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2.9 Nonuniform potential vorticity. 
 
  
 
 Our discussion of semigeostrophic models has largely been restricted to flows 
with uniform potential vorticity.  The only waves supported by such flows are the two 
Kelvin waves, or their frontal relatives.  As noted in Section 2.1, the introduction of a 
potential vorticity gradient gives rise to a new restoring mechanism and a new class of 
waves which are nondispersive at long wave lengths.  We discussed the case of 
topographic Rossby waves in a channel with a constant bottom slope  !h * /!x* = "s  and 
a rigid upper boundary.  The dispersion relation (2.1.30) governing long waves 
propagating on a background state of rest can be generalized to include a uniform 
background velocity V, in which case the wave speed becomes     
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where  dq *

dx*
= !

sf

D
2

.  For positive s, !q * /!x* < 0  and higher potential vorticity is found 

on the left-hand side (facing positive y*) of the channel.  In this case the propagation 
tendency of the waves is against the background flow and hydraulic criticality (c*=0) 
occurs when 
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In the opposite case (!q * /!x* > 0 ), all waves propagate towards positive y*. Critical 
flow for this example therefore requires that the potential vorticity increase to the left of 
the flow direction. 
 
 The presence of a potential vorticity gradient in combination with a free surface 
or interface leads to analytical difficulties in connection with the cross-stream structure 
equation (2.1.14).  The difficulty can be described by first noting the connection between 
ψ and d  implied by the geostrophic relation:  
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If !h /!x = 0  integration of this equation from the channel side wall at x=w/2 to a point in 
the interior yields 
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where ψ=1 has been imposed at y=w/2. Equation (2.1.14) may now be written as 
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(12 w, y))]d = "1     (2.9.5). 

 
If q is constant (2.9.5) reduces to the familiar linear equations that forms the basis for 
models considered earlier. However, a nontrivial dependence of q on ψ produces a 
nontrivial equation. 
 
 Some progress can be made without actually solving the particulars of the cross-
stream structure.  For example, Stern (1974) derives a generalized critical condition with 
no restriction on potential vorticity and with the requirements that the channel cross-
section be rectangular(!h /!x = 0)  and that the flow be unidirectional.  A version of the 
proof, grounded in Stern’s approach but simpler than his original proof, begins with the 
relation 
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which follows from the definition of the Bernoulli function B(ψ) and from (2.9.4). 
Assume that the velocity is positive, so that the ‘+’ sign is appropriate.  If this v is 
substituted into the geostrophic relation,  essentially  !d / v = !x , and the result integrated 
across the channel width, one obtains 
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The use of d as an integration variable assumes a one-to-one correspondence between x 
and d, and this is guaranteed when v remains positive for -w/2≤x≤w/2. The upper limit of 
integration is the right wall depth  (2Q+d 2 ( 1

2
w, y) ) expressed in terms of the flow rate 

and the left wall depth.  If B(ψ) is known in advance, then G =I1-21/2w can be regarded as 
a hydraulic functional, expressing a relationship between the single dependent variable  
d( 1

2
w, y) , the geometric variables w and h, and the parameter Q.    A critical condition 

can thus be obtained by taking 
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2
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1
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2
( 1
2
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After use of Leibnitz’s Rule and some careful integration by parts, one obtains the result  
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Changing the integration variable from d to x (using !d = v!x ) leads to Stern’s result, 
which can be written in dimensional form as 
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In essence, the local value of v * / gd *  must =1 for some x* across the channel in order 
for the flow to be critical.  It is remarkable that this result does not depend on the Coriolis 
parameter  f.  It is also interesting that (2.9.6) appears to apply to potential vorticity 
waves as well as Kelvin and frontal waves.  However, the restriction to unidirectional 
velocity profiles may disallow certain types of critical states, an issue that we will return 
to. 
 
 Stern’s result can be used to define a type of generalized Froude number 
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having the property that Fd=1 for critical flow and Fd→0 as v+→0. The latter limit implies 
that Fd<1 subcritical flow, but one should exercise caution in making this interpretation.  
Flows with nonuniform potential vorticity may admit to many wave modes and a 
particular value of Fd does not, in itself, indicate supercritical or subcritical conditions 
with respect to any particular wave.  We only know that Fd=1 indicates that one of the 
waves is arrested. 
 
