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3.4 Adjustment to an Obstacle in a Rotating Channel 
 
When this text is revised again, it would be nice if the whole section could be shortened.  
Areas that might be made more concise include Section g. 
 
There is a reference to Appendix (D??) describing a numerical code. This Appendix has 
not been written.  
 
Need to scan the 3D figure from the 1983 JFM paper. 
 
 
 Although the process of Rossby adjustment provides valuable insight into the 
nature of transients in rotating channels, a further step is necessary to relate these 
transients to the establishment of hydraulically controlled states.  The Long adjustment 
problem for nonrotating flow (Long, 1954 and 1970, Sections 1.6 and 1.7) provides a 
vehicle for doing so. In the original laboratory version of the experiment, an obstacle is 
towed at a fixed speed through a channel of shallow, resting fluid. Numerical versions of 
the experiment [e.g. Houghton and Kasahara (1968), Baines and Davies (1980)] place a 
fixed obstacle in the path of an initially steady, uniform flow, which is equivalent to the 
original set-up provided frictional effects are negligible.  The outcome of the experiment 
for a single layer with a free surface depends on the Froude number F
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on the initial depth d0 and velocity v0 of the moving stream and on a nondimensional 
obstacle height hm/d0 (Figure 1.13).  For a given value of F0 the outcome depends largely 
on whether hm/d0 exceeds a critical height (given by curve BAE).  Beyond this height the 
obstacle partially blocks the approaching flow through the generation of a bore that 
moves upstream.  The steady flow left behind has reduced volume transport and is 
hydraulically critical (hydraulically controlled) at the sill of the obstacle.  For sufficiently 
large hm/d0 (given by the curve BC) the flow is completely blocked.  Other boundaries 
can be calculated such as the curve AD, which separates flow having hydraulic jumps on 
the downslope of the obstacle from those that do not.  Regime diagrams such as Figure 
1.13 and its generalizations in multi-layered flow are wonderful tools for developing 
knowledge and intuition about jumps, bores, upstream influence, hydraulic control, and 
hydraulics in general.  They also give an indication of how high a topographic sill must 
be in order to establish hydraulic control.  More sophisticated versions of such models 
might indicate how high the sills in the abyssal ocean must be in order to alter the 
meridional overturning cell.  
 
  Rotating versions of Long’s experiment are quite difficult to carry out in the 
laboratory.  Progress can and has been made using numerical models such as the one 
described in Appendix D?? (this will be the section on a numerical code).  If the 
potential vorticity of the flow is uniform, predictions of the critical obstacle height and of 
certain aspects of the final steady solution can be made using the semi-geostrophic theory 
developed in Sections 2.1-2.5.  However, the extent to which features such as hydraulic 
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jumps can be predicted is limited by the lack of a shock-joining theory for rotating jumps 
and bores, a subject explored in later sections of this chapter.  The following discussion is 
based largely on the work of Pratt, 1983b and Pratt, Helfrich and Chassignet, 2000.  
 
  
a. Initial conditions.  
 
 In a rotating environment, the act of towing an obstacle along the channel at a 
fixed speed through an initially stationary fluid is no longer equivalent to introducing a 
stationary obstacle in a moving stream of the same speed.  In the first case the free 
surface is horizontal; in the second it has a cross-stream, geostrophic tilt. We will 
consider the second version of the experiment since the upstream states seem more 
meaningful for ocean applications.  The obstacle will therefore be introduced into a 
steady current that is varies with x but is uniform in y.  This current will be required to 
have uniform potential vorticity f/D∞.  For scaling purposes, the local depth D will be 
considered equal to the potential depth D∞; the nondimensional potential vorticity is 
therefore given by q= D/D∞=1.  As was the case in the Rossby adjustment problem, the 
dimensionless decay scale of Kelvin waves across the channel will be unity.  The choice 
of uniform (and nonzero) potential vorticity will naturally lead to comparisons with the 
Gill (1977) model for steady flow (Section 1.5).   
 
 If the potential vorticity remains at its initial value q=1 throughout the adjustment 
and if the along-channel variations remain weak, than the cross-section profiles of depth 
and velocity are given by expressions developed in Sections 2.2 and 2.3 for 
semigeostrophic flow.  For example the profiles of d and v for non-separated flow are 
described by (2.2.3) and (2.2.4).  The average B  of the semigeostrophic Bernoulli 
functions v2/2+d+h on the two side walls is given by 
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where T=tanh(w/2).  The volume transport and Froude number are given by 
 
    Q = 2d ˆ d .     (3.4.2) 
and 
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For detached flow the equations governing steady flow can be obtained by replacing ˆ d  
by d  and T by Te=tanh(we/2) in these expressions. 
 
 To maintain continuity with Long’s original experiment, we continue to use the 
Froude number of the initial flow, defined by (3.4.3), and the dimensionless obstacle 
height hm/D∞, to characterize the initial conditions.  However, the presence of rotation 
brings two additional parameters into play.   One is the channel width w (the dimensional 
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channel width divided by Ld=(gD∞)1/2/f), which determines the overall strength of rotation.  
A fourth parameter is Gill’s ψi, which determines relative amounts of volume flux 
contained in the right- and left-wall boundary layers of the initial flow.  As a starting 
point, we will fix ψi by requiring that the total volume flux of the initial flow be 
contained in the left-wall boundary layer.  For this scenario to make sense, one should 
imagine that the channel broadens into a wide reservoir far upstream of where the initial 
value experiment is to be performed.  There the separation of the flow into left- and right-
wall boundary layers is clear.  A flow fed entirely by the left hand boundary layer could 
have been set up as the result of a dam break experiment in which motion is triggered by 
a Kelvin wave propagating upstream along the left wall. 
 
