
To do: 
 
Note that both T and Q are used to denote the transport here, but this is probably ok: T is 
introduced in connection with the upstream mass source and is later equated with the 
strait flux Q in connection with the weir formula. 
 
References:  Update Lake et al. 2004 There is a Faller reference to the diffusive 
boundary layer-need to recheck what he actually did and complete reference. 
Final paragraph.  Need to fill in reference to Pedlosky general circulation book.  Also, is 
Jonsson, 1999, the best reference to intensification of the Denmark Strait approach flow 
on the Iceland coast?  There may have been a more recent paper in a major journal by 
the same author. 
 
2.14  Closed upstream basins with forcing and dissipation. 
 
 The cornerstone models of rotating hydraulics make the assumption that the 
upstream reservoir is infinite in extent and that potential vorticity q* is conserved. In 
reality, oceanic basins such as the Norwegian Sea, the Greenland Sea, and the Brazil 
Basin are finite and are subject to forcing and dissipation.  Although the deep circulations 
in these regions have not been mapped out, the conventional view is that the flows are 
weak and in near geostrophic balance.  Although forcing and dissipation may be weak in 
a local sense, they have a cumulative effect that can be significant over the broad expanse 
of the basin.  These processes are instrumental in the determination of q* and it is quite 
unlikely that that this quantity will be uniform.  In fact, direct observations of the velocity 
of the deep flow in the Faeroe-Bank Channel (Lake et al., 2004) suggest that q* can be 
quite non-uniform.  
 
 The main difficulty in trying to extend models like Gill’s is one of tractability:   
the combination of forcing, dissipation and nonlinearity gives rise to formidable 
mathematical obstacles.  However, one might expect nonlinear advection to be relatively 
unimportant in the upstream basin, where the flow is weak.  In addition, one might expect 
forcing and dissipation to be of minor consequence within the strait that drains the basin, 
where advection is quite strong.  The neglect of friction may not be supportable within 
the ‘plume’ region, downstream of the sill, where the relatively swift outflow descends 
into the downstream basin, but it may be valid upstream of the sill.  
 
(a)   Linear model for the basin. 

 Keeping these expectations in mind, we now develop an approach in which the 
slow, linear, dissipative circulation in an upstream basin is linked to an inertial outflow 
that takes place through a strait (Figure 2.14.1).  The approach is presented in greater 
detail by Pratt and Llewellyn Smith (1997) and Pratt (1997). The basin topography is 
variable and the upstream flow may be fed by a variety sources, including deep 
convection, lateral inflows through other straits, or dense fluid sliding down the 
continental slope.  Since there is no reason to expect the basin flow to take place in a 



preset direction, one must abandon the semi-geostrophic approximation and consider the 
full steady shallow water equations: 
 

   (u * *)u *+ fk u* = g * *
rfu *

d *
,  (2.14.1) 

and 
     * (u *d*) = we * .   (2.14.2) 
 
where we* is a positive downwards entrainment velocity and rf a drag coefficient.1  The 
elevation * of the interface is measured relative to the sill and the depth of basin below 
the sill is given by D*: 
 
   d * (x*, y*,t*) = D * (x*, y*) + * (x*, y*,t*) . 
 
 
 Let N and Do be scales for * and D* and assume that =N /Do<<1.  Then if         
(g Do)

1/2/f is a typical length scale for the basin flow, the geostrophic relation suggests 
(gDo)

1/2 as a velocity scale.  The corresponding nondimensional versions of (2.14.1) and 
(2.14.2) are given by 
 

   (u )u + k u =
rfu

fDo(D + )
,  (2.14.3) 

 

    [u(D + )] =
we *

fN
.   (2.14.4) 

 
It is assumed that friction and entrainment are weak and this is formalized by replacing 
rf/fDo and we * / fN  with Rf  and we .   

