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2.6  Uniform potential vorticity flow, revisited. 
 
Update Iacono reference  (in 3 places). 
  
  Some aspects of the Gill’s formulation for uniform potential vorticity flow from a 
wide basin can be unintuitive.  One hobgoblin is the scaling choice D = ( fQ * /2g)

1/2 , 
which causes the volume flow to be hidden in the dimensionless forms of the governing 
equations.  Another difficulty involves the choice of ψI as a parameter for the upstream 
flow.  Although intuitively satisfying, this quantity (or its dimensional version) is difficult 
to measure in typical deep-sea settings.  More recent investigators have explored other 
choices of upstream parameters and have shown that certain choices can lead to a 
simplified, and some cases more data friendly, formulation.  
  
  If the depth scale D is left unspecified for the moment, then the continuity 
equation (2.5.1) reverts to its earlier form 
 
     2d̂d = Q     (2.6.1) 
 
while the Bernoulli relation (2.5.3) becomes 
 

   T
2
(d ! q

!1
)
2
+

Q
2

4T
2
d
2
+ 2q

!1
(d + h) = 2q

!1
B . (2.6.2) 

 
 The left-hand side (2.6.2) may be treated as a Gill-type functional and the critical 
condition may be found by setting its derivative with respect to d to zero.  The result is a 
slightly modified form of (2.5.6): 
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 The parameterB , the average of the side-wall Bernoulli functions, was 
vanquished by Gill in preference to ψi.  One alternative [Whitehead and Salzig 2001] is 
to use the value B=BR along the right side wall.  We will generalize his discussion and 
also consider the value BL on the left wall.  Integration of the relation dB / d! = q  across 
the channel then yeilds  
 
       B =

1

2
[BR + BL ] = BR !

1

2
qQ = BL +

1

2
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 If (2.6.2) is now evaluated at the sill (h=hc)  (2.6.4) can be used to write the result 
in the various forms 
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 So far the depth scale D has remained arbitrary, but it is now possible to select it 
in a way that reduces the dependence of Q on the upstream state to a single parameter.  
For example, suppose that the first form of the above relation is chosen and that 
B
R
! h

c
is set to unity, which is equivalent to  

 
   D = g

!1
B *R !hc * .       (2.6.6) 

 
The only remaining flow parameter is q.  Elimination of d

c
 between (2.6.3) and the 

newly scaled form of (2.6.5a) determines Q in terms of only wc and q.  In dimensional 
terms the volume flow rate is Q* = gD2

f
!1
Q(q,wc ) = (BR *!ghc*)

2
(gf )

!1
Q(q,wc ) .  A 

further conceptual simplification can be made by imagining that the flow stagnates along 
the right-hand wall at some point upstream of the sill.  The surface elevation above the 
sill at this location is !zR* = g

"1
BR *"hc * , just the depth scale D.  The transport relation 

may therefore be written in the form 
 

    Q* =
g(!zR*)

2

f
Q(q,wc ) .   (2.6.7a) 

 
 
The function Q(q,wc), which is obtained by eliminating d

c
between 2.5.6a (with 

B
R
! h

c
= 1) and (2.6.3), is contoured in Figure 2.6.1. One facet that stands out is the 

insensitivity of Q to the potential vorticity q when the sill width is moderate or small 
(wc<2). 
 
 The discussion thus far has been restricted to attached flow.  However, the form 
of Q for separated flow at the control section can be deduced from a simple argument.  
We first note that the dimensional geostrophic transport at a separated section, regardless 
of the potential vorticity distribution, is Q* = g(d * (w * /2))2 / 2 f , whered

c
* (w * /2)  is 

the depth at the right wall.  It has also been shown (Exercise 2 of Section 2.5) that the 
velocity at the right wall is zero when the flow is both critical and separated and the 
potential vorticity is uniform.  The value of the right-wall Bernoulli function, generally 
g(hc *+!zr*) , must then be g(hc *+dc * (w * /2)) .  The right wall depth is therefore ΔzR* 
and the transport is given by (2.6.7a) with Q=1/2, or   
 

     Q* =
g(!zR*)

2

2 f
.   (2.6.7b) 
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In fact, this formula is valid for a larger class of solutions that those with uniform q.  It 
was argued in Section 2.3 that any separated flow with v=0 along the right wall is 
hydraulically critical. The arguments leading to (2.6.7b) remain valid for any such flow.  
We also leave it to the reader to prove (see Exercise 1) that the deceptively complex 
relation (2.5.14) obtained by Gill is equivalent to (2.6.7b). The reader may also wish to 
note the similarity of (2.6.7b) to the zero potential vorticity transport relation (2.4.15). 
  