  The procedure for specializing the initial conditions to give zero approach  flow 
along the right wall of the hypothetical  reservoir is based on conservation of energy 
along that  wall.  Since the flow along the reservoir’s right wall is stagnant, the value of 
the Bernoulli function there is unity (dimensionally gD∞), and thus 
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where ( )0 signifies the initial value.  If (2.2.5-2.2.8) are used to write this relation in 
terms of d  and ˆ d  the result may be expressed in the nondimensional form: 
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 To fix the initial conditions for given F

d
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computed.  Once known, these two quantities completely determine  the initial depth and 
velocity profiles through (2.2.3) and (2.2.4).  Equation (3.4.4) provides one equation for 
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 It may turn out that the initial flow is separated from the left wall of the channel, 
in which case the above calculation will give d 

0
 <  ˆ d 

0
.  In this situation, the parameter T 

in (3.4.5) must be replaced by the variable T
e0 = tanh(we0 / 2) , where we0 is the initial 

width of the separated  current.  The initial condition is now specified by the value d 
0
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) and Te0, and both are related by 

 

    d 
0
=

F
d

2 (1 ! T
eo

2 )

T
e0

!2
! F

d

2
T

eo

2 ,    (3.4.6) 

 



 4 

which follows from (3.4.3).  Substitution of this relation into (3.4.5) results, after some 
rearrangement, in 
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The procedure is to first solve (3.4.7) for Te0 and then calculate the corresponding value 
of d 

0
from (3.4.6). 

 
 One consequence of the assumption that the volume flux in the initial flow is fed 
from the reservoir’s left-hand boundary layer is that separated initial flow cannot be 
subcritical.  The proof is the subject of Exercise 1.  
 
 
b.  The critical obstacle height. 
 
 It is anticipated that only values of hm greater than some critical value hc will lead 
to upstream influence: permanent alteration of the upstream flow.  In Long’s experiment 
the prediction of hc follows from the consideration of a steady flow that passes over the 
obstacle and has the same volume flux Q and Bernoulli constant B as the initial state 
under consideration.  There is a maximum hm for which the upstream energy B is 
sufficient (at the given Q) to allow the fluid to surmount the crest.  As shown in Chapter 
1, hydraulically criticality occurs at the sill when the upstream flow has the minimum B 
required to surmount the obstacle.   If hm exceeds the maximum allowable value, the 
values of B and/or Q must be altered in order to allow the flow to continue and this 
implies generation of an upstream disturbance that alters the values of Q  and B.  Thus, 
the predicted hc for given initial Q  and B is that height for which these Q  and B would, 
in a steady state, produce critical sill flow.  An application of the same principles (with 
the upstream state now specified by Fd and w) results in a prediction of hc in the rotating 
case.  
 
  For given initial values Fd and w, a unique initial flow with d = d 

0
 and ˆ d = ˆ d 

0
is 

determined by the procedure laid out in (a).   Consider a hypothetical steady flow with 
upstream values d 

0
 and ˆ d 

0
 that becomes critical (d = d 

c
 and ˆ d = ˆ d 

c
) at the crest (h=hc) of 

the obstacle.  Conservation of mass (3.4.2) requires that 
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Together with the condition of criticality at the sill (Fd=1 in 3.4.3), (3.4.8) implies that 
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This equation determines d 
c
 given the upstream/initial quantities ˆ d 

0
 and d 

0
.  The value of 

ˆ d 
c
 then follows from (3.4.2).  Once d 

c
 and ˆ d 

c
 have been found it must be determined  

whether or not the flow at the sill is separated.  If d 
c
! ˆ d 

c
 the flow is not separated  and 

one may proceed to the next step, as described below.  If d 
c
< ˆ d 

c
 the flow at the sill is 

separated from the left wall, and a revised procedure must be used (see Exercise 2). In 
either case the properties of the critical flow at the sill are known. 
 
  The critical sill height hc can now be computed by equating the energy at the sill 
with that upstream.  Employing the Bernoulli equation (3.4.1) with the computed values 
of ˆ d 

c
 and d 

c
 leads, in the case of non-separated  flow, to 
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When the sill flow is separated, this relation is replaced by 
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 (see Exercise 2). 
 
