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4.1  Curvature Effects  (currently listed as 4.4 in the hydraulics book folder; the 
equations and figure numbers will have to be redone this is indeed changed to 4.4) 
 
Should I use R or Rc instead of ρ for the radius of curvature?  Roed’s figure must be 
altered to conform to current notation.. 
  
 It was noted in Section 2.3 that a semigeostrophic channel flow that has become 
separated from the left sidewall becomes immune to changes in the position of the right 
sidewall.  As position of the right wall changes the current moves with it, undergoing no 
other change in cross-sectional form.  Only variations in bottom elevation influence the 
flow in a meaningful way.  This aspect has been demonstrated under the usual conditions 
of gradually varying geometry, implying that the radius of curvature ρ* of the wall or 
coastline is large compared to the characteristic width of the current.  As we discuss 
below, the effects of coastal curvature begin to become nontrivial once this restriction is 
relaxed.  In order to make analytical progress, the ratio of the Rossby radius of 
deformation, though finite, must be kept small.  Topographic effects continue to 
dominate in this limit if the flow contacts the bottom, but topography is irrelevant if the 
coastal flow takes place in a surface layer, insulated from the bottom by an inactive 
deeper layer.   Sidewall curvature then provides the only forcing mechanism.  
 
 Consider a coast-following coordinate system in which s* and n* denote the 
along-shore and offshore directions, as shown in Figure 4.1.1.  To motivate the equations 
of motion in the (n*,s*) system, first consider these equations in the more familiar 
cylindrical (r,θ ) system (e.g. Batchelor, 1967, Appendix 2): 
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Here ur* and uθ* denote the radial and azimuthal velocity andθ  increases (and uθ* is 
positive) in the counterclockwise direction.  Topographic forcing (terms with h*) are 
relevant when the current runs along the bottom and will be retained for completeness.  
However these will be ignored in our discussion of surface currents.  
 
 Now consider a particular location (s*-value) along the coastline.  The radius of 
curvature ρ*(s*) is considered positive if the coast curves to the right in the direction of 
increasing s.  Position the cylindrical coordinates so that the constant-r circles are locally 
tangent to the coastline at the location in question, as shown in Figure 4.1.1.  The origin 
(r*=0) is positioned a distance ρ*(s*) from the coast and therefore r*=ρ*+n* and 
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!s* = "# *!$ .  Associating ur* and -uθ* with the off-shore and along shore velocity 
components u* and v* then leads to 
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When the coastline curves to the left in the positive s*-direction, so that ρ*<0, the origin 
of the local cylindrical system lies offshore at n*=ρ*.   The corresponding singularity 
appearing in (4.1.1-4.1.3) is avoided if the upper layer outcrops at a value of n*<ρ*, or if 
the fluid at n*=ρ* is stagnant.    
 
 Conservation of potential vorticity in the new coordinates can be expressed as 
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 Steady flow can be described in terms of a stream function ψ* such that 
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as suggested by (4.1.3).  Conservation of the Bernoulli energy and the potential vorticity 
along streamlines then take the forms:  
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and 
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where D∞ denotes the potential depth.  
  
 We will examine a current with width we* moving along the coast such that the 
net transport is in the positive s*-direction.  The bottom elevation is constant with n* but 
may vary with s*. Possible cross sections of the flow are shown in Figures 4.1.2. Let ρo* 
denote the characteristic radius of curvature of the coast, L the scale of s*-variation of the 
topography, and W the characteristic value of we*.  Then we can nondimensionalize the 
above equations using scales (W, L) for (n*,s*) and (V ,U)  for (v*,u*),   with the latter 
related by U=VW/L.  In accordance with usual scaling relations (Section 2.1), W=(gD)1/2/f 
and V=(gD)1/2. The nondimensional forms of (4.1.1-4.1.3) are then 
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 There are two adjustable parameters; the aspect ratios W/L  and W/ρo*. If the 
geometry is gradually varying in the sense that W/L<<1, and W/ρo* is also <<1, then 
(4.1.7) will, to leading order, reduce to the geostrophic balance v = !"(d + h) / "n and all 
coefficients involving curvature will drop out of the remaining equations.  Hence 
curvature effects disappear from the leading order equations in the limit of small W/L  
and W/ρo*, even though ρo* and L might be comparable.  This result would appear to be 
formal justification of the earlier remarks concerning the insensitively of the flow to wall 
curvature.   
 
