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3.5 Shock joining  
 
 
There will be a section on numerical methodology and it is cited several times in this 
section.  Need to fill in the correct section number when this is done.  
 
 
 The reader of Sections 3.3 and 3.4 has seen a variety of shock waves, or ‘shocks’, 
composed of abrupt or discontinuous changes in the depth or width of the flow within 
which the semigeostrophic and/or hydrostatic approximations break down.  Examples 
include the advancing Kelvin wave bores in the Rossby adjustment problem (Figures 
3.3.6 and 3.3.7),  the Kelvin wave hydraulic jump and upstream bore (Figure 3.4.11) and  
the transverse hydraulic jumps and bores (Figure 3.4.8, 3.4.9, and 3.4.12 ). We now make 
a closer examination of these features by exploring the relationship between the flow 
immediately upstream and downstream.  Begin by considering a hypothetical 
discontinuity in fluid depth occurring along a contour C  (Figure 3.5.1).  For the time 
being, it will be assumed that the fluid depth remains non-zero over C.   Away from C the 
fluid motion is governed by the shallow water equations.  If the system is one of reduced 
gravity, where the moving surface is an interface separating fluids of different densities, 
then the discontinuity may be associated with mixing of the two fluids.  Investigators of 
non-rotating, internal shocks are still working on a satisfactory way of dealing with this 
diapycnal mixing.  We will neglect any such mixing. 
 
 There are (at least) two methods for obtaining the matching conditions across a 
discontinuity of depth.  The first and most popular approach is to write down the 
equations of motion in a‘ flux’ form that insures that the discontinuity contains no 
sources of mass or momentum.  The flux form of the y-momentum equation was 
discussed briefly in Section 1.6 and we generalize that result to two dimensions.  To 
obtain matching conditions on u, v, and d, the flux equations are integrated across the 
shock.  These equations are also commonly used as a basis for numerical integration of 
the shallow water equations in situations where shocks arise (see Section on numerical 
methods).  A second approach is to formulate the primitive conservation statements on 
mass and momentum over a control volume containing the discontinuity.  This method is 
more fundamental and direct.  It yields the same results as the flux form of the shallow 
water equations;  the latter are, after all, based on the same control volume relations.  The 
following discussion is based on Pratt (1983b) and Schär and Smith (1993) although 
some of the basic ideas can be traced back to Crocco (see Batchelor, 1967 Section 3.5). 
 
 It is assumed, then, that the discontinuity  (shock) contains no sources nor sinks of 
mass and that it occurs over a distance sufficiently short that momentum sources such as 
bottom drag or bottom slope are negligible.  It will be helpful to use a Cartesian 
coordinate system (n,s), placed such that n is aligned normal to and s perpendicular to C 
at the point P (Figure 3.5.1). The coordinate system remains fixed but C moves at speed 
c(n) in the n-direction.   Integration of the dimensionless continuity equation (2.1.7) over a 
small interval [!" # n # "]  about the shock at this point results in  
 



©Pratt and Whitehead, 2/22/06 
rough draft-not for distribution 

  !d

!t
dn +

"#

#

$ u
(n)
d%& '(n=# " u

(n)
d%& '(n="# + d

!u(s )

!s
dn = 0

"#

#

$ .  (3.5.1) 

 
The first integral can be written as  
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where nc(t) is the position of the discontinuity on the n-axis.  If ε is reduced to zero the 
right-hand side approaches!c(n) d , where c(n) = !n

c
/ !t  and d  is the change in d 

across the discontinuity, expressed using the shorthand ( ) = lim
!"0

[( )
!
# ( )

#!
] . Since the 

shock is parallel to the n-axis, the s-derivative in (3.5.1) is bounded along this integration 
path and the final integral of can be made arbitrarily small by letting ε approach zero.  
The general constraint imposed by mass conservation can thus be written as 
 
    c
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(n)
d = 0     (3.5.2). 