 
 The next step is to expand the dependent variables in power series in : 
 
      u = u

(0)
+ u(1) +    (2.14.5) 

and 
 
     

 
=

(0)
+

(1)
+ .   (2.14.6) 

 
The lowest order approximation to (2.14.3) and (2.14.4) are just the geostrophic relation 
k u(0) = n(0)  and (u(0)D) = u(0) D = 0 , which show that fluid circulates 

                                                
1 As discussed in Section 1.9, entrainment gives rise to a source of momentum and of anomalous density 
for the lower layer.  These effects can be shown to be negligible under the conditions of slow circulation in 
the upstream basin and their consequence for the momentum equation has been ignored. 



following contours of constant D.  At the present order of approximation, these 
‘geostrophic’ contours are equivalent to contours of constant f/d*.  
 

In order to determine the strength of the circulation on a particular contour, it is 
necessary to proceed to the next order of approximation: 
 

   k u(1) + (1)
= (u(0) )u(0)

Rfu
(0)

D
  (2.14.7) 

and 
 
    [u(1)D] = [u(0) (0) ] we   
 (2.14.8) 
 
 Now consider a closed geostrophic contour C having unit normal and tangent 
vectors n and l and arclength coordinate s (Figure 2.14.1a).  Integration of the tangential 
component of (2.14.7) about C and use of u(0) n=0 leads to  
 

    
 
D u(1) nds

C
= Rf u(0) lds

C
.  

 (2.14.9) 
 
Integration of (2.14.8) over the area AC enclosed in C gives 
 

    
 

D u(1) nds
C

= weAC
d .   (2.14.10) 

 
Equation (2.14.9) is a form of Kelvin’s theorem stating that the damping of circulation 

 
u lds

C
 due to bottom friction is balanced by the input of circulation as the result of 

advection of planetary vorticity f (nondimensionally unity) across the contour by the 
normal velocityu(1) n .  Equation (2.14.10) relates this normal velocity to the influx of 
volume by the entrainment velocity acting over the area enclosed by the contour.  Had 
our formulation taken the bottom Ekman layer into consideration, the cross contour flow 
would have been confined to this layer.  In the present slab model, the velocity is evenly 
distributed over the layer depth.   
 

Subtraction of the last two equations gives an expression for the average 
geostrophic speed about the contour 
 

    
 

u(0) lds
C

= Rf
1 weAC

d .  (2.14.11) 

 
The reader may wonder how the above steps were discovered.  The roots of the procedure 
for obtaining (2.14.11) can be found in Greenspan (1990).  Our asymptotic expansion 
yields a lowest order approximation (the geostrophic flow) that cannot be completely 
determined.  The standard resolution to this problem of ‘geostrophic degeneracy’ 



involves proceeding to the next order of approximation.  In order to calculate the O( ) 
fields a solvability condition must first be satisfied and it is this condition that determines 
the geostrophic fields.  In quasigeostrophic theory (e.g. Pedlosky 1987) the compatibility 
condition is the quasigeostrophic potential vorticity equation obtained from the O( ) 
equalities.  Our problem differs from quasigeostrophic dynamics only the allowance for 
large depth variations; the compatibility condition (2.14.11) is the same as what would 
have been obtained by integrating the potential vorticity equation over the area enclosed 
in a geostrophic contour (see Exercise 1).  Our use of circulation integral is simply a 
shortcut to this procedure.   
 
 Consider an isolated patch of downwelling (Figure 2.14.1a) that is bisected by C.  
Equation (2.14.11) dictates that the average geostrophic velocity about C  is proportional 
to the volume flux due to downwelling over the portion of the patch lying inside C.  The 
geostrophic interface elevation (0) is constant along C and its value can be determined 

from the relationu(0) l = (0) / n .  Let  be a parameter that identifies the contour 

(C=C( )). Then  
 

    u(0) l =
d (0)

d n
,    (2.14.12) 

and (2.14.11) becomes 
 

    
 

d (0)

d n
ds

C
= Rf

1 weAC
d .  (2.14.13) 

 
Since / n  is given by the geometry of the geostrophic contours, its integral can be 
determined as a function of , as can the right-hand side of (2.14.13).  The result is a 
first-order differential equation for (0).  Once the solution is obtained the value of 
geostrophic velocity at any point in the basin can be calculated from (2.14.12).  
 