 There is one exception to the remark just made.  If the flow moves near the 
critical speed (c-=0) it becomes sensitive to gradual changes in curvature. As a 
demonstration, consider the lowest order approximation to (4.1.6-8) when W/L=0, 
0<W/ρo*<<1 and when the fluid has uniform potential vorticity.  To lowest order the 
resulting equations are the same as those governing the separated channel flow discussed 
in Section 2.3.  One of the two characteristic forms of these equations is 
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where c- is the characteristic speed and R- is the Riemann invariant [e.g. 2.3.18, 19].  The 
right-hand side contains the numerically small curvature terms. If c-=O(1) then dR- /ds 
must be O(W/ρo*) implying that the current experiences only slight changes in response 
to the curvature.  On the other hand, a flow that is nearly critical in the sense that  
c! = O(W / "

o
*)will allow dR-/ds to be O(1) and therefore be sensitive to weak 

curvature.  
 
 One way to include curvature effects in a mathematically simplified setting is to 
assume !

o
* " L , with W/L<<1.  Neglecting terms of O(W/L )2  or higher  in (4.1.7) leads 

to an equation in which advection is neglected but centrifugal acceleration is retained. In 
addition, the local radius of curvature ρ(s)+n is approximated by its value at the coast 
ρ(s).  A common form of the offshore momentum equation that incorporates these 
approximations is 
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When applied to (4.1.7), the same assumptions lead to 
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also valid to O(W2/L2).  These dimensional forms are unfortunate in that they encourage 
the belief that centrifugal acceleration v *2 /! *  can be as large as the Coriolis 
acceleration  fv*. Equation (4.1.7) clearly shows that W/ρo would have to be O(1)  in such 
cases.  The operative along-shore length scale L would then be ρo and thus W/L=O(1),  
suggesting that the advective terms  in (4.1.7) are no longer negligible.  One is then 
obligated to solve the full shallow-water equations.  We will proceed with (4.1.12,13) 
with the caveat that their validity depends on the curvature terms remaining small 
compared to the remaining terms.  
 
 Most investigations of curvature have assumed that the potential vorticity is 
uniform (D∞=const.) and that the flow can be traced back into a region where the wall 
curvature κ=1/ρ  is zero.  In this upstream region the cross-sectional velocity and depth 
profiles are given by the semigeostrophic solutions (e.g. 2.2.3 and 2.2.4). If the upstream 
region in question is a reservoir bounded by two sidewalls, the flow is contained in 
geostrophic boundary currents.  If the upstream geometry is coastal, a single boundary 
current is present. 
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 In a seminal investigation (Röed,1980) considered flow originating from a wide 
reservoir.  Through an unspecified process the reservoir outflow is imagined to separate 
from the left reservoir wall and become concentrated in a right-wall boundary current of 
the type shown in Figure 4.1.2a.  Given the local value of ρ* at a particular downstream 
location, one seeks a solution that preserves the potential vorticity, volume transport, and 
energy of the reservoir flow.  Let gDr represent the value of the Bernoulli function B* 
along the right wall (facing downstream), where the streamfunction ψ * is taken as zero.  
Then the relation dB*/dψ*  implies B * (!*) = gDr + f! * /D" .  The value of ψ*  along 
the left wall in the reservoir is Q,  the total volume transport, and ψ*  must also take on 
this value along the free edge n*= we* of the separated current. The solution at a 
downstream section where the ρ* is nonzero may be obtained by first guessing the value 
we* and then solving the pair of first order ODE’s (4.1.12) and (4.1.13), or their 
dimensional versions, numerically1. The integration is started at the free edge n*= we* of 
the flow using the conditions d*(we*)=0 and  
 
   v * (we*) = 2B * (Q*)( )

1/2
= 2(gDr + fQ * /D

!
)( )
1/2 , 

 
which follows from (4.1.6) with v*2>>u*2.  The integration is then carried to the wall 
(n*=0), where the condition ψ*=0 is checked.  Ifψ*  is non-zero at the wall, the value of 
we* is adjusted and the procedure is repeated until ψ*=0 is obtained at the wall.  More 
than one acceptable value of we* is generally possible.  
 