 A detailed example of hydraulic effects in the presence of both gravitational and 
potential vorticity dynamics was worked out by Pratt and Armi (1987).  In order to make 
the problem analytically tractable, they examined a nonrotating flow with the linear 
potential vorticity distribution 
 
   q * (!*) = qo

*
" a! * ,     (2.9.8) 

 
in a channel with rectangular cross section.  Although f=0 this flow supports both gravity 
and potential vorticity waves and therefore contains the essential features we wish to 
investigate.  Simplicity is provided by the fact that the d* is uniform across the channel, 
d*=d*(y*) and that the expression for potential vorticity reduces to 
 

   q* =
!v * /!x *

d *
     (2.9.9). 

 
Differentiation with respect to x* and use of (2.9.8) leads to the cross-stream structure 
equation 
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 There are two distinct cases to consider.  When a<0, dq * /d! * < 0 and the 
potential vorticity has higher values on the right side of the channel (where ψ*=Q*/2) 
then on the left side (where ψ*=-Q/2), although the variation of q* across the channel 
may not be monotonic.  As suggested in Figure 2.9.1a, this setting would seem to favor 
potential vorticity wave propagation in the same direction as the overall transport. In this 
case the solutions to (2.9.10) will exponential.  If a>0 the situation is as shown in Figure 
2.9.1b, with generally higher potential vorticity of the left and possible upstream 
propagation of potential vorticity waves.  Here the solutions to (2.9.10) are oscillatory. 
 
 Consider the case a<0 first. The solution to (2.9.10) can be written as  
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where 
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As in Gill’s (1977) model the flow has a boundary layer structure, each layer here having 
thickness!"1.  However there are some important differences.  First, the decay scale 
depends only on the magnitude of the potential vorticity gradient ! = dq * /d" *  
 and the depth d*, and not on gravity.1 Furthermore, the decay scale depends on 
the dependent variable d and is therefore a function of y, whereas Gill’s decay scale (Ld) 
was universally constant. 
 
 The boundary conditions ! * (± 1

2 w*)= ±
1
2Q *may be used to relate v̂*,  v * and 

d* and form a hydraulic functional. The first step is to integrate the product of d* and 
(2.9.11) across the channel, resulting in 
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Next, the potential vorticity equation (2.9.9) is applied at x*=w*/2, leading to 
!v * /!x = d * (qo

*
"
1
2 aQ*) .  The use of (2.9.11) to evaluate !v * /!x *there results in  
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of inertial boundary currents on a beta-plane ocean.  Here V is velocity scale and !  is the 

planetary potential vorticity gradient. 
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   v̂* = d *qo *!

"1
tanh( 1

2
!w*) .    (2.9.13)  

 
Finally a functional relation of the required form is obtained by evaluating the Bernoulli 
equation along the right-hand wall: 
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Here BR represents the right-wall value of the Bernoulli function. Substitution for ˆ v * and 
v *  and nondimensionalization of the result leads to  
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where (d,h,BR ) = (d * /D,h * /D,BR * /gD)  and 
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all of which are non-negative. 
 
  G (d;h,w)  contains two parameters !  and !q .  The former is one half the ratio of 
the channel width to the boundary layer thickness based on the scale depth D. 
It is a measure of the strength of potential vorticity effects over the cross-section of the 
flow.  If ! <<1 potential vorticity effects are relatively weak.  The other parameter !q is a 
measure of the relative importance in the two terms qo

*
 and a! *  which comprise the 

potential vorticity.  Specifically, !q  is the difference between the potential vorticity at 
the right and left walls normalized by their sum. 
 
 The critical condition   !G / !d = 0  leads to  
 
   ! sinh(!dc)sech

3
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4
(!dc ) " #q

"2
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and the left-hand side of this expression decreases monotonically from positive ∞ to zero, 
indicating at most a single root. Figure 2.9.2 shows an example of a solution curve 
(2.19.15) with BR-h plotted as a function of d with !q = 1 ! = 1 (the constant  implying 
that the channel width is uniform). Solutions are constructed in the usual way by 
following the curve as h changes, with a hydraulic transition if the maximum h occurs at 
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the minimum of the curve.  Furthermore, it may be shown that in the limit of vanishing 
!q  and !  that (2.9.19) reduces to the result for one-dimensional flow: 
v * = v* = (gd*)

1 / 2 .  In this limit the left- and right-hand branches of the solution curves 
correspond respectively to supercritical and subcritical flows. We will assume that this 
characterization continues to hold for non-zero !q  and !  with the caveat that the actual 
wave speeds along the two branches have not been calculated.  
 
