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2.3 Frontal waves.  
 
 If the fluid depth goes to zero at some location a free edge or ‘front’ forms. As 
argued in Section 2.1 this type of separation generally occurs first at one of the channel 
side walls.  When separation occurs from the left wall, as shown in Figure 2.1b, the 
Kelvin wave that would otherwise propagate along that wall is replaced by a frontal wave 
whose properties are explored below.  This dual behavior is an artifact of the rectangular 
channel geometry; real ocean straits have continuously varying h and therefore the layer 
thickness always vanishes at the left-hand edge (in the northern hemisphere).  However, 
the inconvenience in treating attached and detached flows separately is minor compared 
to the technical difficulties in dealing with non-rectangular cross-sections.  
 
  For detached flow it is not necessary to re-derive the depth and velocity profile; 
one can simply modify (2.2.3) and (2.2.4).  Since the latter assumes symmetry in the 
position of the channel walls about x=0, we replace x by 
x ! xc where xc = (w ! we(y,t)) / 2  is the midpoint of the separated current.  The edges of 
the current now lie at x ! x

c
= ±w

e
/ 2  and also ˆ d = d = 1

2 d(w / 2, y,t) .  The new depth 
and velocity are therefore given by  
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and   
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From these follow modified versions of (2.2.7) and (2.2.8): 
 
     v = q

1 / 2
Te

!1
d     (2.3.3) 

and 
     ˆ v = q

1/ 2
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) ,   (2.3.4) 

where Te = tanh( 12 q
1/ 2
we(y, t)) .   

 
 One may now repeat the steps outlined in the previous section to obtain equations 
governing the evolution of the free edge x = 1

2
w(y) ! w

e
(y,t) .  Begin by writing the y-

momentum equation at the free edge of the stream and using  
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If (2.2.13) is also used, the resulting free-edge momentum equation is  
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where ve is the value of v at the free edge. 
 
 To the momentum equation written along the right wall (2.2.13 with the ‘+’ sign) 
one now subtracts or adds (2.3.6), resulting in  
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and 
   Q = 2d 

2       (2.3.10) 
Note that the two dependent variables are now d (equivalent to half the depth at the right 
wall) and the stream width we (as contained in Te).   
 
 It is possible to write (2.3.7) and (2.3.8) in characteristic form (Stern et al, 1982) 
and to show that the characteristic speeds are given by 2.2.22 with 

  

ˆ d = d  and  w=we 
(Kubokawa and Hanawa, 1984). The Riemann invariants cannot be obtained in closed 
form and must be determined numerically (Stern et al. 1982).  In the interest of 
simplicity, we will explore two limiting cases, those of narrow and wide stream widths 
compared with Ld. The narrow limit again corresponds to q→0, now with we fixed, and 
was first described by Stern (1980). The depth and velocity profiles can be obtained as 
limiting cases of (2.2.29) and (2.2.30), or simply by solving (2.1.14) with q=0.  
Convenient forms cross sections of depth and geostrophic velocity are 
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and  
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 A more natural representation of the depth can be found in terms of the distance 
! x = x "

1
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e
measured from the free edge of the current (see Figure 2.3.1a).  This 

replacement leads to 
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The velocity is given by v(x, y) = ve(y) ! " x . When extended past the wall, as shown in 
Figure 2.4a, the depth profile is a parabola with a maximum value d

max
=
1

2 ve
2 .  The 

shape of the profile is independent of the position of the wall and variations of the profile 
with y or t can be thought of as a combination of lateral displacements with respect to the 
wall (due to changes in we) and uniform expansion or shrinkage of the profile (due to 
changes in ve).  When w

e
> v

e
 (Figure 2.3.1b) the depth has a maximum to the left of the 

wall implying negative v along the wall and positive v further offshore.  When w
e
< v

e
, as 

in Figure 2.3.1c, there is no depth maximum and v>0 across the entire stream. 
 