 By implementing this iterative method for various values of ρ*, one can generate 
a sequence of cross-sections, all with the same Q*, D∞, Dr (and therefore B*(ψ*)).  Figure 
4.1.3 contains a dimensionless graph showing solution curves obtained in this way.  Each 
solid curve gives the stream width, represented in terms of tanh we * f / 2(gD! )

1/2"# $%  as a 

function of the wall curvature, represented by tanh 2(gD! )
1/2
/ " * f#$ %& .  The 

dimensionless value of the wall energy D̂r = Dr (2g / fQ)
1/2 is conserved along each 

solution curve and =4 for all curves.  Each curve has an upper and lower 
branch and direct calculation of the speed of the frontal wave that propagates on the free 
edge indicates that the upper branch is subcritical and the lower branch supercritical.2  
The lower dashed line corresponds to critical flow, as indicated by the merger of 
subcritical and supercritical solution branches.  Just above it lies a second dashed line that 
marks solutions with zero velocity at the wall.  Above this curve the solutions have 
reverse flow near the wall.  This condition, which cannot occur when the flow is 
subcritical, is closely related the stagnation condition discussed in connection with 
upstream gyres (Section 2.7).  Although the plot extends over the whole range 

                                                
1 Röed actually solved these equations with full variable curvature (ρ replaced by  ρ+n). 
2 Since the curvature is assumed small, the characteristic speeds are approximately given by 
semigeostrophic  theory (see equation 2.3.18). 
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!" < 2(gD" )
1/2
/ # * f < "  the equations used to derive the solutions are formally valid 

only for 2(gD! )
1/2
/ " * f << 1 .     

 
 The solution curves of Figure 4.1.3 have several notable features.  First, the 
subcritical branches of the curves show that the stream width decreases and approaches a 
critical state as the curvature decreases.  A subcritical current originating upstream along 
a straight wall (ρ→∞) will therefore narrow and become less subcritical if the wall bends 
to the left (facing downstream).  The same current becomes wider and more subcritical if 
the wall bends to the right.  If the wall bends to the left and its curvature becomes 
sufficiently large, the flow will undergo a subcritical-to-supercritical transition at the 
point of maximum curvature.  Downstream the flow will become supercritical and will 
continue to narrow as the positive curvature decreases.  If this supercritical flow then 
moves into a stretch of negative coastline curvature it can either narrow or widen 
depending on the particular value of D̂

r
.  Thus, there is no simple rule governing the 

widening or narrowing of a supercritical current as the coastline curvature varies. The 
reader will also note that the dependence of the width on curvature is rather weak for 
many of the solutions curves, at least when  f / 2!(gD" )

1/2
<< 1. This behavior is 

consistent with the earlier finding that curvature effects are weak in the long wave limit.  
An exception to this rule occurs when D̂

r
= 2.0 . The corresponding current is exactly 

critical along the upstream section of strait coastline and will experience a rapid widening 
or narrowing upon encountering slight finite ρ.  This is just an example of the sensitivity 
of a critical flow to its geometric constraints, anticipated by (4.1.11). 
  
 The separation of coastal currents due to coastline curvature is a subtle problem 
but one of potentially great oceanographic importance.   The Gulf Stream, the Kuroshio, 
and the surface inflow through the Strait of Gibraltar are just three of many examples of 
boundary flows that experience separation.  In the first two cases the separation is from a 
‘left-hand’ boundary and almost certainly involves the variation in f with latitude.  The 
Gibraltar inflow separates from a ‘right-hand’ boundary (the Moroccan coast) at a sharp 
corner (Figure 4.1.4) that marks the beginning of the Alboran Sea.  The latter contains the 
anticyclonic Alboran Gyre (Figure 4.1.4).  To compare features like this with the (Röed, 
1980) model it should first be noted that the model permits two types of separation.  In 
the first, the active layer remains in contact with the wall but a stagnation point forms 
there.  This type of separation is demonstrated in a laboratory experiment (Figure 4.1.5) 
based on the Strait of Gibraltar and Alboran Sea geometry.  In terms of the Röed theory, 
the value of ρ* required for separation is indicated by the upper dashed line in Figure 
4.1.3, where the flow is slightly subcritical.  If the flow is subcritical upstream and 
supercritical downstream, then the separation streamline will extend from the stagnation 
point upstream into the supercritical flow.  To achieve the downstream separation that is 
characteristic of, say, the Alboran Gyre, the flow would have to be supercritical upstream 
and subcritical downstream.  It is quite possible that the Mediterranean surface inflow 
leaves the Strait of Gibraltar in a supercritical state, which would permit this scenario.   
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 The second type of separation involves the detachment of the entire upper layer 
from the coast and the surfacing of the underlying fluid. It may seem surprising that the 
flow can outcrop on both sides and still maintain a positive flux, but this is made possible 
by centrifugal acceleration.  If (4.1.12) is integrated across the upper layer, the transport 
can be shown to obey 

