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2.4  Steady flow from a deep reservoir. 
 
 
 Motivated largely by suggestions from H. Stommel in the early 1970s, 
Whitehead, Leetma and Knox (1974), hereafter WLK, developed the first analytical 
model of hydraulic behavior in a steady, rotating-channel flow with topography. Their 
model utilizes rectangular cross-sectional geometry and is based on the ‘zero potential 
vorticity’ limit [q! 0 with w=O(1)].  Since q=D/D ∞ and w=w*f/(gD)1/2 , the channel 
width is comparable to the Rossby deformation radius based on the local depth scale D, 
while D itself is much less than the potential depth. The situation envisioned by WLK is 
that the flow is fed from a very deep and quiescent upstream reservoir with depth D ∞ and 
fluid is drawn up and over a relatively shallow sill. With q=0 the absolute vorticity of the 
fluid is zero (!v / !x +1 = 0 ) and the depth profiles are given by (2.2.9) for attached flow 
and (2.3.14) for separated flow. These profiles are valid only as long as the local depth 
remains much smaller than the reservoir depth. The calculation cannot therefore be 
extended indefinitely far upstream from the shallow section of channel. 
 
 For the case of attached flow, y-variations of the current are governed by the 
steady versions of (2.2.15) and (2.2.16), which simply state that the volume flow rate Q 
and average B  of the sidewall Bernoulli functions are conserved.  The flow rate is 
defined in terms of average and difference wall depths (d  and d̂)  by 
 
    Q = 2d̂d .     (2.4.1) 
 
 In the limitq! 0 , the average Bernoulli function is 
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 Eliminating d̂ between the last two relations yields  
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which is of the form of the standard hydraulic relation  G (d ;w,h;Q,B) = 0  sought by 
Gill(1977).  Here d  represents the single variable characterizing the flow cross-section; 
if d is known, d̂ can be computed from (2.4.1) and the remaining cross-sectional 
properties from (2.2.29) and (2.2.30).  Critical states are found by taking !G / !d = 0 , 
resulting in 
 
    Q = dc

3/2
w ,     (2.4.4) 
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where the subscript c denotes a critical value.  From (2.4.4) it follows that2d̂
c
/ w = d

c

1/2 , 
or 
 
    v

c
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c

1/2 ,     (2.4.5) 
 
in view of the relation 2d̂ / w = v  derived in Section 2.2. As expected, Gill’s criterion for 
critical flow matches the direct propagation speed calculation (2.2.31).  
 
 Possible locations where critical flow can occur are found by 
taking
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In the WLK model w is constant and critical flow therefore requires that!h / !y = 0 , as at 
a sill.  In a channel of constant elevation h and with variable w, critical flow requires that 
either!w / !y = 0 , as at a width contraction, or that the expression in parenthesis vanish. 
In the latter case (2.4.1) and (2.4.4) imply separation of the flow from the left wall 
( d

c
= d̂

c
).  However this possibility can be eliminated, as explored in Exercise 1 of this 

section. 
 
 It is possible to obtain a ‘weir’ formula relating Q to the reservoir conditions.  In 
the nonrotating example of Section 1.4 the formula was obtained by equating the 
Bernoulli functions at the sill and reservoir.  Following the same procedure, we use 
(2.4.4) to evaluate (2.4.3) at the sill, leading to 
 

   3

2

Q

w

!
"#

$
%&
2 /3

+
w
2

8
= B ' hm ,    (2.4.7) 

 
where hm is the sill elevation.  Next, we need to evaluate B  in the reservoir, being careful 
to avoid using the definition (2.4.2), which is not valid there. Instead we simply note that 
the Bernoulli function in the hypothetical quiescent reservoir must be 
 
    B = D
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where h∞ is the reservoir bottom elevation.   Since B is uniform throughout the reservoir, 
B = B and therefore 
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where !z = D
"
+ h

"
# h

m
 is the elevation of the reservoir interface above the channel 

bottom at the critical section.  Rearranging (2.4.9) and writing the result in dimensional 
form gives 
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As f ! 0 the limit (1.4.12) for nonrotating flow from a deep reservoir is realized. 
 
 If the flow in the channel becomes separated, we switch to the natural variables ve 
and we (see Figure 2.1).  The y-structure of the flow is then described by the steady forms 
of (2.3.16) and (2.3.17): 
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and  
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+ h = B .     (2.4.12) 

 
Note that the channel width w does not enter these relations.  Changes in the position of 
the right-hand wall cause lateral displacements of the entire flow with no change in the 
shape of the interface.  
 
