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There are some remarks in italics near the end concerning the shocks that Nof finds in his 
zero pv theory and whether frontal waves dynamics are permitted.  Will eventually need 
to remove this. 
 
 
 
 
3.7 Shocks in separated flows. 
 
 So far our discussion of shocks has concentrated on flows with finite layer 
thicknesses.  However, the numerical simulations discussed in Section 3.4 reveal the 
existence of shocks in flows that are partially or completely separated from the left 
channel wall.  The signature of these ‘transverse’ shocks is an abrupt change in the width 
of the stream that may propagate or remain stationary.  We will begin the present 
discussion with the stationary version, an example of which is shown in Figure 3.7.1a. 
  
 An attempt to produce a hydraulic jump in a detached, laboratory flow was made 
by Pratt (1987).  As suggested in Figure 3.7.2, fluid is pumped into the right-hand end of 
a channel, where it collects in a small reservoir and spills over an obstacle.  Downstream 
of the sill, the flow becomes supercritical and terminates in a hydraulic jump.  The 
subcritical flow downstream is withdrawn near the left-hand end of the channel. The 
procedure is to set up a steady state with no rotation, then spin up the channel to a steady 
rotation rate high enough to cause the supercritical flow to separate.  An unavoidable 
difference between the laboratory flow and the numerical solution is that the ‘global’ 
deformation radius (gD

!
)
1/ 2
/ f  based on the reservoir depth D∞ is much greater than the 

channel width w in the laboratory, but of O(w) in the numerical experiment.  This is due 
to the fact that the laboratory experiments are performed with free-surface flows and full 
gravity.  A Kelvin wave in the laboratory channel is therefore felt across the whole width.  
Separation is still possible because the deformation radius based on the local depth scale 
D of the supercritical flow can be much smaller than w. 
 
 The qualitative features of the classical planar hydraulic jump depend primarily 
on the Froude number V/(gD)1/2, where the velocity and depth scales V and D are 
normally based on the approach flow. Rotation leads to the addition of at least one 
dimensionless parameter and a natural choice is the ratio of the upstream width scale W 
to the ‘local’ Rossby radius of deformation (gD)1/2 / f  for the approach flow.  If the 
approach flow is attached, W is just the dimensional channel width w*.  If the approach 
flow is detached then W=we and V and D become related by geostrophic condition 
V = gD / fwe . It follows that Wf / (gD)1/2 = (gD)1/2 /V ,so that the upstream flow is 
characterized by a single parameter.  However, the downstream end state in this case may 
be attached, implying that we/w is a relevant parameter for the jump as a whole.  A third 
possibility in which both end states are detached is generally not observed for a stationary 
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jump.  In summary, important parameters include the upstream value of V/(gD)1/2 along 
with1 a second parameter 
 

 

  

r =
wf / (gD)

1/2
                                 (attached)                    

w /we      (separated upstream, attached downstream)

! 
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# 

.  (3.7.1) 

 
 A representative sequence of experimental runs demonstrates the qualitative 
effects of increasing the rotation rate (Figure 3.7.3). The value of V/(gD)1/2 is held within 
the range 7.1±0.5 for all frames while r increases from 0.22 to 4.7. Frame (a) shows a 
case in which the rotation rate is small and the flow is indistinguishable from a non-
rotating flow.  The supercritical flow can be seen along with a hydraulic jump at the base 
of the obstacle.  In Frame (b) the rotation rate has been increased to the point where some 
visual evidence of cross-channel variations in the flow field can be seen.  In particular, 
the amplitude (depth change) of the jump is largest on the right side of the channel and 
waves along this edge have appeared downstream of the jump2. In Frames C and D, the 
supercritical flow has separated and the hydraulic jump is manifested primarily as a 
discontinuity in the width of the stream.  The conjugate subcritical flow remains attached 
to the left wall, even at the highest rotation rates.  A broad, cyclonic recirculation (not 
visible in the photos) forms downstream of the zone of reattachment.  The abrupt 
reattachment and the downstream recirculation are similar to what is observed in the 
numerical simulations (Figure 3.7.1a,b). 
 
 As r increases, the upstream-to-downstream increase in depth becomes less 
abrupt.  For separated upstream flow, the transition in depth is smooth and wave-like, and 
the region immediately downstream of the transition is observed to contain turbulent, 
horizontal eddies.  There is no visual evidence of the vertical turbulence and mixing that 
characterizes non-rotating jumps.  These observations suggests that potential vorticity 
may be approximately conserved across the jump at higher values of r, but a shock-
joining model based on this assumption fails to accurately predict the downstream state.  
The numerical simulations clearly show that potential vorticity is altered (Figure 3.7.1b 
and c), much of the implied dissipation occurring downstream of the point of 
reattachment.   
 