   Q =
!g d *2 (0)
2 f
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1

" *
d * v *

2

0
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# dn ,   (4.1.14) 

 
and thus a positive Q may be maintained by a positive ρ* even when the wall depth d*(0) 
vanishes. Some of Roed’s solutions undergo this type of separation for sufficiently small 
ρ*, but the necessary conditions are not discussed.  Klinger (1994) revisited this issue 
using essentially the same model and found that the radius of curvature required is 
roughly equal to the inertial radius vu * / f  based on the average velocity of the upstream 
flow (measured where the wall curvature is zero).  There is a tacit assumption concerning 
the unidirectional nature of the upstream flow here; clearly if the upstream flow is nearly 
separated, the flow may easily separate for large values of ρ*.  Klinger also explores a 
configuration in which the lower layer does not have an offshore outcrop (Figure 4.1.2b).  
Here the moving portion of the current is separated from a stagnant offshore region by a 
free streamline. The potential vorticity of the flow is again constant but the separation 
condition is found to be insensitive to its value.  Despite the finite offshore depth, the 
wall depth may again go to zero causing the flow to separate.  The separation condition 
over much of the parameter space of the solution is !* < 0.9vu *weu * /(g 'dI*)

1/2 , where 
weu* is the upstream current width and dI* is the interior depth.  If the upstream width 
weu* scales with the deformation radius (g 'dI*)

1/2
/ f then the criterion is nearly the same 

as for the first case.  Again, this condition may violate the assumption of small wall 
curvature that underpins the model.  
 
 Berry also discusses the case shown in Figure 4.4.2c, where the flow is negative.  
This corresponds to flow with the wall to the left and is similar to the model of Ou and di 
Ruijter discussed below.  He is able to get his numerical calculations for the critical 
curvature to collapse along a fairly tight curve (see his Figure 6), but there is absolutely 
no discussion of a fit to this curve or of a separation law. I need to ask him about this. 
 
 A similar technique can be used to explore the case with the wall to the left of 
positive Q (Figure 4.1.2b). Ou and de Ruijter (1986) use a model that is similar in 
construct to that considered by Klinger for flow with the wall to the left.  The potential 
vorticity of the moving fluid is constant and the flow is joined to a stagnant offshore 
region that has lower potential vorticity.  The hydraulically relevant wave is now a 
Kelvin wave that attempts to propagate upstream. Its speed is approximated by -(g/D∞)1/2 
times the wall depth (cf. Equation 2.2.26) provided the potential vorticity front lies more 
than a distance (gD∞)1/2/f offshore.  Under this condition the flow remains subcritical as 
long as the wall depth is finite.  If d vanishes at the wall, leading to separation of the 
current, the flow is close to the critical speed.  [This property is valid as long as the radius 
of curvature remains large compared to the current width.]  The criticality of the 
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separated current downstream depends upon the environment in which it propagates;  
upstream propagation of long waves may or may not be permitted.  Curving of the wall to 
the left of the direction of flow encourages broadening of the boundary current and 
separation of the flow, whereas negative curvature has the opposite effect. Ou and de 
Ruijter also takes into account variations in the value of f along the wall and the resulting 
models is sufficiently complicated that no simple criterion for separation is written down.  
However, unlike the case of unidirectional flow with the wall on the right, the flow may 
separate at moderate curvatures.   
 
