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2.7 Flow Reversals and Recirculation 
 
 
 Counterflows and closed circulations are commonly observed in hydraulically 
active rotating flows.  Closed gyres tend to occur upstream of a controlling sill, typically 
along the right wall, or downstream along the left wall.  The later case occurs in 
connection with a hydraulic jump and will be discussed further in Chapter 3. Borenäs and 
Whitehead (1998) discuss examples of right-wall gyres, one of which is shown in Figure 
2.7.1.  The flow is confined to the lower layer of a two-fluid (water and kerosene) system 
in a rotating, rectangular channel vertical sidewalls.  The channel is fitted with an 
obstacle that smoothly reaches a maximum height midway through the channel.  The 
water is pumped into an upstream reservoir (to the left) where it collects and passes 
through a porous filter into the channel.  The flow is critical at or very near the sill, the 
position of which is indicated by a dashed line.  The gyre can be seen as a semicircular 
region of fluid that remains clear and free of dark dye introduced upstream.  
 
 The typical gyre geometry as seen in cross-section and plan view is sketched in 
Figure 2.7.2.  The region of closed streamlines lies between two right-wall stagnation 
points at y=y1 and y=y2.   The streamline joining the two points and located a distance wg 
from the right wall will be called the stagnation streamline.  The interface elevation along 
this contour must remain the same as that along the right wall, else the gyre would have a 
net geostrophic volume flux. The presence of a closed gyre gives rise to a number of 
questions concerning the physics and analysis of the flow.   How is potential vorticity 
specified along the closed streamlines?  Does the gyre choke the flow the same way that a 
contraction in channel width would?  Before addressing these matters we first attempt to 
determine the conditions under which the right-wall gyre can form. 
 
 Counterflow is integral to the gyre and a mechanism that can work in favor of 
right-wall flow reversals is vortex squashing.  As fluid columns leave a relatively deep 
reservoir and move towards a relatively shallow sill, their thickness d decreases and their 
vorticity (! "v / "x)must decrease, perhaps becoming negative.  This process can 
contribute to small or negative velocities along the right wall.  Of course, the fact that 
counterflows are not observed in the downstream supercritical flow suggests that vortex 
squashing is not the whole story.  Such flows tend to be separated from the left wall and 
therefore be much narrower than the upstream flow.  Even though !v / !x may be 
negative, the narrowness of the current and the strength of the (positive) mean velocity 
prevents v from becoming negative on the right wall. 
 

A more careful examination of stagnation point formation and flow reversal may 
be made by appealing to earlier results on the formation of a counterflow.  This subject 
was discussed in the context of a separated, zero potential vorticity flow, as summarized 
by the insets in Figure 2.3.2.  Should this flow be critical at a sill, the interface will be 
level at the right wall (second inset from top) and v will vanish there.  Immediately 
upstream from this section the flow will be subcritical (second inset from bottom), with 
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counterflow (v<0) along the right wall.  In the laboratory example in figure 2.7.1, which 
is not separated, the counterflow begins a finite distance upstream of the sill.  
 
 The presence of a second, upstream stagnation point will terminate the 
counterflow and give rise to a closed gyre, as in the experiment.  The existence of the 
second stagnation point may be anticipated using the expression for the right-wall 
velocity based on one of the foregoing steady theories.  For example, the expression for 
v(w/2,y) based on the non-separated velocity profile for finite, uniform potential vorticity 
(q>0) is 
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in view of  (2.2.4 and 2.2.18).  A right-wall stagnation point therefore occurs where 
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Two stagnation points are possible for 

  

Q < T
2
q
!2
/2  and both will be encountered if d  

passes through the two indicated roots.  This situation is favored by weak transports 
(Q<<1), small values of the potential vorticity (q<<1), or wide channels 
(T=tanh[q1/2w/2]≅1).  In addition, strong shoaling of the bottom encourages a greater 
range of d  along the channel, and this increases the probability that two stagnation points 
will occur. 
 

Can a counterflow exist at a control section?  Under conditions of uniform 
potential vorticity and rectangular cross section this possibility is ruled out by the 
theorem constraining critical flow to be unidirectional (Section 2.5).  However, this 
restriction does not generally hold.  We will identify examples showing that counterflows 
can occur at a critical section when the geometry is nonrectangular (Section 2.8) or when 
the potential vorticity is non-uniform (Section 2.9). 
  