 The relationship between hm and Fd is shown for a case of weak rotation (w=0.5). 
by the curve CAE in Figure 3.4.1.  The curve is composed of a number of segments 
indicating various states of separation. To the left of CAE, there is no predicted upstream 
influence and the final flow upstream and downstream of the obstacle is identical to the 
initial flow.  The final flow is altered directly over the obstacle but it does not become 
critical.  To the right of CAE the predicted final upstream and downstream states have 
been altered by (unknown) transients. The predicted flow over the obstacle is critical at 
the sill and supercritical in the lee, possibly with some form of hydraulic jump.  On CAE, 
the predicted flow is critical at the obstacle crest but the upstream flow is unaltered.  
Along the solid segment BA′, both the initial flow and the predicted sill flow are non-
separated.  Along BC, which lies at the extreme lower right of the diagram, and is 
enlarged in an inset, the initial flow is attached but the predicted critical sill flow is 
separated.  The predicted final flow thus separates from the left wall at some point 
slightly upstream of the sill.  To the immediate left of BC the upstream flow is attached 
and subcritical and the predicted flow over the obstacle is also subcritical but detached at 
the sill. In the upper portion of the diagram corresponding to supercritical initial flow 
(Fd>1) lies a segment A′E spanning a range of Froude numbers for which the initial flow 
is separated.  Along sub-segment A′H the predicted sill flow is critical and attached while 
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along HE the sill flow is critical and separated.  To the immediate left of A′H lies a 
wedge-shaped region A′HG in which the predicted final flow is supercritical everywhere, 
separated upstream and downstream of the obstacle, and attached near the sill.  To the left 
of HE the predicted final flow is supercritical and separated everywhere. 
 
 An idea of the influence of rotation on the critical obstacle height can be gained 
by inspection of Figure 3.4.2, which shows the critical height curve CAE from the above 
weak rotation case (w=0.5) plotted along with the w=2 relation.  For subcritical initial 
conditions rotation reduces the critical obstacle height whereas the reverse is true when 
the initial flow is supercritical.  Note that the two curves merge when Fd is sufficiently 
large. Here the initial flow and the predicted sill flow are separated, implying that w is no 
longer a factor in determining hm. 
 
 Along segment BC of Figure 3.4.1 the initial flow is attached and the predicted 
critical sill flow separated, as shown in the lower right inset.  Reduction of the sill height 
with fixed Fd eventually results in reattachment of the flow at the sill, resulting in a state 
that is completely attached and subcritical (i.e. lower middle inset). The value of hm at 
which reattachment occurs  (i.e. ds(-w/2)=0 and w=we) will be denoted hs. The value hs of 
the sill height at which reattachment occurs can be found by replacing the critical 
condition in the steps leading to (3.4.10a) by the condition of marginal separation  (d = ˆ d  
and Te=T) at the sill.  This procedure results in 
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1/ 2 .  The curve of hs vs. Fd is given by DB in the inset at the right 
of Figure 3.4.1.  To the left of this curve the predicted flow is subcritical and attached 
everywhere.  In the region DBC, the flow is separated at the sill, attached upstream and 
downstream of the obstacle, and subcritical everywhere.   
 
 Similarly, there exists a range of supercritical initial conditions for which the 
predicted final states are supercritical everywhere, separated upstream and downstream of 
the sill, and marginally separated at the sill. As before, the obstacle height hs for such 
solutions is smaller than the corresponding critical height and can be calculated by 
replacing the critical condition by the condition of marginal separation, this time in the 
steps leading to (3.4.10b). The procedure yields 
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and corresponding curve is labeled GH in Figure 3.4.1.  The region GHA′ contains flows 
that are supercritical everywhere, separated upstream and downstream of the sill, and 
attached at the sill, as shown by the inset.  To the left of GE the predicted final flows are 
supercritical and separated everywhere.  
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c.  Overview of the temporal evolution. 
 
 Numerical solutions based on the full shallow-water equations show some 
similarities and important differences with what the semigeostrophic theory predicts. The 
runs are started at t = 0 with the flow specified in terms of Fd and w  as described above.  
A Gaussian obstacle 
 
    h = ho (t)exp(!y

2
/ 4)  

 
is then quickly grown into the flow by  increasing  h0(t) linearly from zero to hm. 
 
 The numerical results are summarized in Figures 3.4.3-24 for channel widths w = 
0.5, 2, and 4, respectively.  The regime curves from the semigeostrophic theory are 
shown along with the locations of numerical runs. The circles indicate solutions 
exhibiting a lack of permanent alteration of the original flow and the squares show cases 
exhibiting permanent upstream influence.  The numerical results show versions of most 
of the features, including bores and jumps, that arise in Long’s original experiments.  
They also reveal some features which are remarkable and unexpected.  Since it is not 
possible to discuss each numerical run in detail, the reader is referred to the thumbnail 
insets in the three figures showing characteristic behavior found in different regions of 
the parameter space.  These insets contain contours of the free surface height, 
d(x,y,t)+h(y), at later stages of the flow development.  They illustrate the final steady 
flows over the topography and, in some cases, the structure of transient features.  The 
gray shaded regions in some of the insets indicate areas of the channel that are ‘dry’. 
 
 The occurrence of upstream influence is indicated by asymmetry in the along 
channel direction of the final steady flow over the topography and by a reduction in the 
transport at the sill crest compared to the initial transport.  For subcritical initial flow (Fd 
< 1) the numerically determined transition to upstream influence agrees reasonably well 
with the semigeostrophic theory forw = 0.5  and 2  (Figures 3.4.3 and 3.4.4).  For w = 4 
and small Fd (Figure 3.4.5) the numerical results indicate upstream influence for smaller 
values of hm than predicted by the theory.  The agreement extends to Fd > 1 for the 
narrow channel (w = 0.5, Figure 3.4.3).  For w = 2 and 4  (Figures 3.4.4 and 3.4.5) the 
transition to upstream influence occurs at moderately larger values of hm than predicted 
by the theory, though the general behavior of the transition as a function of Fd follows the 
theory for the few values of Fd > 1 that have been investigated.   
 