 One could have made similar simplifications, using the second or third forms of 
(2.6.5) in connection with different choices in D. As shown by Iacono (20??), an 
advantage in choosing the third form, which utilizes the left-wall Bernoulli function, is 
that it leads to a closed form analytical expression for the transport (see Exercise 4).   
However, there are reasons to prefer the right-wall Bernoulli function B

R
* , or 

equivalently !z
R
* , as the upstream parameter.  One is that upstream stagnant or sluggish 

regions do exist and tend to occur along the right wall. This topic is discussed in detail in 
Sections 2.7 and 2.14. Also, since Kelvin wave propagation in the basin is positive 
(downstream) along the right wall, changes in the flow far upstream are communicated to 
the strait along this wall.  Information propagation along the left wall must be upstream 
since the flow there is subcritical.  Information is therefore routed counterclockwise 
around the edge of the basin, making it reasonable to believe that right wall information 
can be specified independently.  Of course, these ideas require modification when the 
upstream basin is closed.  
 
 In the Gill model, specification of the upstream state requires two dimensionless 
parameters, q and Gill’s ψi.  With the present scaling and parameter choices, upstream 
information is formally specified by q alone. This treatment is more elegant, but it hides 
the fact that a particular Q corresponds to a whole range of upstream states, each with its 
own distribution of boundary layer fluxes.  That is, each point in Figure 2.6.1 corresponds 
to a range of upstream flows with the same Q.  To specify the full upstream state at such 
a point, one must know the second upstream parameter B

R
, which is hidden in the 

scaling.  It is advantageous to use the closely related parameter qB
R

 which, in 
dimensional terms, is the ratio of the side wall Bernoulli function BR* to the Bernoulli 
function gD∞ in the basin interior.  Large values of qB

R
 therefore have relatively 

energetic right-wall boundary currents, whereas qB
R

=1 has no right-wall current at all.  
Consider the range of upstream states possible for the setting q=0.8 and wc=1, indicated 
by a star in Figure 2.6.1.  The case qB

R
=7.0 (Figure 2.6.2a) confirms the expected 

energetic nature of the right-wall flow. In fact the boundary layer transport is more than 
can squeeze through the critical section; most of it returns along the left wall.  The high 
kinetic energy along the right wall allows the flow to rise up and pass over a sill whose 
elevation is much greater than the interior surface elevation. As qB

R
decreases, the right-

wall boundary layer weakens (frame b) and disappears (frame c for qB
R

=1).  At the 
lowest value of qB

R
 (frame d), the right wall flow reverses and the left layer carries all of 

the positive flux.  When qB
R

 reaches its minimum possible value q2Q +
1

2
(see Exercise 2 

and the dashed contours in Figure 2.6.1), the surface at the left wall grounds and the flow 
separates.  
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Figure 2.6.2.  Profiles of the dimensionless surface elevation qz = z * /D

!
 in 

upstream basin and at the sill, all for q=0.8 and wc=1.  The dimensionless transport Q 
equals 0.375 in each case. (a) qB

R
= 7 , (b) qB

R
= 1.375  (c) qB

R
= 1.0  (d) qB

R
= 0.875 . 

 
To apply Figure (2.6.1) in laboratory or field situations, it is helpful to write out 

the dimensional form of (2.6.7) 
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and thereby acknowledge that two dimensional upstream parameters, B

R
*  and D∞ are 

required, along with the sill height and width, to determine the dimensional transport.   
(Gill requires ψi* and D∞.)  Determination of the value of BR* generally means that a 
velocity measurement must be made.  However this problem is alleviated if a region of 
quiescent flow along the right wall can be found:  there the surface elevation above the 
sill is exactly !z

R
* . Alternatively, BR* can be related to other properties that may more 

easily measured.   Some of these can be derived from the expressions for the boundary 
layer flow in the vicinity of the right wall: 
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and  
 

  v * (x*, y*) =
g

D!

"

#$
%

&'

1/2

(d * (w / 2, y) ( D! )e
(x*(w*/2) f /(gD! )

1/2

, (2.6.10) 

 
which follow from 2.2.12.  For example, it can be shown that the transport in the right-
hand boundary layer is QR* = (g / f )(d *

2
(w * /2,!") ! D

"

2
) , where 

d *
2
(w * /2,!") denotes the right wall depth in the basin. The Bernoulli function on the 

right wall isBR* =
1

2
(g / D

!
)[D

!

2
+ d *

2
(w * /2,"!)] .  Complete knowledge of the right-

wall basin flow therefore requires any two of QR*,  BR*,  d * (w * /2,!") , or D∞.  
 