  
 As an example, consider a basin with azimuthal symmetry (Figure 2.14.2).  All of 
the constant D contours are circular and the flow is fed by a central, uniform patch of 
downwelling: 
 

    we =
T / ro

2   (r < ro )

0           (r ro )
.   (2.14.14) 

 
The resulting geostrophic flow circulates around the circular geostrophic contours.  Let u 
and v temporarily denote the radial and azimuthal velocity components,  so that (2.14.11) 
gives u(0)=0 and 
 
    



    v(0)
=

T

2 rRf

r2 / ro
2   (r < ro )

1           (r ro )
 .  (2.14.15) 

 
The geostrophic relation v(0) = (0) / r can then be integrated to obtain the interface 
elevation 
 

  (0)
=

(0) (a)
T

2 rRf

ln(ro / a) + (r2 ro
2 ) / 2ro

2   (r < ro )

ln(ro / a)                           (r ro )
,     (2.14.16) 

 
where a is the basin radius.  Finally, the radial velocity is determined from (2.14.10) as 
 
 

   u(1)
=

T

D(r)2 r

r2 / ro
2   (r < ro )

1           (r ro )
.   (2.14.17) 

 
In summary, specification of the transport T yields a basin circulation determined 

to within a constant, with no regard for boundary conditions or interactions with the strait 
and sill.  The constant is (0) (a) , the interface elevation above the sill at the basin edge 
r=a.  The leading order radial and azimuthal velocities are completely determined.  If the 
basin is closed except for a single draining channel, then the normal component of the 
transport velocity ud  must be zero at solid edges and must take on some finite 
distribution (yet to be determined) at the channel entrance.  On the other hand, the flow 
might fed by dense fluid sliding down the sloping walls of the basin or by inflow from a 
second strait. Then the correct boundary condition may involve the specification of the 
normal component of ud about the perimeter.  Evaluation of (2.14.17) at the basin edge 
r=a leadsu(1) (a)D(a) = T / 2 a , which generally satisfies neither of these conditions.  

 
(b)   Diffusive Boundary Layer. 
 
 A boundary layer is clearly needed to close the circulation and we therefore 
append (2.14.5) and (2.14.6) so as to include boundary layer fields 

 
u,  v,  and 

 
 that 

decay inwards from the edges of the basin: 
 
   

 
u = u(1) (r) + u( , ) + ,    (2.14.18) 

 

 
v = v(0) (r) + v(1) (r, ) + ( / )v( , ) ,  (2.14.19) 
 

   
 
=

(0) (r) + (1) (r, ) + (1) ( , ) +   (2.14.20). 
 
Here,  represents the boundary layer thickness and = (a r) /  is a stretched 
coordinate that varies by O(1) over this thickness .  The size of the boundary layer 



correction 
 
u( , )  in (2.14.18) is dictated by the requirement that the O( ) interior radial 

velocity must be brought to zero at =0.  The correction  
 
( / )v( , )  to the azimuthal 

velocity in (2.14.19) is determined  by the requirement that the boundary layer must drain 
the O( ) radial transport and carry it to the channel entrance within an  O( ) width.  Since 
( / )>> , the azimuthal boundary layer velocity enters the problem at a lower order than 
does dissipation, forcing and nonlinearity; hence the velocity will be geostrophically 
balanced .  The normal derivative / r = 1 /  of the boundary layer correction for  

must therefore be O( / ) , and the correction must itself be O( ), as specified in (2.14.20). 
 