 The disagreement between the numerically determined transitions and the 
semigeostrophic theory with increasing channel width is not surprising.  In narrow 
channels the confinement provided by the wall suppresses cross-channel accelerations 
and thus the along-channel flow should remains nearly geostrophic.  For wider channels 
this effect is weakened and large cross-channel accelerations occur over the sill in the 
initial adjustment phase leading to departure from the semigeostrophic prediction.   Non-
conservation of potential vorticity could also affect the value of the critical height.  The 
numerical model includes weak lateral viscosity and thus does not conserve potential 
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vorticity following fluid parcels exactly as the analytical model does.  As we shall see 
later, fluid parcels that pass through shocks can suffer a change in potential vorticity due 
to dissipative processes therein. 
 
d.  The case w=0.5 (weak rotation). 
 
 We begin the discussion of the flow evolution by examining the case w = 0.5, as 
summarized in Figure 3.4.3. Despite the narrowness of this channel, rotation can be quite 
important.   First consider some examples for which there is no predicted upstream 
influence (hm<hc) as illustrated by the insets on the left-hand side of Figure 3.4.3.  
Subcritical conditions give rise to an acceleration of the flow accompanied by a 
deflection of streamlines over the obstacle towards the right wall( e.g. Fd=0.5, hm=0.1).  
The opposite occurs for supercritical initial conditions, as exemplified by the case (Fd 
=1.5, hm=0.04). If Fd is large enough the initial supercritical flow is separated and the 
corresponding final steady states may either be completely separated (Fd=2.5, hm=0.1) or 
separated away from but attached near the sill (Fd =2.5, hm = 0.3). This last case is shown 
in greater detail in Figure 3.4.6.  At t=10 the disturbance generated by the introduction of 
the topography is evident immediately downstream of the sill.  It consists of two waves 
that propagate downstream.  The first is the faster Kelvin wave, centered at about y=15, 
and the second is the slower frontal wave (Section 2.3), centered at about y = 8. By t =20 
the Kelvin wave has propagated out of the domain and the frontal wave (near y=17) has 
steepened, nearly to the point where the stream width we is discontinuous. 
 
 As noted above, upstream influence for the case w=0.5 generally occurs where 
predicted (hm>hc). When the initial flow is attached, the disturbance that alters the 
upstream state takes the form of a ‘Kelvin-wave’ bore.  Figure 3.4.7 shows an example of 
this process for Fd = 0.5, hm= 0.2.  At t = 10 both upstream and downstream propagating 
Kelvin waves are evident on each side of the topography.  The characteristic trapping of 
the Kelvin waves to the side walls is weakly apparent in this narrow channel.  By t =30 
the downstream wave has left the domain, the upstream wave has steepened into a bore, 
and a hydraulic jump has formed on the downstream side of the obstacle.  The jump 
remains over the downstream face of the obstacle in the final steady flow (t= 50).  The 
Froude number (3.4.3) calculated from the numerical solution at t = 30 indicates a 
transition from subcritical to supercritical flow over the sill and a return to subcritical 
flow across the downstream jump (bottom panel of Figure 3.4.7).  Also note how Fd 
decreases across the upstream bore.  Generally speaking, the solution is similar to the 
nonrotating case.  The most apparent sign of rotation is the deflection towards the right 
wall of the supercritical flow in the lee of the obstacle. 
 
 As in the nonrotating case, low values of the initial Fd favor stationary hydraulic 
jumps whereas higher values tend to cause the jumps to move downstream.  The latter is 
illustrated by the inset in Figure 3.4.3 for Fd=1 and hm= 0.2, where the former hydraulic 
jump is shown as a discontinuity moving away from the topography in the downstream 
direction.  With no rotation the boundary in the (hm, Fd) plane separating regimes with 
and without jumps can be constructed analytically using shock joining theory. This 
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boundary is given by the curve AD in Figure 1.13.  A similar calculation is hindered in 
the rotating case due to the unavailability of a satisfactory shock joining theory. 
 
  There are also a number of instances where the supercritical flow downstream of 
the sill separates from the left wall, a behavior that has important ramifications for 
downstream disturbances.  A good example is the case Fd = 1.5 and hm=0.5 (Figure 
3.4.8).  At t = 10 the downstream-propagating Kelvin wave and upstream propagating 
bore are evident.  The flow approaching the sill is accelerated and veers toward the right 
wall downstream of the crest leaving a small patch of dry channel near the left wall.  The 
transition back to attached flow near y = 7 occurs as an abrupt expansion (located near 
y=16 at t=30).  This transition is swept down the channel enlarging the dry region (t = 30) 
and ultimately leaving behind a detached supercritical flow in the lee of the topography (t 
= 50). The characteristic speed c- has been calculated from (2.15) at points slightly 
upstream of and slightly downstream of the abrupt transition. On the upstream side, 
where the flow is separated and frontal wave dynamics apply, c- is positive and greater 
than on the downstream side, where the flow is attached and Kelvin wave dynamics 
apply. Thus, linear disturbances generated just upstream of the transition overtake those 
generated just downstream, indicating that the transition is indeed a shock. 
 