 
 The same approach may be taken with regard to momentum, but care must be 
exercised in choosing the correct form of the momentum equations to integrate across the 
shock.  For example, (2.1.5) and (2.1.6) express momentum conservation at particular 
level z with in the fluid, and integration across the shock would presume that that there 
are no sources of horizontal momentum at each value of z within1.  In fact, one can only 
be certain that no sources of momentum can act on the depth integrated flow as a whole.  
We therefore consider the depth-integrated versions of (2.1.5) and (2.1.6), formed by 
multiplying the latter by d and using (2.1.7): 
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These are the ‘flux’ forms alluded to above. 
 
 We can now proceed as before, integrating (3.5.3) and (3.5.4) across the shock 
and shrinking the integration interval to zero.  Only the terms involving n- and t-
derivatives remain finite, and thus (3.5.3) leads to 
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1 For a steady shock, it is easily shown that integration of (2.1.5) and (2.1.7) across the would yield 
conservation of the Bernoulli function, which would imply a lack of energy dissipation. 
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Note that (3.5.2) and (3.5.5) are identical to the conditions (1.6.4) and (1.6.5) governing 
one-dimensional shocks provided that the one-dimensional fluid velocity and shock speed 
are interpreted as v(n) and c(n). As a result, many of the properties of one-dimensional 
discontinuities apply locally to the two-dimensional, rotating discontinuities.  For 
example, a stationary discontinuity requires that local normal velocity of the upstream 
state be ‘supercritical’  u

u

(n)
> (d

u
)
1/2  (cf. Equation 1.6.7). 

 
 The final matching condition is obtained by integration of (3.5.5), which yields  
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Together with (3.5.2), this result implies that the tangential velocity u(s) is conserved 
across the discontinuity: 
 
 
     u
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= 0 .    (3.5.6) 

 
 The above matching conditions can also be found by simply considering the force 
and mass balances within a small box containing the shock, as shown in Figure 3.5.2a,b.  
The sides have length 2ε  width 2l and the box extends from the bottom to the free 
surface.  The box is fixed in space and is aligned so that its sides are parallel or 
perpendicular to n.  The rate of change of n-momentum within the box must be balanced 
by the net flux of n-momentum into the box and the sum of the forces in the n-direction 
acting on the sides.  One type of momentum flux is the normal flux u

(n)( )
2

across sides 1 
and 2 of the box.  Since u(n) is expected to be discontinuous across the shock, the 
difference in these normal fluxes remains finite as ε  is decreased and but decrease in 
proportion to l as the l is decreased.  Similarly, the depth-integrated pressure 1

2
h
2  over 

side 1 is different from that over side 2, even as ε as decreased.   All other forces and 
fluxes go to zero more rapidly as the size of the box is decreased.  For example, the 
tangential flux of normal momentum   (the productu(s )u(n) ) over sides 3 and 4 of the box 
are continuous in the s-direction and their difference decreases in proportion to εl as the 
box is shrunk.  The Coriolis acceleration leads to a ‘force’ proportional to the integral of 
du(s) over the area of the box and is therefore proportional to εl.  The same can be said for 
any contribution from bottom drag or topographic slope.  Thus, as ε and l are decreased,  
the momentum budget reduces to  
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where V is the volume of the box.  The left-hand integral reduces to 2lc(n) (v
2

(n)
! v

1

(n)
)  as ε 

and l are reduced2 and thus (3.5.5) is recovered.   
 
 The reader can appreciate that a similar treatment of the mass balance will lead to 
(3.5.2).  The flux terms resulting from flow through sides 3 and 4 of the box are 
continuous and their difference therefore decreases more rapidly than the difference of 
the (discontinuous) normal flux terms (v(n)d) as the box is shrunk.  However the tangential 
momentum balance is more subtle, as suggested in Figure 3.5.2b. Here the leading 
contribution comes from the difference in the normal flux of tangential momentum, 
proportional to the difference in u(s)u(n) between sides 1 and 2. The flux u(s )( )

2

 of 
tangential momentum and the pressure vary continuously between sides 3 and 4, and their 
difference leads to a negligible contribution as the box is shrunk.  The same can be said 
for the contributions due to the Coriolis acceleration acting on the net normal velocity, 
the bottom drag, and topographic pressure.  The result is that the change in net tangential 
momentum c(n) u(s )d  is balanced by the difference in the normal flux of tangential 

momentum u(s )u(n)d  as found above.  

