
3.6  A Kelvin Bore. 
 
 
 A type of shock that can be treated with some success is the bore formed by a 
Kelvin wave propagating into a quiescent region of uniform depth.  Examples arise in the 
nonlinear version of the Rossby adjustment problem (Section 3.3) when the channel is 
wider than several deformation radii.  The downstream bore then consists of consists of 
an abrupt change in depth that is trapped to the right channel wall (Figure 3.3.6).  The 
near discontinuity in depth is aligned perpendicular to the wall at the contact point but is 
increasingly oblique away from the wall.  In contrast with the bore observed in narrower 
channels (e.g. Figure 3.3.7) the present feature is felt only weakly at the left wall.  The 
lack of influence of the left wall was exploited by Federov and Melville (1996) who 
developed a model describing the shape and speed of the bore. 
 
 Suppose that the discontinuity lies along a contour y=Y(x,t) (Figure 3.6.1).  It will 
be assumed that w is infinite so that the left wall removed entirely.  The fluid lying ahead 
(y>Y) is quiescent and the fluid lying immediately behind has velocity u=uo(x,t), v=vo(x,t), 
and depth d=1+a(x,t).  If the continuity equation (2.1.7) is integrated over a fixed interval 
y1≤y≤y2 containing the shock, and if the interval is then reduced to zero, it follows that 
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Since the integration interval is fixed, the derivatives may be taken outside of the integral 
and therefore 
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After a similar treatment of its second term and division by (1+a), (3.6.1) becomes 
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 A second constraint follows from the continuity of the tangential velocity across 
the discontinuity (see 3.5.6).  Since the flow ahead of the discontinuity is quiescent the 
tangential velocity to the rear must also be zero: 
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 A third constraint results from integration across the discontinuity of the flux form 
of either of the horizontal momentum equations (3.5.3 and 3.5.4).  A convenient choice is 
(3.5.3) with n=y and s=-x. The resulting condition is 
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 Using (3.6.3) in (3.6.2) and (3.6.4) leads to 
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and 
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Eliminating !Y / !x  between the last two equations gives  
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and substitution for vo back into (3.6.5) yields 
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 Now suppose that the discontinuity propagates along the wall at a steady speed  
!Y / !t = c , so that 
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where θ  is the angle between the line of discontinuity and the normal to the wall. !Y / !x  
must vanish at the point of contact in order to satisfy the condition of no normal flow, and 
it follows that 
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where ao is the value of a at the wall.  This c is equivalent to the speed of a non-rotating, 
one-dimensional bore propagating into shallow water (see equation 1.6.7 with vu=0), 
based on the wall depth.  Equation (3.6.9) can now be written as 
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 The factor (1 + a)(1+ 1

2 a)  appearing in the last few can now be seen to have a 
simple interpretation. Consider a small segment of the discontinuity that is aligned at an 
angle θ  and that therefore faces the direction ! sin",cos"( ) , as shown in the Figure 3.6.1 
inset.  Since the entire bore translates at speed c = [(1+ a)(1+ 1

2
a)]

1/2
/ cos(!)  the segment 

in question moves in the y-direction is this speed.  The speed of the front in the normal 
direction is therefore [(1+ a)(1 + 1

2 a)]
1/ 2 .  Equation (3.6.9) is just a statement of this 

geometrical consideration.  At the wall, where y is the normal direction, c is given by 
(3.6.10).  Since c is constant, the amplitude a of the discontinuity must diminish as θ 
increases. 
 
 A solution for Y as a function of x cannot be ascertained without a further 
assumption on about the flow to the rear of the jump.  Federov and Melville (1996) take 
the velocity component vo to be geostrophic:  
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implyng that the non-semigeostrophic region R described in the previous section is 
absent.  This approximation is justified as long as the transverse velocity uo remains <<vo, 
and this requires that the angle θ between the discontinuity and the x-axis remain small 
(cf. equation 3.6.3).   
 
 Substitution of (3.6.12) into (3.6.7) leads to 
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If the right wall is temporarily assumed to lie at x=0, the solution satisfying a(0)=ao is 
given by 
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 Far from the wall (x→-∞) a→0 and, according to (3.6.11),  
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The far field angle θ∞ between the jump and the x-axis tends to zero as the amplitude ao is 
reduced.  When ao reaches 0.56, θ∞ is 45o. 
 



 
 The shape of the contour y=Y can be found by substituting (3.6.13) into (3.6.11) 
and integrating that relation numerically.  Examples of solutions for various ao (Figure 
3.6.2) show the curvature previously alluded to.  The curvature and the angle θ  increase 
as ao does but Federov and Melville (1996) show that the geostrophic approximation for 
vo remains good as long as ao<1. 
 
 The above theory does not allow for the presence of a left channel wall.  In the 
simulations carried out by Helfrich et al. (1999), Poincaré wave radiation was observed 
where the bore contacts the left wall (e.g. Figure 3.3.7).  The presence of such waves 
requires a non-geostrophic v and thus a violation of (3.6.12). A comparison between the 
predicted bore speed and the speed measured from simulations by Helfrich et al. (1999) 
shows that the observed speed is well predicted when the channel is narrow, essentially 
the non-rotating limit (Figure 3.6.3).  As the channel width increase from moderate to 
large values in comparison with the deformation radius, the observed speed is 
underestimated by (3.6.10), perhaps due to the radiation of Poincaré waves.  
 
Exercises 
 
1.  Obtain (3.6.4) through integration of (3.2.3) across the discontinuity and interpretation 
of the normal and tangential directions (n and s) as y and -x. 
 
Figures 
 
Figure 3.6.1   Definition sketch for a Kelvin wave bore propagating along a coastline. 
 
Figure 3.6.2  Solutions showing the path of the discontinuity  y=Y(x) in the moving frame 
of the bore for various values ao. (Based on Federov and Melville, 1996, Figure 13.) 
 
Figure 3.6.3  Comparison between the speed predicted by (3.6.10) (solid curves) and the 
speed observed by Helfrich et al. (1999) in their numerical calculations for various finite 
channel widths [w=0 (O), 0.2 ( ),0.5(),1.0(Δ),2.0() and 4.0(Δ)], where w is the has 
been scaled by the Rossby radius based on the depth in the quiescent region ahead of the 
bore.  The bore speed c has been nondimensionalized by (gdu*)1/2, where du* is the depth 
of the quiescent region ahead of the bore.  The bore amplitude a has been scaled du*. 
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