 Flow separation in the lee of the obstacle is also observed for subcritical initial 
conditions and large values of hm.  In cases where hydraulic jumps occur, the usual abrupt 
change in depth is replaced by an abrupt change in the width of the stream.  The jump is 
much like the transition in Figure 3.4.8, but with the feature stationary in the lee of the 
topography.   An example (for Fd= 0.5, hm = 0.8, Figure 3.4.9a) has a dry patch of bottom 
(shaded region in 1<y<2.3) immediately downstream of the sill. This separated region 
terminates in a sudden expansion and reattachment of the flow.  Downstream of the jump 
is a zone of cyclonic recirculation.  A plot of Fd along with the left-wall depth (Figure 
3.4.9b) shows that the transition from detached (d(-w/2,y) =0) to attached flow near y=2.3 
coincides with a supercritical to subcritical transition.   This type of expansion is called a 
transverse hydraulic jump and its dynamics will discussed later in this chapter.  
 
 When the initial flow is separated, upstream influence occurs in an unexpected 
manner.  The leading portion of the upstream moving disturbance is a rarefying intrusion 
attached to the left wall as illustrated in the inset in Figure 3.4.3 for Fd=2.5 and hm=0.5.  
In this example the intrusion is followed by a surge that leaves behind attached flow 
upstream of the sill.  The surge results in a rapid increase in depth, however the front is 
smooth and behaves like a rarefaction rather than a shock.  We will return to this 
interesting situation below. 
 
 The foregoing examples show that rotation can lead to remarkable effects even 
when w is moderately small.  These effects occur where high velocities are present, either 
due to supercritical initial conditions or because high velocities are induced in the lee of 
large obstacles.  The high velocities lead to strong tilts in the free surface, sometimes 
resulting in separation of the flow.  The Rossby radius of deformation based on the local 
depth becomes small in such cases and it is no surprise that inherently rotational features 
such as the transverse hydraulic jump arise under these conditions.   
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 A final remark about the case w=0.5 is that Pratt et al (2000) were not able to 
verify the subcritical flow which briefly detaches over the sill (predicted in region DBC 
in Figure 3.4.1).  Nor were they able to do so for other values of w. The hydraulically 
controlled flows to the immediate right of BC have attached flow at the sill, despite the 
prediction to the contrary.  In fact, no instance was found for any w in which the sill flow 
is simultaneously separated and hydraulically controlled. 
 
e.  Cases w=2 and w=4 (strong rotation). 
 
 The regime diagrams for the cases w=2 and w=4  (Figures 3.4.4 and 3.4.5) show 
that separation of the initial flow now occurs for nearly all Fd>1, as indicated by dashing 
of the critical obstacle height curve. A region analogous to A′HG of Figure 3.4.1 exists 
for each case but is indistinguishably thin; its upper boundary is indicated by a horizontal 
bar in each figure.  This bar marks that value of Fd above which the predicted critical sill 
flow is separated. 
 
 Strong rotation has consequences for the structure of the transients that occur 
when the supercritical flow remains attached, and this is demonstrated by the case 
Fd=0.5, hm=0.2 and w=2 (Figure 3.4.10).  Upstream influence is established as before by a 
‘Kelvin wave’ bore and a stationary jump forms downstream.  In contrast to the case 
w=0.5 (c.f., Figure 3.4.7) neither the bore nor the jump extend across the channel, but 
rather are strongly trapped to the left wall.  The downstream jump has a lateral scale of 
only about 0.5, or half of a deformation radius.  Downstream of the jump a region of 
cyclonic recirculation is generated.  This region appears to expand in the downstream 
direction indefinitely.   The structure of the bore and jump are evident in the topography 
of the free surface (Figure 3.4.11).  When hm is increased well beyond the critical value 
the lee flow tends to detach, then reattach over the topography to form a transverse jump, 
as discussed above. 
 
 For Fd>1 the initial flow is separated for all Froude numbers save those close to 
unity.  Upstream influence for these separated cases occurs in an unexpected manner, as 
demonstrated by the case Fd = 1.5, hm= 0.4 and w=2 (Figure 3.4.12). Although the initial 
flow is separated, the predicted critical flow at the sill is attached. Upstream influence 
occurs as the result of a bifurcation of the initial current over the topography (t=20).  A 
portion of the incident flow is diverted back towards negative y, forming a separated, 
rarefying intrusion along the left wall, while the rest continues over the topography 
(t=40).  The original current and upstream intrusion are narrow and do not contact each 
other. The final steady state upstream of the topography consists of two opposite, 
separated currents (t=50).  Remarkably, there is no upstream influence in the original 
current.  However, the net flux towards the sill is reduced by the diversion of fluid into 
the left-wall intrusion.  
 
 Numerical calculations have also been carried out using Fd values sufficiently 
large that the predicted critical sill flow is separated.  Such values lie above the horizontal 
bars in Figures 3.4.4 and 3.4.5.  Significantly, these settings also result in left wall 
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intrusions of the type just discussed and in attached flow at the sill.  In no cases did they 
observe sill flows that are critical and separated at the sill. 
 