There does not appear to be a simple analytical expression for Q(wc,q) (though 
see Exercise 4).  Figure 2.6.3 shows some plots of Q as a function of wc for various 
values of q.  For fixed wc it is apparent that the transport decreases as q increases and 
therefore the largest transport occurs for zero potential vorticity.  One should exercise 
caution in interpreting this result, however.  If the dimensional critical width wc* is held 
fixed, then fixed wc means that D and therefore BR* is fixed.  The maximum in Q for zero 
q occurs when BR* is held fixed.  As shown by Iacono (20??), the same is not true when 
the scaling for D is based on BL*.  
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Exercises 
 
1)  By writing (2.5.14) in dimensional form and introducing ΔzR* as a depth scale, show 
that the much simpler transport relation (2.6.7b) is obtained. 
 
2)  Among the upstream states that are possible at a given location in Figure 2.6.1, show 
that the limiting case of separated upstream basin flow occurs when qB

w /2
falls 

belowq
2
Q +

1

2
.   

 
3)  Asymptotic properties of the function Q(wc,q).   
 
 (a) Using (2.6.3) and the form of (2.6.5a) with (B

R
! h

c
) = 1 , show that  

    lim
wc!0

Q =
2

3

"
#$

%
&'
3/2

w
c , 

and thus the slope of all the Figure 2.6.3 curves at the origin is (2/3)3/2 regardless of the 
value of q.   
 
 (b) Next show that for a given q=constant curve in Figure 2.6.3, that separation of 
the flow at the sill section first occurs where Q=1/2, corresponding to 
q = 2T

c

2
/ (1+ T

c

2
)or 

 

    wc = 2q
1/2
Tanh

q

2 ! q
"
#$

%
&'

1/2

. 

 
Note that separation can occurs only for 0<q<1.  
 
Hint: Use the velocity profile (2.2.4) along with the fact that the right-wall value of v is 
zero when the flow is critical. 
 
 (c) Note that the results in (a) and (b) provide endpoints for the curves with 
0≤q≤1.0.  For q>1 show that  
 
    lim

wc!"

Q = q
#1
(1# 1

2
q
#1
) . 

 
Hint:  Use the same equations as in part (a). 
 
4)  Iacono’s solution.  A closed formula for the constant-potential vorticity transport from 
a wide reservoir can be obtained if the upstream conditions are chosen in a particular 
way.  Proceed as follows: 
 
a)  Evaluate the Bernoulli relation (2.6.2) at the sill, where the flow is assumed to be 
critical, leading to 
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b)  Use the critical condition (2.6.3) to substitute for the second term and rearrange the 
result, eventually obtaining a quadratic equation for d

c
.  Show that the physically 

meaningful solution to this equation can be written as 
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where Sc = Sinh[ 12 q

1/2
w]  and Sc = Cosh[ 12 q

1/2
w] .   

 
c)  Note that with (2.6.3) rearranged to given 
 
   Q

2
= 4dc

3
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2
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2
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2
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one now has a direct formula for the transport in terms of the new upstream parameter 
!z

I
.  Make some plots of Q vs q for fixed !z

I
 and fixed sill geometry and thereby show 

that the maximum flux is obtained at a finite q.  Contrast this to the result obtained in 
Figure (2.6.1).   
 
Figure Captions 
 
Figure 2.6.1  Contours of dimensionless volume flux Q as a function of sill width 
wc=wc*f/(gD)1/2 and upstream potential vorticity q=D/D∞. In contrast to the Gill (1977) 
model, D has been chosen as g!1

B *R !hc * . The hatched region has separation of the 
current from the left-hand sill wall.  The dashed contours indicate the value of qB

R
 below 

which separation occurs from the left wall of the upstream basin. Separation of the sill 
flow from the left wall occurs within the hatched region; there Q=1/2.  The star indicates 
the values of q and wc used in Figure 2.6.2. (From Whitehead and Salzig 2001.) 
 
Figure 2.6.2.  Profiles of the dimensionless surface elevation z * /D

!
(= qz)  in the 

upstream basin and at the sill, all for q=0.8 and wc=1.  The dimensionless transport Q 
equals 0.375 in each case. (a) qB

R
= 7 , (b) qB

R
= 1.375  (c) qB

R
= 1.0  (d) qB

R
= 0.874 . 

(From Whitehead and Salzig 2001.) 
 

Figure 2.6.3  The dimensionless flow rate Q as a function of the dimensionless sill width 
wc for various values of q. The q=0 curve merges with the constant value Q=1/2 (see 
2.4.15) for separated flow w

c
! 2 .  The solid lines are exact values, calculated by 
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Whitehead (2005) and equivalent to the data shown in Figure 2.6.1.  The starred curve is 
an approximation based on equation 2.5.33. (From Whitehead and Salzig 2001.) 
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