 If u(s ) ! 0  then the change in u(n) required by (3.5.1) implies that the velocity 
vector u=(u(n),u(s)) must point in different directions on either side of a shock.  Along a 
horizontal wall with free slip, the velocity vector is clearly aligned parallel to the wall 
regardless of whether a shock is present.  These two facts can be reconciled only if C  is 
aligned perpendicular to the wall at a point of contact, otherwise a flow into the boundary 
would be induced. In our slowly varying channel, where the walls are aligned in the y-
direction, or nearly so, a shock must be aligned in the x-direction near the walls. One 
might now ask whether we can invoke the semigeostrophic approximation v>>u right up 
to the shock, which would force the shock to lie in the x-direction all across the channel. 
If so, one could start with a specified, geostrophically balanced v(y) and d(y) immediately 
upstream of a hydraulic jump and use (3.5.1) and (3.5.4) to compute v(y) and d(y) 
immediately downstream. However, since the shock-joining conditions do not depend on 
the Coriolis parameter, there is no guarantee that the downstream v will be 
geostrophically balanced; in general it will not be so.  In summary, the semigeostrophic 
equations are not generally valid right up the shock, nor must the shock remain aligned 
with x away from the channel walls.  Since rotational effects generally require a finite 
distance (the deformation radius) over which to act, we anticipate the existence of a 
transitional region around the C within which the semigeostrophic flow away from C  is 
adjusted to the (possibly) non-geostrophic flow at C.    

 This expectation is confirmed by the cross-stream momentum balance within the 
leading edge of the upstream-propagating ‘Kelvin’ bore of Figure 3.4.11.  The 
momentum balance (Figure 3.5.3) is nearly geostrophic at t=20, but becomes less so with 
time.  The primary source of contamination is the development of strong, cross-channel 
accelerations within the steepening regions of the bore, an effect evidenced by the growth 
of the term !u / !t .  By t=80 the bore has steepened to the point where the depth changes 
                                                
2 A similar calculation was performed in connection with equation 1.6.8. 
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occur over a fraction of a deformation radiusLd  (= (gD
!

)
1/2

/ f ) .  However the 
ageostrophic region extends approximately 1/2 deformation radii upstream and 
downstream of the zone of rapid depth change. 

 Following the above remarks, one might expect a discontinuity in depth to occur 
within an ageostrophic region R that extends a distance O(Ld) downstream and possibly 
upstream (Figure 3.5.4).  The ‘shock’ is now considered to be the whole region R with its 
imbedded discontinuity.  R is joined upstream and downstream to semigeostrophic flows.  
It will be assumed that the flow in R is steady, but the same analysis can be carried out in 
the moving frame of shock that translates at a stead speed c.  The central problem of 
shock joining is to predict the downstream semigeostrophic end state given the upstream 
end state (and, in the case of a moving shock, the speed c).   If it is the case that the 
potential vorticity distribution q(! ) is preserved as the flow passes through R, then the 
shock joint problem is straightforward.   For the q(! )given by the known upstream 
condition, the downstream end state is found by solving the second order equation 
(2.2.2).  The resulting profile of downstream depth, and the corresponding geostrophic 
velocity would then be know within two integration constants.  These constants could be 
determined by two additional constraints, one being conservation of the total volume 
flux.  A second constraint is provided by the conservation of the total (width integrated) 
flow force:3 : v

2
d +

1

2
d
2!" #$%w /2

w /2

& dx . In summary, the conservation of volume flux, q(! ) , 
and total flow force through R should be sufficient to close the shock joining problem. 