 In the case of the widest channel considered (w=4) the flow responds much as in 
the w=2 case. One qualitative difference, evident for flows with Fd<0.5, is the appearance 
of an anticyclonic recirculation cell over the sill. This feature occurs regardless of the 
presence of upstream influence, as illustrated by the two insets in Figure 3.4.5 for Fd = 
0.1 and hm=0.2 and 0.45.  In the run with Fd=0.1, hm=0.2 the velocity on the right wall at 
the sill crest v(w/2,0) < 0.  The recirculation cell occupies about three-quarters of the 
channel width, forcing the fluid that crosses the sill and continues downstream to do so in 
a narrow band adjacent to the left wall.  The along-channel extent of the recirculation is 
comparable to the length of the topography.  The existence of a counterflow at the sill is 
in violation of theorem (Exercise 3 of Section 2.5) governing uniform-potential vorticity, 
semigeostrophic flow.   
 
 
f.  The lack of hydraulic control of separated flows. 
 
 Many models of steady, hydraulically-driven flow in rotating channels, including 
the pioneering studies of Whitehead et al. 1974 and Gill 1977 (Sections 2.4 and 2.5) 
describe solutions that are hydraulically critical and separated at the controlling sill or 
narrows1. Shen (1981) and Pratt (1987) attempted to reproduce such flows in the 
laboratory and were unsuccessful. Whitehead et al. (1974) claimed to have achieved 
separated and hydraulically controlled flow in the laboratory, but their ‘sill’ was actually 
a finite-length segment of rectangular channel over which the bottom elevation and width 
is constant.  Although the flow is separated in the downstream portion of this segment, it 
is not so at the upstream portion.  The exact section of critical flow and its state of 
separation are unknown.   
 
 The present numerical simulations also fail to produce hydraulically controlled 
flows that are separated at the sill section.  Such states might have been expected as a 
result of runs such as Fd = 1.5 and hm=0.4 of Figure 3.4.5, in which the initial flow is 
separated and the predicted sill flow is also separated.  However, the obstacle causes 
deflection of the approaching flow to the left wall resulting in the formation of an 
intrusion as in Figure (3.4.12).  Over the sill itself, the flow becomes attached.  Other 
cases where the sill flow is predicted to be separated and critical correspond to very 
subcritical, attached initial flows and large hm (as in the region just to the right of curve 
BC in Figure 3.4.1). Although the numerical experiments confirm that the flow is 
controlled, it remains attached at the sill. 
 
 These findings seem to suggest the presence of an instability that acts when a 
separated flow is critical or subcritical.  However, Paldor (1983) has shown that separated 
currents of the type under discussion are stable, at least in the limit of zero potential 
vorticity, provided that the fluid depth along the right wall remains non-zero. So there 
                                                
1 Examples can be found in Gill’s (1977) Figures 6 and 7, and 9d. 
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does not yet appear to be a clear connection between inviscid instability and the lack of 
separated critical flow in the numerical experiments.  A second cause could be the 
apparent  difficulty for bores in separated flows to propagate upstream.  This aspect is 
illustrated in Figure 3.4.12 where at t=10 the separated initial flow collides with the 
obstacle, resulting in a widening of the current.  One might have expected an upstream 
disturbance to be generated within the separated approach flow.  Such a disturbance 
would establish a hydraulically controlled flow that remains separated from the left wall.  
However, the figures shows that an upstream disturbance is not generated until contact 
with the left wall is made. 
 
 In general, the lack of hydraulic control of separated flows, both in numerical and 
laboratory experiments, remains a mystery. 
 
 
g.  Breakdown of semigeostrophic theory.  
 
 Large channel widths permit the formation of larger cross-channel velocities, 
leading to the departures from semigeostrophic behavior.  One way to document such 
departures is through the semigeostrophic Froude number.  Figure 3.4.13c contains a 
longitudinal plot  (solid line) of the constant potential vorticity, semigeostrophic Froude 
(3.4.3) for the flow shown frame a.  Surprisingly Fd never exceeds unity, reaching a 
maximum  value ≅0.95 just upstream of the hydraulic jump.  The value at the sill is 
considerably lower.  The fact that this example clearly exhibits upstream influence, and 
that something like a hydraulic jump exists, suggests Fd should equal 1 at the sill and 
exceed 1 immediately downstream.  Apparently (3.4.3) is no longer a reliable definition 
of the Froude number.  As shown in frame c, significant cross-channel velocities exist 
near and slightly downstream of the sill, suggesting that the failure of (3.4.3) may be due 
to a loss of semigeostrophy.  This failure could also be due to potential vorticity non-
uniformity that might have developed in the flow field.   
 
 In order to test the last hypothesis, consider Stern’s generalized critical condition 
(Section 2.9)  
 

    (v
2
d)

!1
(1 !

v
2

d!w / 2

w/ 2

" )dx = 0 ,   (3.4.12) 

 
valid only when d remains positive and v remains single signed in -w/2≥y≥w/2.  This 
expression suggests a generalized Froude number 
 

    F
S

2
=

d
!2

!w / 2

w / 2

" dx

(v
2
d)

!1

!w / 2

w / 2

" dx

,    (3.4.13) 

 
which equals unity when the flow is hydraulically critical.  Although FS does exceed 
unity on the downstream face of the obstacle (dashed curve in Figure 3.4.13c), its value  
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(≅0.4) at the sill is even lower than the value of Fd there.  This behavior suggests that the 
breakdown in our measure of the Froude number is due to the failure of the 
semigeostrophic approximation.  This conclusion is supported by the behavior of the 
Froude number in a flow regime with the same obstacle height but a narrower channel 
(w=0.5, Figure 3.4.8d), where Fd reaches and exceeds unity in the expected places.  
 
