, the wind speed diminishes and the 
layer thickens in what has been described as an oblique hydraulic jump.   Different 
visualizations of marine layer jumps (Figures 4.3.2 and 4.3.3) show the abrupt and 
sometimes wavy character of the transition.  
 
 The subsidence associated with the Pacific high-pressure system creates a 
particularly sharp interface between the cold and moist marine layer and the overlying 
warm and dry air.  It is therefore natural to treat the entire layer as a ‘slab’ and to use the 
shallow-water equations as a model.   Expansion fans and oblique hydraulic jumps are 
not admitted in the long-wave limit of these equations and we must therefore allow full 
freedom in the two horizontal dimensions.   If the flow is assumed steady and 
supercritical, the method of characteristics can be used to obtain solutions.  A complete 
derivation of the characteristic equations appears in Appendix B.  The present section 
contains a non-rigerous discussion of characteristic curves, oblique jumps and expansion 
fans; a formal application appears in Section 4.4. Both discussions will ignore the effects 
of rotation, since this considerably simplifies the discussion of characteristics and still 
allows for a description of the basic phemonena.  The neglect of rotation will, however, 
preclude any discussion of the decay of features in the offshore direction. 
 
  It should also be noted that the supercritical mode of the marine layer is just one 
of several observed configurations.  Another is the ‘gravity current’ mode, in which the 
layer moves northward along the coast with a distinct leading edge (Figure I2c).  This 
type of flow is discussed in Section 4.5.  



 
 The method of characteristics for the steady-shallow water equations in two 
dimensions has origins in the theory of gas dynamics and compressible flow (Courant 
and Friedrichs, 1976).  The methodology is can be applied in regions of the flow field 
where  
     

    F =
(u *

2
+v *

2
)
1/2

gd *
> 1  .   (4.3.1) 

 
F is clearly a Froude number based on the full flow speed and the region over which 
(4.3.1) holds is sometimes called supercritical.   This usage differs from that of our 
previous applications in the long-wave limit, where the entire cross-section of a flow is 
judged subcritical or supercritical depending on whether a long normal mode could 
propagate in two or one directions.  The appropriate Froude number in those cases 
depends on the flow across the whole cross section. The Froude number defined in 
(4.3.1) in relevant to the free, locally generated disturbances.    
 

If (4.3.1) holds, the influence of a localized forcing is limited to a downstream 
subregion of the flow field. The governing equations in this case are hyperbolic and can 
be solved using the method of characteristics (Appendicies B and C). This property can 
be demonstrated by considering a uniform southward current with velocity vo* and depth 
do* (Figure 4.3.4).  A localized disturbance to the flow introduced at point p will spread 
out in a widening circle as it is advected downstream.  The radius of the circle will grow 
at rate (gdo*)1/2 while the center of the circle will move southward at speed vo*.  If F>1, 
the disturbance will spread within a cone of influence that spans the angle 2A, where  
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The angle A and the edges of the cone are analogous to the Mach angle and Mach lines of 
supersonic flow.  In shallow water theory A is referred to as the Froude angle. If F<1, the 
disturbance circle spreads upstream and downstream, carrying the influence to all parts of 
the flow field.  The steady shallow water equations in this case are elliptic and the 
method of characteristics fails.  
 
 A related feature distinguishing two-dimensional flows with F>1 from those with 
F<1 is that only the former can support a stationary, free disturbance.  It is left as an 
exercise to show that for the uniform southward flow considered above, a small-
amplitude, stationary disturbance with horizontal structure ei(k*x*+ l*y*)  can exist provided 
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There are two groups of waves (corresponding to ±k*), each with crests and troughs tilted 
at the Froude angle with respect to the background flow direction (Figure 4.3.5a).  We 
denote the corresponding lines of constant phase by C+ and C- and note that they are 



aligned at the same angles are the edges of the wedge of influence in Figure 4.3.4.  In 
both cases the alignment is such that the normal component of velocity equals the 
intrinsic propagation speed (gd*)1/2 of a gravity wave.    As F approaches unity from 
above, the dashed and solid lines become perpendicular to the background flow.  The 
flow is now one-dimensional and hydraulically critical in the sense explained in Chapter 
1. For F<1 the stationary disturbances cease to exist.  In the next section, we will show 
that the Froude lines are also characteristic curves for the steady flow.  
 