 The dynamics of the boundary layer can be determined through substitution of 
(18-20) into (2.14.3) and (2.14.4) and identification of the largest terms involving 
boundary layer fields.  The thickness  is then chosen in order to achieve a balance 
between these terms.  This procedure is detailed in Pratt (1997), who finds that = 1/2 and 
that the boundary layer is governed by: 
 

   
 

u
D

r r=a

+
vD(a)

a

2v
+ Rf

v
= 0 .  (2.14.21) 

 
The dynamical balance is one between various sources and sinks of vorticity.  As a fluid 
column enters the boundary layer from the interior and moves up the sloping bottom 
towards the wall, negative vorticity is generated as a result of squashing of the column 
(first term).  This generation is balanced by advection of vorticity along the wall (middle 
term) and diffusion of vorticity into the wall (final term).  If the wall depth D(a) is zero or 
<<Do the middle term may be neglected.  Under this condition, use of the geostrophic 
balance 
 

   
 

v = and  
 

u =
1

a
 

 
leads to a single equation for the normal boundary layer velocity: 
 

 
 

2 u 2u
2
= 0 ,    (2.14.22) 

 

where 2
=

(dD / dr)r=a
aRf

.  

 Equation (2.14.22) is a diffusion equation with the time variable replaced by .  
The corresponding boundary layer on a straight coast is sometimes referred to as the 
“arrested  topographic wave” (Csanady 1978), and its origins can be traced back to Faller 
(????).  The solution is also equivalent to the northern or southern boundary layer arising 
in a homogeneous Stommel circulation on a -plane (Pedlosky, 1968).  In the present 



setting, the sloping boundary at the basin edge provides a topographic  effect that makes 
the edge act like a Stommel northern boundary, with increasing  equivalent to the 
westward direction.  

(c)  Joining the basin to the strait.  

 In order to pose boundary conditions on (2.14.22) it is necessary to consider the 
conditions in the strait.  In general, the fluid from outside has non-uniform potential 
vorticity and will have a complicated velocity distribution as it enters the strait.  If this 
flow is hydraulically controlled at some point in the interior of the channel, it may be 
possible to relate the volume flux T to the interface elevation at the entrance by a weir 
relation.  Although no general relation is available under conditions of non-uniform 
potential vorticity, the situation becomes considerably simplified if the layer thickness d 
over the sill is relatively small compared to d in the entrance region (Figure 2.14.1a). 
Fluid columns entering the strait must therefore be severely squashed as they pass over 
the sill, rendering v / x f , as assumed in the WLK model (Section 2.4).  We will 

also assume that the strait width ws is <<1 (dimensionallyws* << (gDo )
1/2 / f ), so that the 

variation in  over the width is <<1.  Under these conditions, the WLK weir formula 
(2.4.10) for attached sill flow or (2.4.15) for separated sill flow will hold.  For the 
moment, assume that the sill flow is separated, so that Q*=g( z*)2/2f,  where z* is the 
upstream basin elevation above the sill and is taken to be constant in the WLK 
formulation. Also Q*= T*.  In the present context, z* is the same as the elevation at the 
strait entrance e*, which is constant to leading order.  In nondimensional form, the weir 
formula (including the case of sill attachment) is  

 
Q *2 f

gDo
2

= T =

1/2 2
3( )

3/2
ws e

ws
2

8

3/2

  (ws
2
< 2 e )

e
2 / 2                             (ws

2 2 e )

 (2.14.23) 

and this relation is self consistent only if ws=O( 1/2). The entrance therefore must occupy 
a vanishingly small portion of the basin circumference.  

Returning to the question of boundary conditions, the value of u must be zero 
along the basin edge:

 
u(a, ) = (u(1) (a) + u(0, )) = 0  for values of  away from the 

entrance.  Suppose that the entrance is centered at =0 and that the basin edge spans -
< .  As 0,  the strait exists only within a vanishingly small interval about =0.  