  Success of this procedure depends on potential vorticity conservation across the 
discontinuity, and we now ask whether this is consistent with (3.5.2, 3.5.5 and 3.5.6).  
Using the fact that Bernoulli function and potential vorticity are related by q=dB/dψ, 
where ψ represents the streamfunction of the steady flow seen in the frame of reference 
moving with the steadily propagating shock.  Since mass is conserved across the 
discontinuity, we have d! = 0 and therefore 

    q =
dB

d!
=

dB

d!
.    (3.5.7) 

In addition, the jump in the value of B can be written in terms of the jump in depth using 
the previously derived relation (1.6.6) for energy dissipation, nondimensionally expressed 
as 

    B = !
d

3

4d
d
d
u

.    (3.5.8) 

                                                
3  The width-integrated flow force is concerved provided the horizontal component of bottom or side-wall 
pressure within R is not important.  In a gradually varying channel, the length scale L of topographic and 
width variations is large compared to the length Ld of R and therefore the bottom and side-wall pressure 
alter the momentum flux through R by only an O(Ld/L) amount.] 
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Here dd and du are the depths immediately upstream and downstream of the discontinuity 
at the point of interest.  Thus  
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where s represents distance measured along the shock as shown in Figure 3.5.4.  The 
normal velocity u(n) is that seen in the moving frame.  An observer facing the shock from 
upstream sees a positive normal velocity entering the shock, with ψ decreasing, and s 
increasing, from right to left.  The dimensional version of (3.5.9) is obtained by 
multiplying its right-hand side by g and regarding all other variables as dimensional. 
 
 Nof (1986) presents a special class of shocks that can be described analytically 
and for which the potential vorticity change can be calculated.  The procedure is to look 
for a solution in which the channel flow is parallel (v=0), and therefore geostrophic, right 
up to the discontinuity.  The latter is assumed to be aligned in the x-direction so that C 
consists of a straight line perpendicular to the channel axis (Figure 3.5.5).  Under the 
restrictions that both end states are parallel, and therefore geostrophically balanced, and 
that (3.5.2, 3.5.5, and 3.5.6) are satisfied at each x, a special class of upstream states can 
be found that permit stationary shocks with the assumed properties.  As noted above, the 
upstream state must be ‘locally supercritical’ v>d1/2 at each y.  The results are classified 
in terms of two parameters:  a Froude number F

w
= v

u x=w /2
/ d

u

1/2

x=w /2
 and Rossby 

number vu(w/2)/w, both based on right-wall values of the upstream flow.   Figure 3.5.6 
has some sample solutions showing the upstream and downstream depths. Starting with 
the value Fw=0, where there is no discontinuity, the jump d  in depth across the shock  
tends to increase as Fw increases.   For individual solutions, d tends to increase from 
left-to-right and, according to (3.5.9), this is consistent with an increase in potential 
vorticity for the fluid passing through the discontinuity. The computed increases are 
shown in Figure 3.5.7 for a particular value of vu(w/2)/w.  Note that these changes can be 
O(1).  Potential vorticity changes are present in the Kelvin wave jump of Figure 3.30. 
 
 The non-conservation of potential vorticity across a shock can give rise to 
interesting downstream effects including jets and vortex streets.  Consider a nonrotating 
jump in a channel with a rounded cross-section (Figure 3.5.8).  This feature was studied 
modeled by Siddall et al. (2004) as part of a simulation of an ancient flood thought to 
occur into the Black Sea.  The upstream flow is parallel and uniform (v=0, u=constant) 
and therefore qu=0.  The jump involves an increase in the (level) free surface and  
( d

d
(s) ! d

s
(s) ) is therefore constant.  The differentiated term on the right-hand side of 

(5.3.9) is therefore controlled by the denominator, which decreases to the left and right of 
the channel center.  The differentiated term therefore increases away from the channel 
center and it follows that qd>0 to the left and qd<0 to the right. With the neglect of f, qd is 
proportional to the vorticity of the fluid downstream of the jump, the distribution of 
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which is consistent with a jet-like velocity profile, as produced by a numerical simulation  
(Figure 3.5.9).  
 