 The equations governing the evolution of the above profiles in y and t can be 
obtained from (2.3.7) and (2.3.8) in the limit of small q.  Use of the expansion   
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allows (2.3.6) to be written as  
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 If the channel elevation h is uniform, conserved Riemann invariants may be found 
as before. Thus (2.3.16) and (2.3.17) may be written in the form (2.2.20) and (2.2.21) 
with1 
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R± is conserved following the characteristic speed c±, provided that h=constant. 
Note that both characteristic speeds are zero for we=2ve, corresponding to the case in 
which the right wall depth is zero (the flow is separated from both walls).  The right wall 
depth is finite for 0< we<2ve and careful evaluation of (2.3.18) shows that c+ is always >0 
over this range.  The behavior of c- is more complicated, with c-<0 for ve<we<2ve and c->0 
for we<ve.  Thus, the flow is subcritical (c+>0 and c-<0) when ve<we<2ve, in which case the 
depth profile resembles that of Figure 2.3.1b (with reverse velocity along the right wall). 
The flow is supercritical (c±>0) when we<ve, in which case the velocity profile resembles 
that of Figure 2.3.1c with unidirectional velocity.  The different possibilities are shown as 
insets in Figure 2.3.2. 
 
 Figure 2.3.2 also shows (solid) contours of constant Riemann invariants in we,ve 
space, with the curves labeled ‘+’ or ‘-’ corresponding to the ± in (2.3.19). The curves are 
terminated at the diagonal ve=we/2, along which c

±
= 0 and below which the flow is 

separated from both walls.  Paldor (1983) has shown that this doubly separated state is 
unstable.  Slightly above is a second diagonal ve=we along which the flow is critical, c-=0 
(and c+>0).  In the wedge shaped region between these two lines the flow is subcritical 
and above it the flow is supercritical. Contours of constant c+ are also shown by dashed 
contours.  Figure 2.3.3 shows part of the same parameter space with contours of constant 
c-. 
 
 The orientation of the curves of constant R+ and R- immediately give insight into 
differences between the ‘+’ and ‘-’ waves. Over most of the (we,ve)-plane, the 
R+=constant curves tend to be horizontal whereas the R-=constant curves tend to be more 
vertical.  Variations in R- therefore tend to be associated more with variations in the 
stream width; that is, lateral shifts of the fixed depth profile relative to the right wall, as 
explained in connection with Figure 2.4. We therefore refer to the corresponding 
disturbances as frontal waves and note that their properties are similar to those of 
potential vorticity waves. Variations in R+ tend to be associated more with variations in ve 

                                                
1 The characteristic speeds can also be written as c

±
= v ± d 

1/ 2 , which was the expression obtained for 
the characteristic speeds in a nonseparated flow. The ± sign has been reversed from how it appears in Stern 
(1980) so that the ‘-’ waves are the only ones with the ability to propagate upstream. 
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that, in turn, are associated with uniform expansions of the depth profile. Plots of 
Riemann invariants for finite values of q (e.g. Stern et al. 1982) display the same 
tendencies. 
 
 Consider an initial condition containing only ‘+’ disturbances, a state that can be 
achieved by setting R-=constant.  Such a state could be found by choosing ve(y,0) and 
then calculating we(y,0) by tracing along a particular R-=constant curve in Figure 2.3.2.  
Suppose that we use the initial distribution shown in Figure 2.3.4a, where ve decreases 
with increasing y. Also suppose that this distribution spans the segment AB shown in 
Figure 2.3.2. Since both R-(we,ve) and R+(we,ve) are constant following the characteristic 
speed c+ for this initial condition, we and ve are also conserved.  The value of we is nearly 
constant along AB and the variation in the depth profile from A to B is contained 
primarily in the variation of the wall depth, as suggested in Figure 2.3.4a.  From the 
contours of c+ shown in Figure 2.3.2, all of which have positive values, the characteristic 
speed corresponding to A is larger than that associated with B. Therefore the entire 
profile at A will move more rapidly in the positive y-direction than the B profile, 
resulting in wave steepening (Figure 2.3.4b).   
 