 In dynamical terms, one of the distinguishing characteristics of a closed gyre is 
that the potential vorticity distribution is no longer imposed by upstream conditions.  
Fluid parcels are free to circulate indefinitely and dissipative effects, while arguably 
negligible for the throughflow, become paramount.  An instructive constraint may be 
written down by integrating the tangential component of (2.1.15) around the circuit Γψ 
formed by any closed streamline ψ=constant within the gyre.  For steady flow, the result 
is 
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where l and ds are tangential unit vectors and differential arc length along Γψ.  The vector 
F*, which generally contains all momentum forcing and dissipation terms, might in the 
present context consist of a bottom drag term of the form C

d
u / d (consistent with an 

Ekman layer on the bottom) and a lateral stress term S.  In the laminar laboratory flow 
(Figure 2.6.1) S is presumably dominated by the lateral viscous stress generated by the 
throughflow moving along the left side of the gyre and wall on the right.  In geophysical 
applications the lateral stress would be dominated by turbulent momentum fluxes.  One 
of the difficulties in using (2.7.3) to solve for the circulation is that the shape of the latter 
is generally not known in advance. The immediate importance of (2.7.3) is that forcing 
and dissipation cannot be ignored once the streamlines are closed. 
 
 In order to incorporate a gyre into a hydraulic model for the flow as a whole, it is 
necessary to know something about the potential vorticity distribution along the closed 
streamlines. Borenäs and Whitehead (1998) explored two approaches, the first based on 
the assumption that the gyre potential vorticity has the same (constant) value as the 
throughflow and the second that the gyre is stagnant.  The first approach has the virtue of 
simplicity; solutions may be calculated using essentially the methods laid out in the Gill 
model (Section 2.5).  The second approach is more consistent with observations of the 
laboratory flow, which show the gyre circulation to be relatively weak.  The novel 
features of the calculation are explored in Exercise 1.  Neither approach is easily 
motivated by dynamical principles.  Determination of the true distribution of potential 
vorticity within the gyre remains an unresolved issue. 
 
 Figure 2.7.3 shows a comparison between gyres with uniform potential vorticity 
and stagnant flow, both with the same upstream conditions.  The former case is 
distinguished in having a strong anticyclonic circulation.  Note that the positions of the 
stagnation points for the two cases are identical, as they must be (Exercise 2). This 
distance tends to be moderately larger than what is observed in the laboratory (Figure 
2.7.4).  The observed gyre widths (not shown in the figure) are also somewhat smaller 
than what is predicted by either theory.  A possible reason for the discrepancy is that the 
observed gyres often contained small cyclonic features.   The experiment agrees with the 
theoretical prediction of a minimum width below which no gyre forms, though the 
threshold values are somewhat different.   
 
 Since a closed gyre carries no net volume transport, there is a temptation to think 
of the gyre edge as being equivalent to a solid wall. If the flow is steady and lateral 
viscous effects are ignored, the throughflow is apparently unaffected by replacing the 
stagnation streamline x=(w/2)-wg by a such a wall.  In this view, the gyre might choke the 
flow in same way as a true side wall contraction. However, one must be wary of this 
analogy. If the stagnations streamline is replaced by a wall, the value of T=tanh[q1/2w/2] 
is replaced by T=tanh[q1/2 (w- wg)], and the value of the corresponding Froude number 
(2.5.7) is altered.  The value based on placing an artificial wall at x=(w/2)-wg is invalid 
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since it does not account for the true physical characteristics of a Kelvin wave 
propagating through the flow.  Such a wave would see the gyre edge as a pliable 
boundary, not a rigid wall.  
 
Exercises 
 
1.  Suppose that the gyre is stagnant and that the exterior fluid (the throughflow) has 
unform potential vorticity (as in Figure 2.6.3b).  What is the matching condition along the 
separating streamline that allows solutions in the two regions to be matched? 
 
2.  Show that the positions y1 and y2 of the stagnation points are independent of the 
potential vorticity distributions inside the gyre, provide that the potential vorticity of the 
exterior (non-circulating) fluid is the same constant.  
 
 
Figure Captions 
 
2.7.1 A gyre in a channel flow with a parabolic sill (from Borenäs and Whitehead, 1998).  
The left-to-right flow is marked by dark dye, which is introduced at the upstream end of 
the channel and is deflected around the gyre.  The value of 

  

wf 2 ! g D"  is varied between 
0.25 and 0.39, and the case shown has value 0.35. The velocity of the flow entering the 
left end of the channel has been rendered approximately uniform by a filter.  The 
potential vorticity is therefore not uniform.  
 
2.7.2  Diagram showing the recirculation and throughflow in cross section and in plan 
view.   
 
2.7.3  Comparison between gyres imbedded in the throughflow with uniform potential 
vorticity.  The gyre can have the same uniform potential vortiticy as the throughflow 
(left) or be stagnant (right).  Each case is characterized by w * f / (2gD
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Borenäs and Whitehead, 1998.  
 
2.7.4  The gyre length as measured by the dimensionless distance between stagnation 
points Y = (y
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Figure 2.7.3
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