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2.5 Constant potential vorticity flow from a wide basin:  Gill’s model. 
 
 The Whitehead, Leetma and Knox (WLK) model discussed in the previous 
section was followed three years hence by a much more elaborate calculation due Gill 
(1977).  In addition to his model, detailed below, Gill introducing a unifying framework 
for treating hydraulics problems.  We have made repeated use of his formalism, 
particularly in the derivation of conditions for hydraulic criticality.  This material was 
reviewed and generalized in Section 1.5.  The model developed by Gill was based on his 
particular view of the upstream basin and is rather more involved than that of WLK.  
Some investigators are have found Gill’s scaling and choice of upstream parameters 
unintuitive and have developed their own versions of his basic model.  In consideration 
of the historical importance of Gill’s paper, our preference in presenting the work is to 
first describe the model as originally formulated.  The next section will discuss some 
insights that are gained from alternative formulations. 
 
 
(a)  Basics 
 
  The depth and velocity profiles predicted by zero potential vorticity models such 
as WLK are valid near the sill, where the local depth (scaled by D) is small compared to 
the reservoir depthD

!
.  However, these expression do not apply in the reservoir, where 

by hypothesis the depth equalsD
!

.  We are therefore unable to verify the self consistency 
of the model, in particular the hypothesis that a quiescent, infinitely deep upstream state 
can be linked to the sill flow in a dynamically consistent way. In thinking about the 
character of the upstream flow, one might also wish to consider other possible states.  
Observations from deep straits such as the Faroe Bank Channel suggest the bulk of the 
overflow comes from intermediate water masses, which span the relatively wide 
upstream basin but may not be significantly thicker than the layer depth at the sill. Some 
or all of these considerations led Gill (1977) to consider non-zero (but still uniform) 
values of q(= D / D

!
) .  The depth and velocity profiles across the channel are now given 

by the more general forms (2.3.1) and (2.3.2), which admit the possibility of boundary 
layers.  In the WLK model the boundary layer thickness is much larger than the channel 
width.  Most of the novel features of Gill’s model can be linked to the presence boundary 
layers that are as thin or thinner than the channel width.  
 
 We continue to employ rectangular cross-sectional geometry and we analyze the 
case of non-separated flow first.  The steady forms of (2.2.15) and (2.2.16) then require 
conservation of the volume transport Q and the average B  of the Bernoulli function on 
the two walls.  Since we no longer care about special values or limits of D (such as 
D<<D∞) we are free to set it to any convenient value. The choice D= ( fQ * /2g)1/2  is 
convenient as it is equivalent to setting Q=2 (see Exercise 1) in the statement of 
conservation of mass (2.2.18).  Therefore  
 
    dd̂ = 1 .     (2.5.1) 
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In addition, conservation of the energy (2.2.16 and 2.2.17) for the steady flow implies  
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]+ d + h = B ,  (2.5.2) 

 
where againT = tanh( 1

2
q
1/2
w) and B  is the average of the side-wall values of the 

Bernoulli function. Eliminating d̂ from these two equations gives 
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(d + h) = 2q
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B .   (2.5.3) 

 
 
 The parameter B is generally not a convenient nor intuitive measure of the 
reservoir state.  As discussed in Section 2.2 , a flow in reservoir much wider than Ld  will 
be contained in side-wall boundary layers of thickness Ld (Figure 2.5.1).  The physical 
separation of the boundary layers makes it difficult to see how B  would be specified in a 
laboratory experiment or oceanic setting.  Furthermore, the velocity along each wall is 
generally non-zero and the Bernoulli functions there may no longer be dominated by the 
potential energy terms h+d, as assumed in the WLK model. Only in the interior of the 
reservoir, at a distance >>L

d
 from either wall, will the velocity be small. There the 

dimensional depth is D∞  (or d=q-1) according to (2.2.12). With these ideas in mind, Gill 
(1977) suggested that a new parameter measuring the partitioning of the total transports 
in the boundary layers would be more descriptive than B .   Some other choices be 
discussed in the next section. 
  