 Equation (2.4.11) expresses energy conservation along the free edge of the 
separated current.  Since the depth is zero there, changes in the kinetic energy of the flow 
must be directly balanced by changes in bottom elevation.  It is tempting to treat the left-
hand side of this equation as a Gill-type hydraulic function G (ve;h) since it contains the 
single flow variable ve. However, taking  !G / !v

e
= 0  results in ve=0, whereas the true 

critical condition based on direct calculation has been shown to be ve=we.  On the other 
hand, if one substitutes for ve in (2.4.11) using (2.4.12), then the functional relation 
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is obtained, and taking  !G / !w

e
= 0  yields the desired result: 
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Furthermore, taking 

 
[!G / !y]

we =const .
= 0 leads to the condition that dh / dy = 0  at a 

critical section.  
 
 The failure of the criterion  !G / !v

e
= 0 to yield the correct critical condition in its 

application to (2.4.12) is tied into the peculiar dynamics of the frontal wave and the 
choice of ve as the dependent variable. Consider the depth profile under critical 
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conditions, as shown by the solid curve in Figure 2.4.1.  The slope of the free surface is 
zero at the wall and ve=we.  Suppose that the profile is slid an infinitesimal distance to the 
right or left without changing its shape, as suggested by the dashed line.  Since 
!d / !x = 0 at the wall the altered flow has the same wall depth, and therefore the same 
volume flux, as before.  In addition the sideways displacement does not alter the value of 
B at the free edge, since ve is unchanged.  In summary neither B  nor Q is altered by the 
sideways displacement and the disturbance, which only involves changes in we, qualifies 
as a stationary long wave. 1 Thus the condition !G / !v

e
= 0 , which checks for 

disturbances in ve that leave G  unchanged, misses the critical condition.  In essence, 
satisfaction of Gill’s criterion for a G written in terms of a particular dependent variable is 
a sufficient, but not necessary, condition for criticality.  To avoid such cases one must be 
sure to use all the constraints available in the formulation.  The multivariate version 
(1.5.14) of the critical condition therefore provides the safest route.   
  
 The weir formula for this case may be obtained using a similar procedure as 
above, resulting in 

    Q* =
g(!z*)

2
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     (2.4.15) 

for the separated case. 
 
 Equation (2.4.14) suggests that the separation first occurs at the critical section 
when w

c
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ec
 or, in view of (2.4.5), whenw
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1/2 .  Furthermore, since v=0 at the right 
wall in this case, energy conservation implies that the level of the interface at the right 
wall is the same as that of the reservoir, so that2d
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these last leads to !z = w
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/ 2 , and therefore  
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That is, the flow at the critical section is separated if the channel width is greater than √2 
times the Rossby Radius of deformation based on!z * . Thus, a decrease in reservoir 
surface elevation relative to the sill encourages critical separation of the flow.  
 
 WLK carried out an experiment designed to test the transport relations (2.4.10 and 
2.4.15) and the separation criterion (2.4.16).  The apparatus consists of a cylindrical tank 
divided into two basins by a vertical wall (Figure 2.4.2). Well above the bottom, a short 
channel with rectangular cross-section is fitted through an opening in the wall.  An 
alcohol-water mixture is filled up to the level of the bottom of the channel in both basins, 
and above this lies a layer of kerosene with slightly lower density. A pump transfers the 
lower fluid from the left-hand basin to the right, where it wells up through a packed bed 
                                                
1 It should also be noted that the same argument is applicable to a separated flow with an arbitrary potential 
vorticity distribution.  Such a flow is hydraulically critical if the velocity at the right wall vanishes. 
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of rocks.  This fluid rises, passes through the channel, and spills into the right-hand basin.  
Photos of the overflow as seen looking upstream into the channel appear in Figure 2.4.3.  
For the case shown, the flow in the channel is non-separated.  The height Δz* of the 
upstream interface above the channel bottom was measured by an optical device.   The 
value of Q* is not measured directly. 
 
 The experiment is initiated by establishing a hydraulically controlled flow with 
f=0 and measuring the corresponding Δz*=Δzo*.  In principle, Δzo* should equal 
3

2
Q *

2/3
g
!1/3
w *

!2 /3  .  The turntable is then spun up to a particular f and, once a new 
steady state had been established,  a new !z *  is measured.  The transport Q* is 
determined only by the pumping rate and remains constant throughout the spin-up, so that 
the reservoir interface elevation is forced to adjust to drive the same amount of fluid 
across the sill. 
 