 In addition to failure the of (3.4.13) to measure the true criticality of the flow, 
there are other indications of breakdown of the semigeostrophic approximation.  The 
value of the critical obstacle height hc predicted by semigeostrophic theory agrees well 
with the observed values for the narrowest channel (w=0.5). As w increases the 
agreement grows worse; the predicted hc overestimates the actual hc for subcritical initial 
flows and underestimates it for supercritical initial flows.  This trend is probably a result 
of the fact that large cross-channel velocities are allowed to develop once the channel 
width exceeds a deformation radius.  Despite these differences the general shape of the 
curve of hc as a function of Fd remains as predicted.    
 
 More striking breakdowns in the semigeostrophic approximation occur within 
individual features.  Perhaps the most dramatic is the grounding or separation of the flow 
(d→0) in the interior of the stream, as occurs at the bifurcation of the upstream flow 
(t=20,40, and 80 in Figure 3.4.12 near y=-2.5) and at the detaching eddy (near y=14 and 
t=40 of the same figure).  Such behavior is clearly in violation of Gill’s (1977) theorem 
proscribing the vanishing of d at a point where ! 2d / !x2>0 in any semigeostrophic flow 
(see Section 2.5). Not surprisingly, semigeostrophic theory also fails in the vicinity of 
jumps, bores and other transients exhibiting rapid transitions is the y-direction.  It is not 
necessary that w be large for such violations to occur, as evidenced the presence of 
transverse jumps and bores when w=0.5 (Figure 3.4.3).  
 
 
f. Upstream recirculations. 
 
 Although semigeostrophic theory admits solutions with closed recirculations, the 
location of the latter may be restricted by the assumed potential vorticity distribution.  In 
Gill’s (1977) uniform potential vorticity model, for example, it can be shown that the 
flow at any critical section must be unidirectional.  Recirculations must therefore occur 
away from control sections.  The laboratory simulations discussed in Section 2.6 contain 
recirculations, but in all cases the counterflow exists upstream of the sill crest. The 
potential vorticity distribution in these experiments is unknown. On the other hand, 
Section 2.9 makes it clear that flows with non-uniform potential vorticity may contain 
counterflow at a control section.  The present numerical experiments contain examples in 
which recirculating fluid exists at the sill (Figure 3.4.14a).  Inspection of the potential 
vorticity distribution across the sill confirms that it is non-uniform (Figure 3.4.14b).  The 
boundaries of the recirculation  (corresponding to ψ =0) occur at the right wall x=2 and at 
x≅-1 in the cross section taken at the sill. Within these boundaries q is roughly constant, 
in agreement with conditions conjectured by Borenäs and Whitehead (1998).  To the left 
of the recirculation the potential vorticity is much higher. 
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h.  Concluding  remarks. 
 
 A review of the regime diagrams (Figures 3.4.3-3.4.5) suggests that most of the 
examples of hydraulically controlled flow can be placed in two broad classes.  The first 
includes flows that remain attached to the left wall at each y.  The time-dependent 
adjustment leading to the establishment of a controlled flow in this regime is similar to 
what takes place in Long’s experiments, although the transients and the hydraulic jumps 
become trapped to the sidewalls.  Energy dissipation due to jumps and upstream bores 
may be strongly localized near the left wall.  One might collectively refer to these 
examples as the Kelvin-wave regime and note that it generally occurs for small-to-
moderate Fd, hm, and w. The second category includes flows that are separated from the 
left wall over some y.  Significantly,  the sill flow in all such cases remains attached.  
Further, all upstream disturbances and hydraulic jumps with separated upstream flow 
have attached downstream end states. Both Kelvin-wave and frontal-wave dynamics are 
important in these examples, which might collectively be referred to as a ‘hybrid’ regime.  
It is favored by large hm, large Fd, and/or large w. 
 
 In no case is it possible to remove the left wall from the problem and still be able 
to realize a hydraulically controlled flow.  Even when the initial flow is separated and w 
is large, the critical sill flow becomes attached to the left wall.  In addition, upstream 
influence for large w is transmitted in the form of an intrusion that travels along the left 
wall.  These results imply that a ‘coastal’ version of the current, set up by moving the left 
wall to infinity, cannot be hydraulically controlled nor have a stationary hydraulic jump.  
One caveat should be mentioned: by restricting the initial conditions so as to require zero 
volume transport in the left-hand boundary (Section 3.1) all separated initial flows are 
supercritical.  There is another family of separated but subcritical initial flows that could 
conceivably be subject to upstream influence without the aid of the left wall.  This path 
has not been explored. 
 
 For some of the interesting features found in the simulations, no concrete 
oceanographic observations have been reported at the time of this writing.  Such features 
include the Kelvin-wave hydraulic jump (Figure 3.4.10), the transverse hydraulic jump 
(Figure 3.4.9), and the bifurcation of the flow approaching the sill with resulting leakage 
back into the upstream part of the channel (Figure 3.4.12). 
 
 
Exercises 
 
1)  It has been assumed that the initial flow is fed entirely by a left-wall boundary layer.  
Show that such a flow, when separated, cannot be subcritical.   
 