 Let the transport streamfunction ψ have the value ±1 on the side walls x=±w/2, so 
that the total transport is 2, as assumed.  Further, let ψi denote the value ofψ in the 
quiescent interior separating the two upstream boundary currents.  The transports in the 
right- and left-hand boundary currents (facing downstream) are therefore 1-ψi and 1+ψi. 
Included is the possibility that !

i
> 1  in which case one of the boundary layer transports 

will be greater than 2 and the other will be negative. Also note that the dimensionless 
value of d in the reservoir interior is q-1.  We can write ψi in terms of B  by first 
integratingdB / d! = q , yieldingB = B + q! .  Then note that B (= 1

2
v

2
+ d + h)  has 

value q-1 along ψ=ψi, as follows from evaluating B in the quiescent region where v=0, 
d=q-1, and where we will take h to be zero. Thus 
 
    B = q

!1 ! q" i
     (2.5.4) 

 
and substitution into (2.5.3) results in  
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!1
(d + h) ! 2(q!2 !" i ) = 0  (2.5.5) 
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 This function  G(d ;T ,h) is of the form sought by Gill (1977) and (2.5.5) may be 
solved giving d  for the local values of T(w(y)) and h(y). The parameters describing the 
upstream flow are ψi and the interior reservoir depth q-1.  In light of the particular choice 
of D this last parameter can also be written as (2gD

!

2
/ fQ*)

1/2 leading to an alternative 
interpretation;  for a fixed interior depth D∞ the maximum possible geostrophic transport 
in the left-wall boundary layer occurs when the depth along the left wall is zero.  This 
transport is given by Qmax= gD!

2
/ 2 f  and thereforeq = 2(Q*

/Q
max

*
)
1/2 . In summary, it is 

possible to think about the reservoir parameters entirely in terms of volume transports, ψi 
governing the partitioning between boundary layers and q governing the total transport 
relative to the maximum possible value in the left-hand boundary layer. 
  
 
 
(b)  Critical states.  
 
 Critical states are found by taking !G / !d = 0 , resulting in 
 
   (1! Tc

2
)q

!1
+ Tc

2
dc = dc

!3
Tc

!2 ,    (2.5.6) 
 
where the subscript ‘c’ denotes quantities evaluated at a critical section.  The reader may 
recall the expression for the characteristic speed c- of a Kelvin wave propagating along 
the left-hand (y=w/2) wall:   
 
  c
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= q

1/2
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= 0  

 
(cf 2.2.22) and it is simple to show that c-=0 is equivalent to (2.5.6).  Gill (1977) also 
defined a Froude number 
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such that F

d
 (< 1,= 1,> 1)  indicates (subcritical, critical, and supercritical) flow 

corresponding to c- (<0,=0,>0). As pointed out in Section 2.2, this Froude number should 
not be interpreted as the ratio of an advection to relative propagation speed.  However it 
does measure the ability of a Kelvin wave, trapped to the left wall of the channel, to 
propagate upstream.  If F=1 this wave is stationary; if F>1 it propagates downstream. 
 
 The geometric requirements for critical flow are obtained by setting  dG / dy = 0  
in (2.5.5). If the channel width is constant, critical flow can only occur where dh / dy = 0  
as before.  When h is constant the requirement becomes 
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  [Tc
4
(dc ! q

!1
)
2
! dc

!2
]dw / dy = 0 ,    (2.5.8) 

 
implying  thatdw / dy = 0  , as at a contraction, or that the coefficient in brackets is zero. 
As in the WLK model, it can be shown that the latter implies that 
vc (w / 2, y) = dc (!w / 2, y) = 0  (see Exercise 2).  Thus critical flow can occur away from 
the contraction if the flow separates from the left wall and the right wall v is zero. 
 