The boundary condition there must be chosen to insure that the correct transport is 
accommodated.  Thus 

 

u(0, ) = u(1) (a) +
T ( )

aD(a)
   (2.14.24) 



where u(1) (a) =T / 2 aD(a) and where ( ) denotes the delta function. Note that the 

integral of u(a, ) across the strait entrance gives the correct transport: 

  lim
o

D(a)u(a, )ad
o

o

= T ( )d = T
o

o

. 

 

 A general solution to (2.14.22) for the periodic geometry is 

 

   
 

u = Re An
i=0

n

Un ( )e
in     (2.14.25) 

whereUn ( ) = e
(1+ i )(n /2)1/2 .  Application of the boundary condition (2.14.24) leads to  

 

Ao = u(1) (a) +
T

2 aD(a)
= 0 and An =

T

aD(a)
 (n 1).  (2.14.26) 

One of the weaknesses of the above solution is that it does not resolve the flow 
near the entrance of the strait.  Specifically, the boundary layer approximation is lost 
within an 1/2 1/2 entrance region where the flow must turn the corner and enter the strait.  
Also, the depth D(a) across the entrance has tacitly been assumed to match the constant 
depth about the perimeter of the basin, an assumption that leads to problems when D(a)  
vanishes.  In such cases, D(a) needs to be replaced by the actual strait depth.  

 To close the problem completely, it only remains to evaluate the integration 
constant (o)(a) in (2.14.16).  Since the interface elevation changes by only O( ) across 
the boundary layer, and by extension the 1/2 1/2 entrance region, we may approximate 
the elevation e just inside the entrance  by (o)(a).   Equation (2.14.23) can then be 
inverted to obtain      

(o) (a) =
3

2

T

ŵs

2/3

+
ŵs

2

8
 (ŵs

2
< 2 e )

(2T )1/2                 (ŵs
2 2 e )

,   (2.14.27) 

where ŵs = ws /
1/2 .   

 The complete picture (Figure 2.14.3a) can be summarized by considering an 
element of fluid introduced into the middle of the basin as a result of the downwelling. 
The element  circulates anticyclonically and slowly spirals outwards until it reaches the 



basin edge, where it enters the boundary layer.  The contribution to the azimuthal velocity 
from the boundary layer is weak in comparison to the O(0) azimuthal velocity, and the 
element will continue to circulate anticyclonically in the boundary layer.  The main 
impact of the boundary layer will be to allow the element to pass into the strait.   

Since the total transport  T out of the basin is specified, the effect of the sill is 
contained entirely in (0)(a).  If T changes, (0)(a) is altered according to (2.14.27) and the 
interface elevation at the edge of the basin is raised or lowered.  The overall circulation 
intensifies or diminishes uniformly and the interface in the basin becomes more or less 
domed [see (2.14.15) and (2.14.17)] but the circulation pattern is not altered.   If the 
downwelling velocity we is locally altered by changes in the interface elevation, then the 
horizontal circulation in the basin can be altered, but this is not provided for in our choice 
of forcing.   

 If the fluid is introduced into the basin laterally, with we=0 over the interior, then 
there is no interior circulation and the source water is transported entirely in boundary 
layers.  Suppose that the basin is fed by an inflow at the opposite edge of the basin ( = ) 
from the draining strait.  Then the boundary condition (2.14.24) is replaced by  

 

   û(0, ) =
T

aD(a)
( ( ) ( )) , 

and the coefficients in ((2.14.25) become 

 

   A0 = 0  and  An =
2T

a D(a)
.    (2.14.28) 

 

The inflow splits into two boundary layers that circle the basin and join at the draining 
strait (Figure 2.14.3b).  Note the overshoot of the cyclonic boundary layer, which causes 
the bulk of the flow to enter the strait along the ‘left’ wall of the basin.  