I am reluctant to include any of Ou and de Ruijter’s graphs, as they are quite different 
from Roed’s and include the beta effect. 
  
 
 Laboratory and numerical models allow one to escape the restriction of weak 
curvature.  These studies traditionally seek local criteria for separation as derived from 
length scales that characterized the flow at a particular location.  These include the local 
radius of curvature, the Rossby Radius of deformation ( !g D)

1/2
/ f based on a local upper-

layer thickness scale D, and the inertial radius U/f based on the local velocity scale U.  
The ratio of the last two is a Froude number F =U / ( !g D)

1/2 .  Many of the experimental 
flows are set up by a dam break or lock exchange, and this tends to make F close to unity.  
In such cases the separation criterion is roughly ( !g D)1/2 / f " # 1  (e.g. Whitehead and 
Miller, 1979).  But since ( !g D)

1/2
/ f is roughly equal to U/f  the criterion could also have 

been written as U/fρ≥1.  One study that allows a range of Froude numbers (Bormans and 
Garrett, 1989) suggests that the latter is more general. The connection between the 
experiments and the theory described earlier is difficult to establish, not only because 
U/fρ≥1 violates the underlying assumptions of the models but also because the models 
stress nonlocal (upstream) separation criteria.  
 
  Other complications cloud the picture, suggesting that more than two 
dimensionless parameters are relevant.  Numerical experiments with no-slip boundary 
conditions produce separation more readily than those with those with free slip 
conditions. Also, separation is sometimes found to be sensitive to the other factors such 
as the vorticity distribution in the flow. If the vertical wall is replaced by a sloping 
bottom or continental shelf the separation condition is altered and the tendencies that 
occur in response to wall curvature can actually be reversed. (see Section 5.10, to be 
changed to section 4.??).   In the end, flow separation may be sensitive to a whole array 
of physical circumstances that generic models have difficulty assimilating. 
 
  
Exercises 
 
 1)  It was argued in connection with equation (4.1.14) that positive curvature will 
allow a current of the type shown in Figure 4.1.2a to maintain a positive flux even when 
depth along the right wall vanishes.  Prove that this is also true for a current of the type 
shown in Figure 4.1.2b. 
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 2)  Show that (4.1.12) and (4.1.13) can be solved analytically for the case of zero 
potential vorticity.  Derive the resulting depth and velocity profiles assuming geometry of 
the form shown in Figure 4.1.2a.  For given values of energy gDr and flux Q what is the 
condition for separation of the entire upper layer from the right wall. (Not yet solved: did 
I assign it as a project?) 
 
 
Note that in the case of ‘zero potential vorticity’ D∞→∞, the curvature terms can be 

interpreted as augmenting the Coriolis acceleration by an amount v

! + n
.  

 
Figure 4.1.1  Curvalinear coordinate system. 
 
Figure 4.1.2  Upper layer geometry for (a): surface current with the wall to the right of 
positive flux and an outcropping interface; (b): a similar situation, but with the offshore 
edge joined to a finite depth, quiescent region by a free streamline; (c) a current running 
with the wall to the left, facing downstream. 
 
Figure 4.1.3  Solution curves based on Röed,1980.  The lower dashed line indicates 
critical flow and the upper dashed line indicates stagnation along the right wall.  The 
upper branches of the (solid) solution curves correspond to subcritical flow. 
D̂r = Dr (2g / fQ)

1/2 is conserved along each solution curve and =4 for all 
curves 
 
Figure 4.1.4  The Alboran Gyre visualized by NOAA/AVHRR  This is a figure 
downloaded from the web and referenced to Heburn et al. 1990.  The right-hand panel is 
the better of the two.  The complete reference only needs to be tracked down if a better 
image of the Gyre, and particularly the separation of the inflow, can be found. 
 
Figure 4.1.5  Flow separation in a two-layer lock-exchange flow. The (clear) surface 
layer enters the gap from the left reservoir and separates from the boundary at the 
indicated stagnation point.  The separated flow continues in an anticyclonic arc, forming 
a gyre.   The denser layer is dyed black and is exposed to the surface offshore (to the 
right) of the gyre. The experiment is described more fully in Miller and Whitehead, 1979.  
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