 Another feature that complicates the discussion of dissipation is that the detached 
laboratory flow is bordered by a shallow but relatively wide, viscous region.  As shown 
by a cross section of the supercritical flow (crosses in Figure 3.7.4) the fluid immediately 
adjacent to the right wall is strongly banked and is well approximated by zero potential 
vorticity profile (solid line) for the same volume flux and inviscid width.  To the left lies 

                                                
1 Other parameters may be important as well.  If the Rossby radius based on the potential depth D∞ is 
comparable to w then the ratio of these lengths is relevant.  If the potential vorticity of the approach flow 
varies, parameters measuring this variation may arise.   
 
2 This contrasts with attached numerical jumps (e.g. Figure 3.30), with have maximum amplitude on the left 
side of the channel.  However the differences may be due to the differences in the Kelvin wave decay scale  
(gD

!
)
1/ 2
/ f , which is <w in the numerical simulation and >>w in the laboratory experiment. 
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a broad, shallow area where the fluid depth is close to the characteristic Ekman layer 
thickness (2ν/f) based on the kinematic viscosity ν. 
 
 Stationary shocks would appear to depend on the presence of a ‘left’ wall, even 
when the upstream flow is separated.  Although this has not been proven in a general 
way, it is strongly suggested by the experiments described above.  As shown by Nof 
(1984), this constraint is relaxed if the shocks are allowed to propagate.  A possible 
version of such a feature consists of an expansion, both in width and depth, of a coastal 
current (Figure 3.7.5A). The fluid is assumed to have zero potential vorticity and also 
have positive velocity, so that the current is supercritical (in view of the Section 3.2.3 
discussion).  A shock is postulated as a result of an increase in the transport, and therefore 
the wall depth, at some point far upstream.  The resulting disturbance steepens in the 
manner described in section 2.3 and it eventually breaks, forming a steadily propagating 
discontinuity in depth that moves towards the observer. 
 
 Nof joins the end states of the shock using conservation of potential vorticity and 
width-integrated mass and momentum, even though the first constraint is not strictly 
justified. The calculation is further constrained by the requirement that the energy of fluid 
parcels passing through the jump. This last condition rules out any solution for which 
fluid passes across the shock from deeper to shallower depths, meaning that the fluid 
velocity v in the moving frame of the shock must be <0 for all x.  The resulting theory 
gives a prediction of one end state given the other end state and the propagation speed.  
Or, the shock speed can be predicted from the knowledge of one end state and the change 
in wall depth.  It is found that the shock speed is always greater than (gdd)1/2 based on the 
wall depth dd of the flow into which the shock propagates.  Stationary shocks are 
therefore disallowed. As in non-rotating analogs of this shock, the propagation speed is 
greater than that of the linear wave propagating in the downstream region, but slower 
than the linear wave propagating down stream in the upstream region.  This must be true 
to remain consistent with the steepening process that forms the shock in the first place.  

 
 The width is always increased by the passage of the shock (e.g. Figure 3.7.6) and 
this makes the solutions quite different from the transverse shocks found in the numerical 
simulations of Section 3.4.  As exemplified by the feature shown at y=18 at t=20 in 
Figure 3.4.6, the numerically generated shock involve a decrease in width.  Nof’s 
solutions involve large depth changes along the wall that propagate at a seed comparable 
to  (gd(w/2))1/2; both these features suggest Kelvin wave dynamics.  The shocks in Figure 
3.4.6 involve considerable changes in width accompanied by minor changes in depth, 
suggesting frontal wave dynamics. ‘Frontal bores’ are apparently not admitted in Nof’s 
theory, perhaps due to the restriction to unidirectional velocity in both end states. 
 
 This would make a good class project: explain why Nof’s solutions apparently do 
not include breaking frontal waves.  This might be quite important:  Nof sought to explain 
Meddie generation.  In the simulations of Pratt, Helfrich and Chassinget,  the transverse 
shocks always widened the flow and, in one case, gave rise to a pinched-off eddy (see 
Figure 15 in that paper.)  For some reason these shocks were not valid solutions to Nof’s 
formulation, perhaps because of the requirement of unidirectionalflow?? On p. 1693 of 
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Nof’s paper he described how one root of the solution must be rejected since it involves 
an increase in energy through the shock for fluid along the wall.  This may be where the 
pv shock is expunged. It should be possible to show through the arguments laid out in 
Section 3.3 that steepining of a frontal wave should give rise to the type of shock Karl 
and I saw.  Is it possible to make a shock-joining theory??  Would the eddy shown in 
Figure 15 have the correct vorticity sign for a meddie? 
 