 A striking difference between the flows driven by downwelling and by injection 
through the side walls is in the way the fluid approaches the draining strait.  In the first 
case the flow about the outer rim of the basin is anticyclonic and all the fluid approaches 
along the ‘left’ wall (facing into the draining strait).  In the second case, the rim flow is 
split into two boundary layer carrying equal transports and the approach is from both 
walls (discounting the overshooting effect that diverts more fluid to the left wall 
immediately upstream of the entrance).  Some insight into the dynamical processes 
responsible for these differences can be gained by developing a circulation theorem for 



the rim flow. To this end, rewrite the shallow water momentum equations (2.1.1,2) in the 
vector form  

u *
t *

+ ( f + *)k u* = (g *+ 1
2 u *

2
) + F * , 

where F* contains the forcing and viscous terms.  If the tangential component of this 
equation is integrated about a circuit CR that follows the basin perimeter and cuts across 
the entrance to any straits the result can be written 

  
 t *

u * lds
CR

= ( *+ f )u * nds
CR

+ F * lds
CR

  (2.14.29) 

where the integration direction is counterclockwise.  The rate of change of 

circulation
 

u * lds
CR

, essentially the net swirl velocity about rim, is therefore equal to 

the flux of absolute vorticity *+ f  across the rim (due to inflows and outflows) plus the 
tangential component of forcing and dissipation along the rim.   

 In the cases considered above / t* = 0 , F*=-rfu*/d*, and * << f .  With a 
downwelling-driven flow drained by a single strait, (2.14.29) reduces to    

  
 

rf
u * l
d(a)

ds
CR

= f u * nds
CR

= fT * /d(a) < 0 , 

and therefore the net swirl velocity about the rim must be negative, as observed.  For the 
case in which fluid is introduced through a source strait, we have 

 

  
 

rf
u * l
d(a)

ds
CR

= fT * /d(a) + fT * /d(a) = 0 . 

The net swirl velocity is zero a property consistent with the presence of boundary layers 
on both left and right walls.  

(d)  Numerical simulations and the potential vorticity of the outflow. 

 Numerical experiments based on the full shallow-water equations (Helfrich and 
Pratt 2003) have reproduced the overall circulation patterns anticipated by the linear 
theory.  In the three simulations shown in Figure 2.14.4, fluid is introduced into a bowl 
shaped basin at the same volume rate but in different geographic locations.  The patterns 
of currents that arise in the basin largely follow expectations based on basin circulation 
integrals. As the location of the source is changed the flow patterns become quite 
different.  One the other hand the draining flow in the rectangular strait, is remarkable 
consistent from one case to the next (Figure 2.14.5).   



 The linear model uses a weir formula based on ‘zero potential vorticity’ theory, 
but this approximation is not enforced in the numerical simulations.  The potential 
vorticity (a) distribution in the strait is self determined and its value and distribution 
provide a basis for comparison with the cornerstone hydraulic models, most of which are 
based on uniform q.  The observed potential vorticity distribution is non-uniform (Figure 
2.14.6c), but the flow in the strait turns out to be qualitatively the same as that given by 
the Gill (1977) model for the same transport Q and with Gill’s constant q replaced by the 
mean value q measured across the entrance to the strait.  A comparison between two 
realizations (Figure 2.14.6) reveals only minor differences. 

 As suggested above the flow in the strait, and the value of q in particular, are 
insensitive to the distribution of sources in the upstream basin.  In fact q  also tends to be 
quite insensitive to the value of the friction coefficient Rf. As it turns out, the main factors 
controlling the potential vorticity are sill width and the ratio of the sill elevation to the 
entrance elevation of the channel.2  The potential vorticity selection can be therefore 
viewed as an aspect of the upstream influence due to the hydraulic control at the sill.  The 
selection of q  is clarified somewhat through consideration of the possible Gill solutions 
for a given strait geometry and transport Q.  With Q and the sill geometry fixed, the Gill 
model still permits a range of steady, critically controlled solutions, each with its own q.  
The velocity and depth profile at the channel entrance is different in each case.  An 
interesting quantity to focus on is the elevation zR of the interface at the right wall.  
Helfrich and Pratt (2003) find that the observed q  corresponds to a Gill solution for 

which zR is maximized, or very nearly so, over the range of permissible solutions.  Since 

the maximization occurs for fixed Q ( zR
2 zL

2 ) / 2 , it follows that the left wall elevation 

zL is also maximal.  