 We now turn to the case of separated flow.  Here d̂ = d = 1in view of (2.5.1) and 
the only dependent variable is the width parameterT

e
= tanh(q

1/2
w
e
/ 2) , where we is the 

separated stream width.  As shown by (2.3.7) and (2.3.8), the equations relating the flow 
to the geometry are identical to those describing non-separated flow, but with T replaced 
by Te.  With this replacement and with d = 1 , (2.5.5) leads to an altered hydraulic 
function: 
 

 
 

G(Te;h) = Te
2
(1! q!1

)
2
+
1

Te
2
+ 2q

!1
(1+ h) ! 2(q!2 !" i ) = 0 .  (2.5.9) 

 
The channel width w(y) does not enter this relation and thus the separated current width 
responds only to changes in bottom elevation h.  If h remains constant, changes in the 
position of the right wall lead to identical changes in the position of the left edge of the 
separated flow. This property clarifies the condition implied by the vanishing of the 
bracketed term in (2.5.8).  Along a horizontal bottom, critical separation of the flow can 
occur where dw/dy is non-zero since the actual width we of the flow becomes stationary 
dwe/dy=0 at that point. 
 
 The conditions for critical flow are obtained by setting  !G / !T

e
= 0  with G  

defined by (2.5.9) and this leads to 
 
    q

!1
= 1+ T

ec

!2      (2.5.10) 
 
Since T

ec
 must be <Tc for the critical flow to be separated, (2.5.10) requires  

 
    q

!1
" 1+ T

c

!2 .     (2.5.11) 
 
It can also be shown that separated critical flow has v=0 on the right wall (see Exercise 
2), a property that could have been anticipated on the basis of remarks surrounding 
Figure 2.9.  
 
 It can also be shown that the long wave speeds in this case are given by  
 
   c

±
= q

1/2
T
e
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± [1! T

e

2
(1! q)]

1/2
= 0 , 
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which is just the expression for attached flow (cf 2.2.22) but with d̂ = d = 1and T 
replaced by Te.  The corresponding Froude number is 
 
    F = T

ec

!1
[(1! T

ec

2
)q

!1
+ T

ec

2
]
!1/2 .   (2.5.12) 

 
 
(c)  Steady Flows 
 
 Before discussing actual solutions it is worth noting several results regarding flow 
separations and reversals.  First, if the fluid depth in the reservoir is nonzero across the 
reservoir width, than the current downstream will remain in one continuous band across 
each section of channel. The depth may go to zero at the left wall and the current may  
separate there, but the current may not split into multiple branches. This follows from the 
theorem described in connection with Figure 2.2.  In addition, the along channel velocity 
may reverse signs only once in the interior of the flow (see Exercise 1 of Section 2.2).  
Finally, v must remain non-negative at a critical section and the proof of this is discussed 
in Exercise 3. 
 
 Trying to develop a detailed understanding of Gill’s model over all parametric 
variations and channel geometries is nearly impossible.  Instead we will attempt to 
illustrate the features of the solutions that are interesting and exhibit behavior different 
from that of the WLK model.  To begin with, consider the behavior of the solutions when 
the channel bottom is horizontal and the flow is forced only by width contractions.  
Figure 2.5.2 shows plots of the solution curves (d as a function of T) for various values 
of the interior reservoir depthq!1 .  All curves have !

i
= 1  so that the reservoir is drained 

entirely by the left-hand boundary layer with no transport in the right-wall layer.  Such an 
upstream state is often imagined to occur if the flow is started from rest as the result of 
the breakage of a barrier located in the channel.  The breakage would excite a Kelvin 
wave that would move into the reservoir along the left wall and set up the draining flow.  
(There are a number of complicating factors that arise in such experiments.  For example 
a finite reservoir would allow the Kelvin wave to propagate around the perimeter and 
reenter the channel.  However, the draining flow along the left wall would at least persist 
for some finite time.) 
 
 The solution space of Figure 2.5.2 has been restricted to d ! 1  (non-separated 
flows) since changes in the properties of separated flows can only be forced by bottom 
topography.  The curves q-1=const. can be used to construct particular solutions for 
different upstream states. To determine the appropriate value of 
 
   q!1

= 2(Q
max

*
/Q

*
)
1/2

= 2(gD
"

* 2
/ 2 fQ

*
)
1/2  

 
 one would need to select the flow rate Q* and the interior reservoir depth D∞ in order to 
determine the appropriate curve. The values of d for a range of channel widths could be 
traced out by following this curve.  Note that all the curves extend between the right edge 
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(T=1) of the diagram, corresponding to the reservoir (w→∞), and the lower 
boundaryd = 1 , corresponding to a point of separation. Since the slope of the curves near 
the lower boundary is negative, w is increasing as the separation point is approached.  If 
further increases in width occur downstream of that point the stream will separate and 
continue at the same width with no further changes in properties.  Each solution has a 
supercritical branch and a subcritical branch that merge at a point determined by the 
critical condition (2.5.6), indicated by the dashed line.  Note that this line lies 
aboved = 1 , indicating that all separated flows are supercritical for ψi=1. 
 