 Next consider a case in which the ‘+’ waves are filtered out of the flow by a 
choice of initial condition with R+=constant.  The remaining frontal waves are associated 
more with variations in we than in ve and it therefore makes sense to choose we(y,0) and 
calculate the corresponding ve(y,0).  The latter can be accomplished by tracing along the 
R+=constant curve shown in Figure 2.3.3. Consider the initial condition shown in Figure 
2.3.5a, with dwe(y,0)/dy<0. As shown by the dashed contours of Figure 2.3.3, the 
behavior of c- is somewhat more complicated than was the case for c+. If the initial 
condition spans the segment CD, then c- is negative with larger absolute values 
associated with smaller widths.  In this case the frontal wave will propagate to the left 
and steepen, as in Figure 2.3.5b.  On the other hand, an initial condition of the same 
general shape and spanning the segment EF will rarefy, as suggested in Figure 2.3.5c.   
 
 An example of steepening of the ‘frontal ‘ wave is shown in Figure 2.3.6.  The 
wave is generated in the region 4<y<7 of the t=10 frame, where the current widens.  The 
current is supercritical and the narrow and wider end states correspond to something like 
points G and H in Figure 2.3.3.  The narrower, upstream end state propagates forward 
and the greater speed in this case and overtakes the wider portion (t=20 frame near y=10) 
eventually leading the near detachment of a blob of fluid (t=40). 
 
 The other limiting case is that of a relatively wide stream, we*>>Ld (or q1/2w>>1).  
Here the Kelvin wave trapped to the right wall of the channel is isolated from the free 
edge of the stream and therefore the propagation speed is given by the formula (2.2.25) 
for attached flow.  The frontal wave is trapped to the free edge and has properties quite 
different from those of the left wall Kelvin wave that it replaces.  These new features are 
revealed by examining (2.3.6), the momentum equation for the flow at the free edge.  The 
velocity ve can be evaluated by taking the limit of (2.3.2) as q1/2w→∞ and evaluating the 
result at the free edge, leading to ve=q-1/2.  We therefore obtain the remarkable result that 
the free edge velocity is constant, so that (2.3.6) gives 
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Any initial distribution we(y,0) therefore remains frozen in the flow, implying that the 
characteristic speed for such disturbances, c-, is zero.  A wide, separated flow over a 
horizontal bottom is therefore always critical with respect to a frontal wave.2 
 
Note on stability.  Paldor has shown that a separated, zero pv current of the type 
discussed above is provably stable for ve>3we/2. The proof is not hard. Also, his direct 
numerical calculation of eigenfunctions, he has shown that the flow is stable for 
3we/2>ve>we/2.  At ve=we/2 the entire flow separates and, as we have shown both long 
waves take on the same speed (zero).  Resonance between these two waves produces an 
instability.  He has a nice diagram (his Fig. 2) showing the frequencies of Kelvin, frontal, 
and Poincare modes as functions of wave number k for the case ve>we, where the flow is 
just critical with respect to the frontal mode.  
 
Further reading on frontal instability: Griffiths, R.W., Killworth, P.D. and Stern, M.E. 
(1982) Ageostrophic instability of ocean currents. J. Fluid Mech. 117, 343-377. 
 
Figure Captions 
 
Figure 2.3.1 Possible cross sections for separated flow with zero potential vorticity. 
 
Figure 2.3.2  Contours of the Riemann invariants (R+ and R-) and the characteristic wave 
speed c+ for separated flow with zero potential vorticity. The insets show different states 
of criticality corresponding to particular cross sections.  (After a similar figure in Stern 
1980). 
 
Figure 2.3.3 Same as Figure 2.3.2 but showing contours of the characteristic speed c-. 
 
Figure 2.3.4 The evolution of a modified gravity wave (with uniform R-) for which the 
initial distribution of the free-edge velocity is specified. 
 
Figure 2.3.5 The evolution of a frontal disturbance (with uniform R+) for which the initial 
distribution of the free-edge position is specified. 
 
Figure 2.3.6 Numerical example showing the evolution of a frontal wave. (Figure 15 of 
Pratt et al., 200?). 
 
 
 
                                                
2 Cushman-Roisin, Pratt and Ralph (1993) have explored the slow evolution of the frontal waves in a wide 
flow when weak dispersive effects are introduced.  Expansion in powers of the aspect ratio δ shows that the 
free edge of the stream is governed by the modified Korteweg-de-Vries equation.  As it turns out, only 
propagation in the positive y-direction is permitted. 
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