 In the linear model, the mean basin interface elevation is determined completely 
by the flux Q.  If the latter is held fixed and the sill height is raised, the basin interface 
elevation is uniformly raised at the same rate.  The same behavior is found in the 
numerical model, where a change in sill height simply causes the mean basin interface 
level to change an equal amount.  Since zR and zL are maximal for all the possible Gill 
solutions with a particular Q, there is a strong suggestion, if not outright verification, that 
basin has the maximum mean elevation over all such solutions.  Of all the possible basin 
states corresponding to the various Gill solutions, the one realized apparently has 
maximal potential energy.  The basin flow is highly subcritical, with kinetic energy 
dominated by potential energy, and a finding of maximal potential energy is tantamount 
to one of maximum energy.  

(e)  Upstream monitoring. 

 We have seen that changes in the location of the source has a profound effect on the 
circulation and the shape of the interface in the basin, but not in the strait.  Transport 

                                                
2 In the Helfrich and Pratt (2003) experiment, the entrance width is different than the sill width and their 
ration provides a third geometric parameter that influences the observed value of q . 



formulas that are based on measurements of upstream interface elevation, therefore are 
risky.  In fact, Gill’s (1977) transport relation (Section 2.5d) fails in the present 
experiments when the parameter I is measured in the interior of the upstream basin. 
Opportunities for monitoring the flow from the entrance to the channel are more 
promising.  The numerical solutions, which all maximize the right wall interface 
elevation zR, tend to have relatively sluggish flow in that region (see Figure 2.14.6d or 
e).  The Bernoulli function at this location is therefore nearly proportional to zR.  If it is 
also the case that the flow is separated at the sill, then by the arguments presented in 
Section 2.6, the dimensional transport is given by (2.6.7b), with the properly interpreted 
zR*. 

 Even when the sill flow is not separated, the robust nature of the strait flow means 
that monitoring is best done using quantities measured at the strait entrance rather than in 
the basin proper. 

(f)    ‘Westward’ intensification of the approach flow. 

 The presence of sluggish flow near the entrance right-wall (and rapid flow at the 
left wall) has also been observed in laboratory experiments by Whitehead and Salzig 
(2001, Figure 2.14.5) and is suggested by the linear theory for the basin flow (Figure 
2.14.3 but check to see whether it is actually there).  In the experiment (Figure 2.14.7) 
fluid is pumped into a deep arc-shaped basin and it escapes through a broad, shallow 
channel.  As a fluid column enters the channel it becomes squashed and acquires excess 
cyclonic vorticity.   There are two scenarios describing what happens next.  In the first, 
which is consistent with traditional, inviscid hydraulic theory, the fluid simply continues 
into the channel and develops strong shear.  In the second scenario, which is consistent 
with ideas about slow, nearly-geostrophic flow, the flow tends to follow the isobaths, 
crossing them only to an extent allowed by friction.  This is exactly what happens in the 
above linear model, where a strong swirling flow along the closed isobaths is 
accompanied by a weak flow towards shallower depths.  The excess vorticity generated 
by the vortex squashing is dissipated by friction.  In the present circumstance, the 
isobaths intersect the channel walls and the tendency is for fluid to be steered towards the 
boundaries.  Crossing into shallower depths occurs primarily within frictional boundary 
layers.  
 In the earlier linear model, where the isobaths parallel the basin edge, the 
frictional boundary (or ‘arrested topographic wave’) is different than the frictional layer 
that exists near the entrance, where the isobaths intersect the sidewalls.  It was first 
established by Stommel (1948) that such a layer can occur only where the ambient 
potential vorticity f/D* increases in the direction with the wall on the left.   For a broad 
ocean basin with constant depth D*, and a Coriolis parameter f that increases to the north, 
the frictional layer must occur on the western boundary.  In the present channel, where f 
is constant but D* decreases into the strait, the boundary layer must occur on the left 
wall.  It is expected, then, that the flow entering the strait should be concentrated along 
this ‘dynamical western boundary’, a feature bourn out by the laboratory and numerical 
experiments.  This ‘westward’ intensification can also be motivated using a circulation 
integral, as explored in Exercise 4.  The effect may account for the observation that the 