 There is nothing so far that dramatically distinguishes the character of the model 
from its one-dimensional counterpart.  However, a closer look at the velocity structure 
reveals an important differences, namely that stagnation points with corresponding 
separating streamlines can exist on the left-hand wall. The required condition is ˆ v * = v *, 
or if (2.9.12) and (2.9.13) are used:   
 
    !q = tanh

2
("ds ) .    (2.9.20) 

 
Here ds denotes the value of d at the section of wall stagnation.  The corresponding right-
wall condition is obtained by reversing the sign of the right-hand term and cannot be 
satisfied for positive !q .  Hence, stagnation can occur only on the left wall. The use of 
(2.9.20) to substitute for !q  in the critical condition, (2.9.19) leads to  
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and thus d

c
 must be <d

s
 (the flow must be subcritical) for separation to occur. This 

stagnation separation should be distinguished from the rotation induced separation in 
which the wall depth vanishes. In Figure 2.9.2, subcritical solutions with d>ds are 
indicated by dashing. In this case, most of the subcritical curve has this property. 
Corresponding velocity profiles will have reverse flow along the left-hand wall.  Figure 
2.9.3 shows an example of the velocity upstream, downstream of, and at the controlling 
sill. The three sections correspond to points A, B, and C of the solution curve. 
Immediately upstream of the sill lies the stagnation point and beyond it a counterflow. At 
section A most of the channel contains recirculating fluid; only that passing close to the 
right wall reaches the sill.   
 
 We now turn to the more interesting case a>0, which is favorable for potential 
vorticity wave propagation against the mean flow. The solution to (2.9.10) is 
 

  v* = v̂ *
sin(!x*)

sin(!w * /2)
+ v *

cos(!x*)

cos(!w * /2)
,   (2.9.22) 

 
so that the velocity profile is oscillatory.   Repeating the above procedure leads to  
 

   v* =
!Q * cot(!w * /2)

2d *
    (2.9.23) 

and 
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   v̂* =
qo
*
d * tan(!w * /2)

!
.    (2.9.24) 

 
 Substitution of (2.9.23) and (2.9.24) into the Bernoulli equation (2.9.14) and 
nondimensionalization gives 
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where γ and !q  are defined as before and are considered positive.  Note that the squared 
term is has the value +∞ for ! d =

1

2
n"  

 
(n = 0,1,2,!) , suggesting that the solution 

‘curve’ consists of a series of disconnected lobes.  This is confirmed by a plot (Figure 
2.9.4) showing B

R
! h as a function of d for ! = "q = 1 . Each lobe is numbered from left 

to right and the minimum value B
R
! h  increases as the lobe number increases.  For a 

given upstream state (here determined by B
R

) and a given topographic elevation h, there 
may be more than two possible steady states.  For example the value B

R
! h =10 

corresponds to 12 possible states.  However, once a particular solution lobe is determined 
(say by upstream conditions), then at most two states are possible for any given h.  Of 
course, a hydraulic jump or some other nonconservative feature might allow the solution 
to jump from one lobe to another, thereby allowing more possibilities. 
 
 Stagnation along the left wall is also possible and occurs when ˆ v * = v *, or  
 
    !q = tan

2
("ds ) .    (2.9.26) 

 
As before, separation along the right wall is not possible for non-zero !q . 
 
 At the minimum of each lobe the flow is critical and the corresponding depth dc 
can be calculated from the condition   !G / !d = 0 , which yields 
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c
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s
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It can be shown using (2.9.6) and (2.9.7) that d

s
> d

c
 within each lobe.    

 
 The most obvious qualitative difference between solutions corresponding to 
different lobes is in the number of zero crossings of the cross-channel profile of v. 
It can be shown that the solutions corresponding to lobe n have either n or n-1 zero 
crossings, the greater number occurring for larger values of d.  Thus the higher lobes 
correspond to intricate flows with multiple bands of fluid moving upstream and 
downstream. Figures 2.9.5a and 2.9.5b show examples taken from lobes #1 and #2.   
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 There remains some mystery concerning solutions corresponding to different 
solution lobes. If the cross-channel reduced by taking the limits γ and Δq→0, lobe #1 
tends toward the solution curve for a one-dimensional, nonrotating flow (e.g. Figure 
1.4.1).  The inset of Figure 2.9.4 shows how this limit is approached; as γ and !q are 
reduced; the depth range of the first lobe grows and the remaining lobes are pushed off to 
infinity.  Controlled solutions belonging to the first lobe appear then to be governed by 
the dynamics of a shear-modified, long gravity wave.  For the other solutions, it is 
evident that the relative change in depth across the sill relatively small and becomes 
vanishingly so for the higher lobes.   The change in the flow as it passes through a critical 
section occurs primarily one of horizontal structure.  This idea can be formalized by 
calculating the cross sectional enstrophy  
 