 
 Equally important and closely related to potential vorticity change is the 
production of vorticity within a shock.  A helpful form of the vorticity equation (see 
Exercise 1 or Section 2.1) is 
 

    !"
a

!t
+# $ u"

a
+ J

n[ ] = 0 ,    (3.5.10)  

 
which is derived by taking the curl of the momentum equations (2.1.1 and 2.1.2) and 
using (2.1.3). In this dimensionless form, !

a
= 1+! is the absolute vorticity 

and J
n
= k ! F , where F contains the dissipation and horizontal body force.  For the 

flows under consideration, the later is generally zero and we will think of Jn as arising 
only from dissipation.  The vorticity flux vector u !"

a
+ J

n
 is then composed of an 

advective part u !"
a

 plus a dissipative part.  
 
 Taking the cross-product of k with the steady version of (2.1.15) yields 
 
    k ! "B = u#

a
+ J

n
,    (3.5.11) 

 
which shows that the Bernoulli function acts as a streamfunction for the vorticity flux 
(Schär and Smith, 1993)4.   Since u is parallel to streamlines, the derivative of B along 
streamlines gives a contribution that is entirely due to dissipation.  If the dissipation is 
zero, the vorticity flux is entirely due to advection and is proportional to the derivative of 
B in the cross-streamline direction.  In the treatment of shocks we generally consider the 
dissipation to be negligible outside the region of rapid or discontinuous change.   
 
 A nice application of these ideas is to atmospheric wakes in the lee of islands and 
mountains (e.g., Smith et al. 1997).  For the islands in question, the effects of the Earth’s 
rotation are generally weak. The reduced airflow in the wake reduces the sea surface 
roughness, resulting in ‘shadows’ in the sunglint patterns (e.g. Figure 3.5.10). In an 
idealized view of the wake, the winds approaching the island are uniform and are 
confined to a shallow surface layer that obeys the reduced-gravity version of our shallow 
water equations.  When the approach flow is subcritical and the island is not so high that 
it protrudes through the upper interface, the fluid spilling over the top can become 
supercritical and form a hydraulic jump (Figure 3.5.11).  Regions of cyclonic and 
anticyclonic shear are also observed downstream of the jump and these are indicated in 
the figure.  In some cases the vorticity is collected in a vortex street, a train of staggered 
eddies of alternating sign (Figure 3.5.12). If the approach flow is uniform and inviscid, 
the downstream vorticity must be generated by the jump. 
 

                                                
4 The inviscid form of (3.5.11) is related to a more general result obtained by Crocco (1937). 
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 The discontinuity in depth is largest at the center (y=0) of the jump and (3.5.8) 
suggests that the loss in Bernoulli function should also be largest there.  The flow 
immediately downstream of the jump should therefore have a minimum in B at x=0 and B 
should increase as one moves along the jump in either direction (to the right of left, 
facing downstream).  It is also assumed that B is conserved along streamlines (Jn=0) in 
the downstream region, changes having already taken place where the streamline passed 
through the jump. The y-component of (3.5.11) for the flow !B / !x = v"

a
immediately 

downstream of the jump is !B / !x = v"
a
, where v>0 and !B / !x is >0 for x>0 and is <0 

for x<0.  The vorticity !
a
, which is dominated by the relative vorticity ζ  in these 

applications is therefore positive on the right-hand side of the wake (facing downstream) 
and negative on the left side. Since the approach flow has zero vorticity, the positive and 
negative vorticity must have been generated within the jump and could account for the 
vorticity in the alternating eddies.   
 