Denmark Strait overflow hugs the Iceland coastline, its dynamical western boundary, 
upstream of the sill (Jonsson, 1999). 

Exercises 
 
 
1.  Derive the potential vorticity equation for the geostrophic flow component of the 
basin flow.  Show that integration of this equation over the area AC enclosed by a closed 
geostrophic contour yields the relation (2.14.11). 
 
2.  Suppose that some of the constant depth contours intersect the vertical side walls of 
the basin and are therefore not closed.  How are the tangential and normal flow to the 
contour determined? 

3.  Derive equation (2.14.29) beginning with the momentum equation immediately above 
it. 

4.  (westward intensification of basin flow).  Consider the case in which fluid is injected 
through one strait and drained through another, with no interior downwelling.  Suppose 
that the source strait enters the north edge of the basin and the draining strait leaves the 
south edge.  The basin is large enough for the beta effect to be important and therefore 
the value of f at the mouth of the source strait is larger than that at the mouth of the 
draining strait.  Argue the flow in the basin will be concentrated in a western boundary 
layer.  Show that the same effect occurs in an f-plane basin if the depth at the mouth of 
the source strait is greater than the depth at the entrance of the draining strait. 

Figure Captions 

2.14.1  Definition sketch. 

2.14.2  Basin with azimuthal symmetry.  

2.14.3  Example of solutions from the linear model in which fluid is fed into the parabolic 
basin through a strait in the side wall. The geometry of the entrance and exit are identical 
The parameters are given by T=1, Rf=0.2, a=4.0, and ws=0.5. (Figure 7 of Pratt, 1977) 

2.14.4  Three numerical simulations of a basin flow that is drained through a strait.  The 
fluid is introduced into the basin (a) through the back wall, (b) through a downwards 
entrainment velocity we distributed uniformly over the basin, and (c) through a we 
concentrated near the upstream boundary of the basin. The contours are ones of interface 
elevation. (Figure 7 from Helfrich and Pratt 2003).  

2.14.5  Side views of interface elevations along (a) the left wall, (b) along the centerline, 
and (c) along the right wall of the basin and channel for the three flows depicted in Figure 
2.14.4.  (Figure 6 of Helfrich and Pratt 2003).  



2.14.6  Comparison of the strait flows in plan view from the numerical experiments (a-c) 
and the Gill (1997) theory (d-e) based on the mean potential vorticityq = 1.78  measured 
at the entrance (dotted line).  The nondimensional parameters are given in both cases by 
Q=.05, ws=1, and Rf=.01.  Also, the ratio of the sill elevation to the entrance elevation 
(both measured above the deepest point of the basin) is 0.8. 
 
2.14.7  (a) Plan view of laboratory flow established by injecting fluid into a deep basin 
(left) and allowing it to drain through a shallow strait with a flat bottom (right). The 
width of the channel is roughly one deformation radius based on the elevation difference 
between the maximum surface height in the deep basin and the channel bottom.  The 
streak lines are due to the motion of white floats.  (From Whitehead and Salzig, 2001). 
(b) Side view showing the sloping bottom in the deep basin. 
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