 En* =
1

2
!v * /!x *( )

2

dx
"w*/2

w*/w

# = 1

2
d *

2
q *

2
dx

"w*/2

w*/w

# ,   (2.9.28) 

 
a measure of the horizontal shear across a particular section.  As explored in Exercise 3 it 
can be shown that the change in En* caused by a small change in depth as the flow passes 
through a critical section increases as the lobe number becomes higher.  This indicates 
that control of the flow by the higher lobes primarily affects the horizontal shear and not 
the depth.  Because of this feature, and because the higher lobes owe their presence 
entirely to a finite potential vorticity gradient, it is evident that the corresponding 
solutions are controlled by a potential vorticity wave. 
 
 Further to the ongoing discussion, it can be shown that Stern’s condition for 
criticality (2.9.6) succeeds in predicting the control condition for the first lobe, but fails 
for the remaining lobes.  Failure is due to the fact that the higher lobe solutions all have 
velocity reversals, whereas the derivation of (2.9.6) assumes unidirectional flow.  Flows 
with potential vorticity gradients may therefore experience a multiplicity of controlled 
configurations, not all of which obey Stern’s criterion. 
 
 
 A final consideration, one that could render much of the above discussion 
academic, is stability.  The most pertinent theorem for the present case is Fjortoft’s 
necessary condition for instability (see Drazin and Reid, 1981), which does not strictly 
apply to our flow in general, but would be applicable if the flow was bounded by a rigid 
lid.   Instability is possible when dq*/dψ*<0, or a>0, the case permitting multiple 
solutions.   
 
 There remains uncertainty regarding the interpretation of the a>0 solutions, how 
they are established, which branches of the higher lobes are supercritical and subcritical, 
and what their stability is.  One of the difficulties is that the model contains a mix of 
potential vorticity and gravity wave dynamics.  More recent investigations of hydraulic 
effects in presence of potential vorticity gradients have utilized models that expunge 
gravity waves by placing a rigid lid on the surface.  Also, piecewise constant (rather than 
continuous) distributions of q* can reduce the number of waves modes to just one or two, 
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further simplifying the problem and allowing the peculiar dynamics to be investigated in 
isolation.  These models take us away from the topics and applications of the current 
chapter but they are revisited in Chapter 6. 
 
Exercises 
 
 1)  Obtain the result (2.9.6) starting with the trivial relation 
 

   w = dx

!w /2

w /2

"  

and change the integration variable x to ψ.  (What does this the use of this last 
tranformation assume about the flow?).  Attempt to cast the new integral as a Gill type 
functional in a single variable and use the result to obtain a critical condition. 
 
 2) Use the manipulations from the following text to construct a homework 
problem in which one obtains Stern’s result.  This is basically going from the second 
equation before 2.9.6 to the first eq. before 2.9.6.  
 
Application of Leibnitz’s rule to the derivative of I. 
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The above result if valid for all values of do in an interval a<do<b provided that  v
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  Now, from (10)  
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  Substitution into (A1) gives 
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Integrating the last term by parts gives 
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3)  Show that the velocity profile (2.9.22) can be written in the nondimensional form  
 
 

   v =
sin(! dx)

"qsin(! d)
+
cos(! dx)

cos(! d)
, 

 
where v = 2v * / a 1/2

q , d=d*/D,  x*=x/(w*/2) and γ is as defined above.  Using this 
expression, calculate the nondimensional version En of the enstrophy En* (first equality in 
2.9.28). Now take derivative of the result with respect to d and evaluate at the critical 
depth.  From the result, show that  
 
   

 
(!E

n
/ !d)

d=dc
! d

c

2   (dc→∞), 
 
and therefore the change in enstrophy relative to a change in depth increases as the 
critical depth (and therefore the lobe number) increases. 
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