 At the time of this writing, no direct observations of transverse shocks or jumps 
had been made in the ocean or atmosphere.  Such features would occur internally and 
would possibly involve exchange of mass and momentum between layers, a process not 
accounted for in the above formulations.  In the Denmark Strait, for example, the 
supposedly supercritical outflow gradually descends into the deep North Atlantic, 
gradually entraining overlying water as it does so.  There is no evidence of a rapid, 
stationary change in the width of the flow.  The suggestion that contact with the left 
channel wall is necessary for a stationary jump would mean that the jump would have to 
occur within the strait and not in the downstream basin.   
 
 One the other hand, observations in the Vema Channel (Hogg, 1983) reveal the 
type of rapid energy transformation that could be caused by a hydraulic jump. This deep 
strait lies in the southern hemisphere and a stationary Kelvin wave would therefore be 
trapped to the left wall.    A Kelvin wave jump is consistent with the behavior of potential 
energy measured along four different streamlines of the observed flow (solid curves in 
Figure 3.7.7).  The streamlines are defined by intersections between potential density (σ4) 
surfaces and the bottom.  For the streamlines corresponding to potential density σ4=46.11 
and 46.13, the potential energy decreases and then increases as it would if the 
corresponding flow passed through a hydraulic jump of the type shown in Figure (3.30).  
These streamlines are closer to the left (west) wall than the remaining two, which do not 
experience the same behavior. 
 
 
Exercises: 
 
1.  Consider a hypothetical stationary shock wave in which the upstream state is 
supercritical, the downstream state is subcritical, and both are detached and have zero 
potential vorticity.  Show that such a feature cannot be stationary.  (Reference: Nof, 
1984). 
 
Figure Captions: 
 
3.7.1  (a) Contours of surface elevation in the vicinity of a transverse hydraulic jump.  
The flow is left-to-right and is spilling down an obstacle whose crest lies at y=0 and w=2.  
The shaded region indicates dry channel bottom.  (b) Potential vorticity distribution for 
the flow in (a). (c) Potential vorticity q(ψ) distributions across sections A and B as 
marked in (a). From Pratt et al. (2000). 
 
3.7.2  Laboratory apparatus for rotating hydraulic jump experiment.  (From Pratt, 1987.) 
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3.7.3  Photos of hydraulic jumps for (a) r=0.22, (b) r=0.84, (c) r=3.10, (d) r=4.7.  The 
supercritical flow is spilling from right to left down an obstacle lying to the right in each 
photo.  In (c) and (d) the supercritical flow has separated from the near wall.  The Froude 
number V/(gD)1/2 of the supercritical flow just upstream of the jump is 7.1±0.5 in all 
cases.  The value of V is estimated from the geostrophic relation as 

  

g!d / fw , where Δd is 
the change in depth across the stream and w is the width (either separated or attached) of 
the flow.  D is the average of the depths on the two sides of the stream. (From Pratt, 
1987) 
 
3.7.4  Cross section of the supercritical flow shown in Figure 3.7.3c.  The crosses indicate 
measurements of the free surface elevation.  The solid line shows the free surface profile 
of a zero potential vorticity flow with the same volume flow rate and same width. The 
width in this case is taken as the distance from the right wall at with the depth falls 
beneath the Ekman thickness (2ν/f), as shown by the dashed line. All depths are 
nondimensionalized by the observed wall depth and the cross-channel coordinate x by the 
observed inviscid width we. (Pratt, 1987, Fig. 5)  
 
3.7.5  Sketch of hypothetical shock wave in a separated current.  The observer faces 
upstream (-y).  (based on Nof, 1984, Figure 3a) 
 
3.7.6  Example of the upstream and downstream depth profiles for a forward propagating 
shock in a separated current with zero potential vorticity. The Froude number 

  

F =1 and 
the downstream wall depth is 0.3 times the upstream wall depth.  The Froude number is 
defined by F = (v

1
(w / 2) + v

1
(we )) / (2gdd )

1/2
,  where v1(w/2) and v1(we) are the values of v 

on the two edges of the downstream current (ahead of the shock) and dd is the 
downstream wall depth. (Based on Figure 10 of Nof, 1984) 
 
3.7.7  Effective potential energy of various streamlines determined from where the 
indicated potential density (σ4) surfaces intersect the east wall of the Vema Channel. The 
lower the value of σ4, the closer the streamline is to the west wall.  The flow is to the 
right in the figure and horizontal distance is measured downstream from the mouth, 
where the channel joins with the Argentine Basin. Speed arrows are those needed to 
make the total energy of the 46.10 surface uniform.  (From Hogg, 1983) 
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