 Once a particular q-1 is selected, it is natural to follow the solution by beginning in 
the reservoir (T=1) and tracing along the appropriate curve in Figure 2.5.2 until the 
narrowest section of the channel is reached. (Two of the reservoir states are drawn in the 
figure insets at the right.)  If the narrowest section is reached before the dashed line is 
encountered, the solution is subcritical with no hydraulic transition. Downstream of the 
narrows, the solution is obtained by retracing the solution curve back towards T=1 as the 
channel widens.  All such solutions are non-separated.  If T at the narrows happens to be 
the critical Tc, then the dashed curve is crossed there and the downstream flow is 
supercritical.  All supercritical branches of the solution curve terminate on the line d = 1  
indicating flow separation for sufficiently large w.  If the narrows is sufficiently 
constricted that T < T

c
 for that curve, then a complete steady solution cannot be 

constructed.  In this case a time-dependent adjustment must occur, perhaps resulting in a 
change in q, ψi, or both.  Figure 2.5.2 suggests that, in the absence of changes in ψi the 
upstream depth must increase to accommodate the narrower width. 
 
 A limiting case is q=2 corresponding to separation of the reservoir flow from the 
left wall.  Here the outflow transport is the maximum that can be carried by the left 
boundary layer (q*=Q*max).  Higher transports are possible in general, but these require 
flow in the right boundary layer.  When the flow in the reservoir is separated it is also 
critical, as suggest by the figure or by (2.2.26).  Downstream of the reservoir, the channel 
would have to remain infinitely wide to sustain a solution.  
  
 Next consider the opposite case of variable topography with constant width.  
Since we have already assumed the reservoir to be infinitely wide, it is convenient to 
imagine the reservoir narrowing to a finite value, during which h remains zero, followed 
by a constant-width section containing a sill. Figure 2.5.2 is used to track the solution 
over the variable section of channel and Figure 2.5.3, which shows solution curves for 
variable h and fixed width (w*/Ld=.75 or T=.63), is then used to continue further.  The 
solution space of Figure 2.5.3 is divided into two regions: the upper portion (d > 1 ), for 
which the flow is non-separated and the dependent variable isd , and the lower portion 
( d < 1 ), for which the flow is separated and Te is the dependent variable. As before, ψi=1 
and critical flow is marked by a dashed line.   
 
 If one begins at the upstream end of the uniform width section, where h=0 and 
where the flow is subcritical, the solution lies along the upper left hand border of Figure 
2.5.3. Increases in h  cause d to decrease as one follows the appropriate q-1=constant 
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curve. There are now two scenarios depending on the value of the interior reservoir 
depth.  If q!1<3.5 the flow will become critical before separation point d =1 is reached, 
so that separation will occur downstream of the sill.  This behavior occurs for relatively 
low sills (hm<1.5).  IfD

!
/ D > 3.5 the flow separates upstream of the sill (while it is still 

subcritical) and remains subcritical until it reaches the sill, where it becomes critical. 
Here both the interior reservoir surface elevation and the sill elevation are relatively high.  
 
 (d)  Transport relations. 
 