 For attached flow, the ratio Δz*/Δzo* can be determined using (2.4.9). The 
dimensional version of the result is 
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For the separated sill flow, the value of Δz* is given by (2.4.15) and thus 
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The transition between the two cases occurs whenw* = we* = (2g!z * / f
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as determined by (2.4.17) or (2.4.18).  For attached flow (to the 
left) the agreement is quite good.  For separated flow, the agreement is still fairly good.2 
 
 Although the transport formulas (2.4.10) and (2.4.15) suggest that increasing f 
leads to smaller Q*, this conclusion is only valid if the upstream interface level remains 
fixed.  In reality, the effect of rotation on transport depends on how the flow is driven; in 
the WLK experiment Q* is maintained at a fixed rate while f is varied. 
 
 The WLK experiment was designed to approximate the zero potential vorticity 
limit by causing the channel flow to be drawn from a deep, quiescent reservoir.  Clearly, 
                                                
2 The ‘sill’ in the laboratory tank is actually a finite length of uniform channel .  Even under  conditions 
described as being ‘separated’,  the depth  at the left wall is actually nonzero at the upstream end of this 
channel and zero at the downstream end.  So there is some question as to where the critical section is and 
whether the flow is entirely separated at this section. 
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the long wave approximation is violated at the entrance of the channel, where an abrupt 
change in geometry occurs.  Also, a gyre in the deep upstream fluid was observed to 
form, making the assumption of quiescence doubtful. Despite the violations of underlying 
assumptions, agreement between predicted and observed transports is generally good.  In 
fact the WLK model is one of the few theories that has been subjected to careful 
laboratory verification.  As we will show in Section 2.6, the relation (2.4.15) provides the 
transport under more general conditions, provided Δz* is suitably interpreted.  It will also 
be shown  (Section 2.10) that the same relation provides a bound on transport in even 
more general circumstances.    
 
 
Exercises 
 
1)  Consider a channel with variable w and constant h.  Equation (2.4.6) suggests that a 
critical section in such a channel can occur where !w / !y = 0  or wherew2

= 2Q / dc . 
 (a) Show that the latter implies d

c
= d̂

c
(the flow is separating from the left wall).   

 (b) Suppose that for increasing  y, w(y) decreases monotonically to a minimum 
value at y=0, then increases monotonically for positive y. Further suppose that critical 
separation of the flow occurs in y=ys<0.  Since the width of a separated flow 
with!h / !y = 0 is constant, the flow must immediately reattach downstream of y=ys. Now 
consider two sections slightly upstream and downstream of y=ys having the same value of 
d(-w/2,y).  By mass conservation the values of d(w/2,y) must also be the same.  Show, 
however, that under these conditions the values of the B at the two sections must be 
different, so that the solution is invalid. 
 (c) Alternatively, suppose that critical separation occurs in the broadening section 
of the channel (y>0).  Stability considerations demand that the flow slightly upstream 
must be subcritical.  Then there are two possibilities.  First the flow upstream remains 
subcritical through the contraction and, by symmetry of the subcritical solution with 
respect to w, must undergo critical separation at that upstream section having the same w 
as the downstream section.  However, we have just ruled out such separation in (b).  The 
other possibility is that the flow is critical at y=0 (and experiences some type of hydraulic 
jump in 0<y<ys).  In this case show that Q cannot be conserved between y=0 and y=ys. 
(Hint: Use the properties of separated and non-separated critical flows to evaluate the 
sidewall velocities and depths.) 
 
2)  Suppose that the channel draining the reservoir in the WLK model has constant w.  
Further suppose that the flow separates from the left wall upstream of the sill.  Given the 
values of w, hm, and Δz, at what value of h does separation occur? 
 
Figure Captions 
 
Figure 2.4.1  Cross section of a critical, separated current (solid curve) and a new steady 
flow with the same Bernoulli function and volume flux, created by a sideways 
displacement of the current (dashed line). 
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Figure 2.4.2  Cross section of cylindrical tank used in WLK experiments.  (From 
Whitehead et al. 1974). 
 
Figure 2.4.3  View of overflow through the rectangular channel in  on of the WLK 
experiments.  The observer faces upstream.  ((From Whitehead et al. 1974). 
 
Figure 2.4.4  Comparison of laboratory data and predictions from the Whitehead et al. 
(1974) experiment and theory. (From Whitehead et al. 1974). 
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