  It can also be shown (Exercise 1) that disturbance energy propagates along the 
characteristic curves in the downstream sense.  Stationary disturbances generated  by 
coastline irregularities to the east of the flow should therefore be carried away from the 
coast along the C- lines.  Suppose that the coastline veers away from the upstream flow 
direction (Figure 4.3.5b) and that the background flow adjusts so as to run parallel to the 
coast with a new velocity and depth. The new Froude angle A1 between the disturbance 
phase lines and the coast will depend on the new value of F1, which cannot be calculated 
without further analysis.  However, we have already seen that a supercritical channel 
flow accelerates and shoals (Section 1.4) when the channels widens.  F1 might therefore 
be expected to exceed its upstream value Fo and (4.3.2) then implies A1<Ao.  One can 
infer an expansion fan, a family of fanning wave crests and troughs, in the intervening 
region (Figure 4.3.5b).    
 

Where the coastline turns back into the flow (Figure 4.3.5c), one might expect the 
Froude number to decrease and A to increase, giving rise to intersecting crests and 
troughs and perhaps a shock.  A simple model that allows prediction of the angle β of the 
oblique shock is sketched in Figure 4.3.6.  The coastline is assumed to turn into the 
upstream flow at an angle α and the flow upstream and downstream of this point is 
assumed to be parallel to the coast.  The matching conditions across the shock were 
developed in Section 3.5.2.  For example, equations (3.5.2) and (3.5.6) expressing the 
continuity of normal flux and tangential velocity lead to  
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A third constraint based on the above relations plus the balance of flow force across the 
jump (equation 3.5.5) is 
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(see Exercise 2).  Eliminating do*/d1* between (6) and (7) gives 
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 allowing determination of the jump angle given α and the upstream flow. 
 
 
 
Exercises 
 
1)  For 2-dimensional plane waves in a uniform flow with velocity (0,-vo*), derive the 
dispersion relation 
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and deduce the condition (2) that the waves be stationary.  For stationary disturbances, 
show that the group velocity is 
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and that energy therefore propagates along the lines of constant phase (characteristic 
curves) C+ and C-,, and in the downstream direction of these lines.  
 
2)  Prove equation (4.3.7).  (Hint:  show that equation 1.6.8 holds for the oblique jump if 
Fu is interpreted as the upstream Froude number based on the normal component of 
velocity.) 
 
 
 
Figure Captions  (note that high resolution versions of the following figures are 
available) 
 
Figure 4.3.1   Aircraft photo, facing to the North, showing Cape Mendocino. The area of 
clear air corresponds is an expansion fan in the lee of the Cape.  (Enhanced version of 
photo by Dr. Clive Dorman). This photo has not appeared in any publications. High 
resolution version: CapeMendocino.enhanced.tif 
 



Figure 4.3.2   Possible hydraulic jump near Point Arena, with the viewer facing southeast.  
(Photograph by Dr. John Baine.)  need to verify with John Baine that this jump is indeed 
situated near Point Arena. High resolution version: shock_front.rotated.tiff 
 
Figure 4.3.3. Image of a hydraulic jump near Point Sur based on LIDAR, a laser device 
that points upward.  Air Density variations cause the light to reflect back, similar to radar.  
The bottom of the air temperature inversion causes strong backscatter and is indicated by 
yellow-green boundary. (From Dorman et al. 1999).  Original figure is in 
ptSurHyJump.jpg. 
 
Figure 4.3.4  Wedge of influence and the Froude angle A. 
 
Figure 4.3.5 (a) Cross-waves in a supercritical flow.  The crests and troughs are 
characteristic curves.  (b) Expansion fan caused when the coastline veers away from the 
upstream flow.  (c) Oblique hydraulic jump caused the by the coastline veering into the 
flow. 
 
Figure 4.3.6 Oblique hydraulic jump at a corner. 
 
 
 
 



Figure 4.3.1



Figure 4.3.2



Figure 4.3.3



Α

vo

cot

p

q

r

Α

Figure 4.3.4



vo
x

y

A  A

y

expansion fan

(b)

y

oblique jump

(c)

(a)

Aο

A1

A1

Aο

Figure 4.3.5

C+

C+

C+

C-

C-

C-

C-

C-

C-

C-



vo

α

v1

β

jump

Figure 4.3.6