 The essential nature of upstream influence in a hydraulic model is expressed as a 
relationship between the parameters that characterized the basin flow and the control 
section geometry.  In the nonrotating models discussed earlier, and in the WLK model, 
this relationship takes the form of a ‘weir formula’ in which the volume transport Q* is 
written in terms of the basin surface elevation Δz* above the sill.  The situation in the Gill 
model is more complicated; for one thing the surface elevation varies across the upstream 
basin. The weir relationship is most easily expressed for the case of separated flow at the 
critical section.  If (2.5.9) is applied there and (2.5.10) is used to eliminate Tec from the 
resulting equation, one obtains  
 
   hc = q

!1 ! 2 + (1!" i )q .    (2.5.13) 
 
Because of Gill’s choice of the scaling factor D= ( fQ * /2g)1/2 , the volume flux is hidden 
in the nondimensionalization.  An explicit formula for Q* follows from the dimensional 
equivalent  
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$
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   (2.5.14) 

 
(see Exercise 4.)  In contrast to the nonrotating case and the zero potential vorticity case, 
two measurements in the reservoir are now necessary in order to compute the volume 
flux Q*.  A depth measurement in the reservoir interior gives D∞ while a depth 
measurement along either wall and use of the geostrophic relation gives ψi*.  Of course, 
depth measurements on both sidewalls would give the geostrophic transport directly and 
thus the utility of (2.5.14) is called into question.  An alternative is discussed in the next 
chapter. 
 
 For non-separated flow the situation is more difficult.  Applying (2.5.6) at the 
critical section, adding d

c
times (2.5.5), and multiplying the result by q / 2gives 

 
  hc = (1!

1

2
Tc
2
)q

!1 ! 3

2
(1! Tc

2
)dc ! (" i + Tc

2
dc
2
)q   (2.5.15) 

 
or dimensionally: 
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In addition, the dimensional version of (2.5.6) is 
 

  (1! Tc
2
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"
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+ Tc

2
dc
*2
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f
2
Q *

2

4g
2
dc
*2
Tc
2

    (2.5.17) 

 
If the algebraic complexity was not prohibitive, a ‘weir’ relation could be obtained by 
eliminating d

c

*  between the last two equations.  In general, the relationship between Q*,  
D∞ and ψi* for a given hc* must be determined numerically.  This subject is pursued 
further in Section 2.6, where different choices of scales and of the upstream parameters 
lead to more elegant formulations. 
 
 
(e)  Limiting Cases 
 
 One of the most instructive limiting cases is that of a uniform and wide channel 
(w!",   or T ! 1 ) with bottom topography. Most of the novel features of the full 
problem are present in this setting.  Critical flow must occur at the sill and we first 
examine the case in which the sill flow is separated.  The nondimensional relationship 
between the sill height and the upstream variables is given by (2.5.13). In addition 
(2.5.11) requires that q!1

" 2  with marginal separation occurring at q-1=2. In this regime 
it is also possible for the upstream flow to be separated and the value of hc at marginal 
separation can be calculated by evaluating (2.5.9) in the reservoir (h=0) and setting Te=1. 
If (2.5.13) is then used to eliminate !

i
 from the resulting relation, one finds  

 

    hc =
3+ (1! q

!1
)
2

2q
!1

!1    (2.5.18) 

 
 The case of attached flow is more subtle.  In Section 2.2 we showed that the 
characteristic speed of a left wall Kelvin wave for T=1 is proportional to the negative of 
the depth at the left wall (see 2.2.26).  The flow must therefore be subcritical if the flow 
is attached at the left wall, a finding that rules out critical control of attached flow in the 
problem under consideration.  However, if we consider a channel of large but finite width 
then a class of attached, critically controlled flows arises.  These solutions are described 
by expanding (2.5.6) and (2.5.15) in powers of1! T

c

2 .  The former becomes 
 
  dc = 1+

1

4
(1! Tc

2
)(2 ! q

!1
) +O[(1! Tc

2
)
2
] ,   (2.5.19) 

 
showing that marginal separation (d

c
! 1 ) occurs as 1! T

c

2→0 as anticipated.  However, 
the first correction to this limit allows the possibility of attached flows d

c
> 1  provided 
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that q-1<2. These flows are close to separation at the critical section and the relationship 
between the upstream variables and hc is given by the expansion of (2.5.15): 
 
  hc =

1

2
q
!1 ! q(1+" i ) +O(1! Tc

2
) .    (2.5.20) 

 
 Figure 2.5.4 shows the solutions to either (2.5.13) or (2.5.20) with ψi plotted as a 
function of hc and q-1. Each point in the diagram represents a specific, hydraulically 
controlled flow. The reader should bear in mind the definitions of the governing 
parameter in terms of dimensional quantities: 
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( fQ * /2g)
1/2