 A complementary result can be found by applying (3.5.11) to the interior of the 
jump itself.  To do so, it must be assumed that the rapid change in depth occurs over a 
small but finite distance and that (3.5.11) continues to hold within.  Consider the 
component of this equation tangential to the jump.  If one temporarily consider x to be the 
tangential direction, then this component is given by !"y / "y = u#

a
+ J

(x ) . Integration of 
this relation across the small interval (-ε≤y≤ε, say) of rapid depth change yields 
 

   (u! + Jn
(x )
)dy

"#

#

$ = "(B
x=#

" B
x="#

) > 0 . 

 
The left hand term can be interpreted as a vorticity flux tangent to the jump, positive in 
the left to right direction (facing downstream).  Its magnitude is zero at the extremities of 
the jump and therefore its divergence is positive over the left portion and negative over 
the right portion.  A positive divergence is consistent the generation of negative vorticity 
in the jump, whereas a convergent flux indicates a generation of positive vorticity.  Both 
tendencies are in agreement with the vorticity carried away from the jump by the fluid.   
 
Exercises 
 
1.  Deduce the inviscid form of (3.5.11) directly from the relation q=dB/dψ? 
 
2.  For the nonrotating hydraulic jump shown in Figure 3.5.11 in which the depth is 
maximum at the centerline and the upstream velocity is uniform across the channel, show 
that the change in potential vorticity produces a downstream vorticity distribution 
(cyclonic on the left and anticyclonic on the right side of the channel) consistent with a 
jet.   
 
 
Figure Captions 
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Figure 3.5.1  Definition sketch showing discontinuity in depth C that moves normal to 
itself at speed c(n) at the point P. 
 
Figure 3.5.2  Control volumes (viewed from above) with (a) fluxes of momentum normal 
to the jump and (b) fluxes of momentum  tangential to the jump. 
 
Figure 3.5.3  The frames on the left show the longitudinal sections of the surface 
elevation for the flow of Figure 3.30 at various times.  The three sections in each frame 
are taken at the channel centerline and walls: x=0 and x=±w/2.  The frames on the right 
show the terms in the y-momentum balance at the channel centerline over the interval 
indicated by vertical bars in the corresponding figure to the right.  
 
Figure 3.5.4  Idealized view of the ageostrophic region R and the imbedded depth 
discontinuity. 
 
Figure 3.5.5  The shock hypothesized by Nof (1986).  The depth discontinuity is 
perpendicular to the channel walls and the parallel, geostrophically balanced, upstream 
and downstream flows join directly to the discontinuity. (There is no adjustment region.) 
 
Figure 3.5.6  Upstream and downstream depth profiles for a shock of the type shown in 
Figure 3.5.5. The governing upstream parameters are a Froude number 
F
w
= v

u
(w / 2) / d

u

1/2
(w / 2)  and Rossby number vu(w/2)/w, both based on values at the 

right channel wall (x=w/2). The value of the latter for all plots shown is 0.2. (Nof 1986, 
Figure 7.) 
 
Figure 3.5.7  The change in potential vorticity across the shocks shown in Figure 3.5.6. 
(Nof, 1986, Figure 10.) 
 
Figure 3.5.8 Schematic of a nonrotating hydraulic jump produced in a channel with a 
parabolic bottom. (Figure 7 of Siddall, et al. 2004). 
 
Figure 3.5.9  Plan view of the jump suggested in Figure 3.5.8, as produced in a numerical 
simulation. The sudden change in depth occurs within the dashed area.  The arrows 
indicate the depth-integrated velocity. (Figure 8 of Siddall, 2004). 
 
Figure 3.5.10  Satellite photo showing sea surface glint around the Windward Islands. 
(NASA image S1998199160118, free of licensing fees but NASA ownership must be 
acknowledged) 
 
Figure 3.5.11 Idealized plan view of hydraulic jump and wake in the lee of an obstacle 
(Schär and Smith, 1993, Figure 2). 
 
Figure 3.5.12  Landsat 7 image of a vortex street as apparent in the cloud cover off the 
Chilean coast near the Juan Fernandez Islands on September 15, 1999.  (NASA image 
Vortex-street-1.jpg.) 
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Figure 3.5.12 (low resolution version)