 
2)  Calculation of the critical obstacle height for separated sill flow.  Show that hc is 
given by (3.4.10b) when the sill flow is separted (d 

c
< ˆ d 

c
).  Hint: by using 

d 
c
= ˆ d 

c
= ( ˆ d 

0
d 

0
)
1/ 2  and  T = T

ec
= tanh(w

ec
/ 2) ,   first show that (3.4.9) yields 
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0
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1! ˆ d 
0
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0( )
1/ 2  

 
then combine this relation with the Bernoulli equation.  
 
3)  Following the guidelines set down in the text, verify the relations 3.4.11a,b governing 
the curves DB and GH in Figure 3.4.1. 
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Figure Captions 
 
 
Figure 3.4.1. Regime diagram showing the predicted response in terms of the initial 
Froude number Fd and the obstacle height hm, all for a channel of width w = 0.5.  The 
curve CAE gives the critical obstacle height, with different segments indicating different 
states of flow separation.  The curves DB and GH indicate various states of flow 
separation for completely subcritical or supercritical flows.  See the text for more details. 
(from Pratt et al. 2000)  
 
Figure 3.4.2.  Curves of critical obstacle height hm= hc as a function of Fd for w = 0.5 and 
w=2. (from Pratt et al. 2000) 
 
Figure 3.4.3.  Summary of the numerical results for w = 0.5.  The topography is given by  
The regime curves from the semigeostrophic theory are shown along with the locations of 
numerical runs.  The circles indicate no permanent alteration of the original flow and the 
squares show cases of permanent upstream influence.  Also shown are inset examples of 
the numerical results.  The insets show contours of the free surface height (d(x,y,t) + 
h(y)).  The shaded regions indicate those portions of the channel that are "dry" (defined 
by d < 0.001).  The dashed lines are the 1, 0.5 and 0.001 times hmcontours of the bottom 
topography. The numerical model uses a uniform cell-centered grid with spacing in the 
along channel direction of Δy = 0.05.  The cross-channel grid spacing and time steps 
range from (Δx = 0.025 and Δt=0.01) at w = 0.5 to (Δx = 0.05 and Δt=0.02) at w = 2 and 
4. (from Pratt et al. 2000) 
 
Figure 3.4.4.  Same as Figure 3.4.3 except w = 2.  Dashing of the critical obstacle height 
curve indicates those values of Fd for which the initial flow is separated. The thick 
horizontal bar overlaid on the critical obstacle height curve indicates the value of Fd 
above which the predicted critical sill flow is separated from the left wall. (from Pratt et 
al. 2000) 
 
Figure 3.4.5.  Same as Figure 3.4.3 except w = 4. (from Pratt et al. 2000) 
  
Figure 3.4.6.  Numerical results for Fd=2.5, hm=0.3 and w=0.5.  The panels show contours 
of the free surface height (d(x,y,t) + h(y)) at the times indicated.  The shaded regions 
indicate those portions of the channel that are "dry" (defined by d < 0.001).  The dashed 
lines are the 1, 0.5 and 0.001 times hm contours of the bottom topography. (from Pratt et 
al. 2000) 
 
Figure 3.4.7. Same as Figure 3.4.6, except Fd=0.5, hm=0.2  and w=0.5.  The bottom panel 
shows Fd as a function of y at t=30. (from Pratt et al. 2000) 
  
Figure 3.4.8. Same as Figure 3.4.6, except Fd=1.5, hm=0.5 and w=0.5. (from Pratt et al. 
2000) 
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Figure 3.4.9.  (a) Surface elevation contours for the steady flow that arises in the case 
Fd=0.5, hm=0.8 and w=0.5.  A transverse hydraulic jump lies at y≅2.3.  (b) Plot of Fd 
(solid line) and d(-w/2,y) (dashed line) for the flow in (a).  The transition from 
supercritical to subcritical flow near y =2.3 coincides with the lateral expansion and 
reattachment of the flow to the left wall. (from Pratt et al. 2000) 
 
Figure 3.4.10. Same as Figure 3.4.6, except Fd=0.5, hm=0.2 and w=2. (from Pratt et al. 
2000) 
 
Figure 3.4.11  The top three frames show the free surface of the adjusting flow for the 
case Fd=0.41, hm=.35 and w=1.1.  The bottom frame shows the bottom topography and 
the flow is from right to left. (From Pratt. 1983b).  
 
Figure 3.4.12. Same as Figure 3.4.6, except Fd= 1.5, hm= 0.4 and w = 2. (from Pratt et al. 
2000) 
 
Figure 3.4.13. Details of the super- to subcritical transitions for the flow shown in the 
inset of Figure 3.4.4 with Fd=0.5 and hm=0.5.    (a) Contours of the free surface elevation 
d+h.  (b) Contours of the dissipation µu !("!(d"u)) . The contour interval is 1.25×10-2. 
(c) Contours of the transport streamfunction (dashed lines) overlaid with the dissipation 
contours from above.  (d) The Froude number Fd based on Equation 3.4.3 (solid line) and 
FS based on Equation 3.4.13 (dashed line).  The definition of FS is invalid downstream of 
the jump (at y≅1) due to velocity reversals. (from Pratt et al. 2000) 
 
Figure 3.4.14.  (a) Surface height contours for the case (w=4, Fd=0.1, and hc= 0.45) in 
which a recirculation exists over the sill.  (b) Potential vorticity and streamfunction 
profiles at the sill (y=0). (from Pratt et al. 2000) 
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Figure 3.4.11 (low resolution version)
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