, q!1
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As before, the presence of Q* in the scaling make it difficult to calculate the flux using 
the figure.  However, it is quite interesting to explore the various steady regimes.  In the 
upper part of the figure (q-1>2) the flow is separated at the critical section, here a sill.  
Since the effective width wec of the separated flow is determined completely by q-1, these 
widths have been indicated along the right-hand border of the figure.  The dashed curve is 
determined by (2.5.18) and the region lying to left corresponds to flows that are also 
separated in the upstream basin, so that no contact with the left wall is made along the 
entire length of channel.  All such solutions have ψi>1, implying that the approach flow 
in the reservoir is along the left-hand free edge and that some of this flow returns 
upstream along the right wall before reaching the sill, as shown in Inset A. Such a 
solution could be considered a coastal flow forced by along-shore changes in topography.  
To the immediate right of the dashed region the upstream flow is non-separated but the 
flow at the sill is separated. In addition the approach flow is concentrated in the left-hand 
boundary layer, as sketched in Inset B. Continuing to move to the right into regions of 
higher sill elevation, one enters a region where!1 "#

i
" 1, so that the approach flow is 

unidirectional, as shown in Inset C.  One of the interesting aspects of cases A, B, and C is 
that the critical width wec is often O(1) or less.  Thus, approach flow along the left-hand 
edge can cross the channel and be carried close to the right hand boundary at the sill.  The 
remaining region in the upper part of Figure 2.5.4 (ψi<-1) corresponds to approach flow 
along the right hand wall with some return flow along the left-hand wall, as sketched in 
Inset D. 
 
 In the lower part (q-1<2) of Figure 2.5.4 the flow is marginally attached at the sill. 
Since !

i
" 1in this lower region, the upstream flows are either unidirectional or approach 

along the right-hand wall and partially return along the left-hand wall, as sketched in 
Insets E and F.  One of the interesting characteristics of the type F flows is that the 
surface or interface elevation in the interior of the reservoir can be lower than the sill 
elevation (D

!
< h

c
).  (This can be shown by holding q!1

(= D
"
/ D)  constant  in (2.5.19) 

and taking ψi sufficiently negative and large.)  Of course, only the interior interface 
elevation is below the sill (the elevation along the right-hand wall remains above the sill).  
It is also natural to inquire after the dynamics that allow the upstream flow to cross from 
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the right to the left side of the channel before the sill is reached.  What happens, in fact, is 
that a weak along-channel pressure gradient exists in the interior, supporting a cross-
channel geostrophic flow.  Since d = q

!1 and v ! 0  in the channel interior, the y-
momentum equation reduces to  
 

     u ! "
#h

#y
. 

 
On the upstream face of the obstacle!h / !y > 0 , a negative (right-to-left) geostrophic 
flow exists, whereas the opposite situation occurs on the downstream face. 
 
 A second limit to consider is that of small potential vorticity (q<<1).  Since 
q = fQ * /2gD

!

2( )
1/2

this limit can be achieved by fixing Q* and increasingD
!

.  The 
critical condition for attached flow (2.5.6) requires that 
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2
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+O(q)  
 
while (2.5.15) gives 
 
   hc = q
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2
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!2 /3
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provided ψi remains fixed.  To lowest order, the sill height must increase in proportion to 
the interior reservoir depth q-1 (dimensionallyD

!
).  As D

!
 increases, the width 

gD
!
/ f  of the boundary layers also increases and the flow penetrates further into the 

interior.   At the same time, the difference in depth across the boundary layers decreases 
in order to preserve the boundary layer transports (proportional to the difference in the 
square of the depths).  As the bounding interface flattens the velocities in the reservoir 
decrease and the upstream flow approaches the quiescent state hypothesized in the WLK 
model.  In fact, it can be shown that dimensionalization of (2.5.22) leads to the WLK 
transport formula (2.4.10) for attached flow.  A similar result follows for the case of 
separated flow. 
 
 The Gill model is rather difficult to digest and it is worth recapping some of the 
highlights.  These include introduction of the concept of potential depth D∞ and the 
appearance of a global deformation radius Ld=(gD∞)1/2/f which is uniform throughout the 
fluid regardless of the local depth.  Another novel feature is the containment of the flow 
in boundary layers of thickness Ld. Exploitation of this structure in the wide upstream 
reservoir allows one to use ψi as a parameter in place of the less intuitiveB . Critical 
control of the flow is exercised by Kelvin waves or their frontal counterparts, both of 
which are trapped to side walls or free edges.  Another new feature of Gill’s model is that 
three dimensional parameters (Q*,D! ,  and "

i

* ) are needed to specify the upstream state.  
If the flow is hydraulically controlled, so that Q* is a function of D∞ and ψi*, then just the 
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latter two are needed.  Thus, a ‘weir’ formula relating Q* to a single upstream depth is 
not possible without further approximation. Finally, some of Gill’s solutions exhibit 
interesting new behavior including counterflows, crossing of the fluid from one side of 
the channel to the other over great distances, and instances in which the interior reservoir 
interface level lies below the sill level. 
 
 
Comments: 
 
 : Equation (2.5.5) is the same as Gill’s (5.13) if I set Q=2 and thus have ψ=±1 at 
the walls.  His equation has 4ψ  rather than 2ψ  on the r.h.s. but this is because he has 
ψ=±1/2 on the walls. In interpreting his figures, his ψi=1/2 is our ψi=1.) 
 
 No real experimental or numerical verification of the Gill theory has, to my 
knowledge, been made.  (The experiments of Shen 1981 and WLK are more applicable 
for q=0.) One of the problems is a lack of satisfactory numerical algorithms. 
 
 
Exercises 
 
1) Show that setting D = ( fQ * /2g)

1/2  is equivalent to setting Q=2.  
2) In connection with (2.5.8) show that [Tc

4
(dc ! q

!1
)
2
! dc

!2
] = 0  implies 

that vc (w / 2, y) = dc (!w / 2, y) = 0 . 
 
3) By following the steps outlined below, show that non-separated flow at a critical 
section must be unidirectional in -w/2<y<w/2 provided that the (uniform) potential 
vorticity is non-negative.  Further show that separated critical flow must have v(w/2,y)=0. 
 
    (a)  Use the result of Problem 1 of Section 2.2 to argue that the flow is unidirectional at 
any y provided that v(y,w/2) and v(y,-w/2) do not differ in sign.  
  
    (b)  Introduce the quantity r = v̂ / v  and argue that the flow is unidirectional for r < 1  
and has v(y,w/2)=0 for r=-1.  Further show that r = T 2

d (d ! q
!1
)  

 
    (c)  Using the critical condition (2.5.6) along with (2.5.1), show that  
 

   r =
T
c

2
d
c

2
! d

c

!2

1! T
c

2
 

and deduce that r=-1 when the flow is separated from the left wall(d
c
=1). 

 
    (d)  For attached flow (d

c
>1) show that r>-1.  Then show that the requirement of non-

negative potential vorticity and the result of (c) lead to r ! 1. 
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4.   Through dimensionalization of (2.5.13) show that  
 

    fQ *

2g

!
"#

$
%&

1/2

= D' ± D'hc
*
+
f( i

*

g

!
"#

$
%&

1/2

. 

 
Next, show that only the ‘-‘ sign is appropriate.  (Hint: one way to do this is to consider 
the case of an infinitely wide channel and with no flux in the right-wall boundary layer.) 
 
 
Figure Captions 
 
2.5.1  Gill’s (1977) ideal of the upstream basin or reservoir. 
 
2.5.2  Solution curves for flow through a pure contraction.  Note thatT = tanh(q

1/2
w / 2) . 

 
2.5.3  Solution curves for flow over a sill in a constant width channel.  The lower half of 
the diagram applies to separated flow, with T

e
= tanh(q

1/2
w
e
/ 2) .   

 
2.5.4  Regime diagram showing various states of separation and recirculation for flow in 
an infinitely wide channel with a sill. The definition of the parameters is given in 
(2.5.21).  Solutions to the left of the dashed line are entirely separated from the left wall. 
Those lying below the line q-1=2 are attached at and upstream of the sill. 
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